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The hepatitis B virus (HBV) is one of the major viral infection problems worldwide in public health. The exclusive proprietary
Chinese medicine Ganweikang (GWK) tablet has been marketed for years in the treatment of chronic hepatitis B (CHB).
However, the pharmacodynamic material basis and underlying mechanism of GWK are not completely clear. This study is
aimed at investigating the pharmacological mechanism of the GWK tablet in the treatment of CHB. The chemical ingredient
information was obtained from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP), Traditional
Chinese Medicines Integrated Database (TCMID), and Shanghai Institute of Organic Chemistry of CAS. Ingredients and
disease-related targets were defined by a combination of differentially expressed genes from CHB transcriptome data and open-
source databases. Target-pathway-target (TPT) network analysis, molecular docking, and chemical composition analysis were
adopted to further verify the key targets and corresponding active ingredients of GWK. Eight herbs of GWK were correlated to
330 compounds with positive oral bioavailability, and 199 correlated targets were identified. The TPT network was constructed
based on the 146 enriched targets by KEGG pathway analysis, significantly associated with 95 pathways. Twenty-five
nonvolatile components and 25 volatile components in GWK were identified in UPLC-QTOF/MS and GC-MS
chromatograms. The key active ingredients of GWK include ferulic acid, oleanolic acid, ursolic acid, tormentic acid, 11-
deoxyglycyrrhetic acid, dibenzoyl methane, anisaldehyde, wogonin, protocatechuic acid, psoralen, caffeate, dimethylcaffeic acid,
vanillin, β-amyrenyl acetate, formonentin, aristololactam IIIa, and 7-methoxy-2-methyl isoflavone, associated with targets CA2,
NFKB1, RELA, AKT1, JUN, CA1, CA6, IKBKG, FOS, EP300, CREB1, STAT1, MMP9, CDK2, ABCB1, and ABCG2.

1. Introduction

The hepatitis B virus (HBV) is one of the major viral infec-
tion problems in worldwide public health [1]. About 300
million people were living with chronic hepatitis B (CHB)

in 2019, and around 1.5 million new infections were esti-
mated every year globally, especially in developing countries
[2]. HBV is known as a double-stranded DNA virus with a
membrane and nucleocapsid (cccDNA). Widely recognized
as liver damage virus, HBV is believed to be highly
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associated with cirrhosis and hepatocellular carcinoma
(HCC) [3]. When liver cells are infected by HBV, a variety
of antigens will be produced, including hepatitis B surface
antigen (HBsAg), hepatitis B E antigen (HBeAg), and hepa-
titis B core antigen (HBcAg), resulting in a series of immune
responses. Nonspecific and specific immune responses are
activated successively with HBV-specific cytotoxic T cells
(CTL) and cytokine production, such as interferon- (IFN-)
γ and tumor necrosis factor- (TNF-) α. Additionally, a series
of cell immune-related genes are affected, such as Toll-like
receptors (TLRs) and retinoic acid inducible gene-1
(RIG-1), and various pathways are involved, including
ROS/NF-κB signaling pathway, JAK-STAT pathway, and
p53 pathway [4–6]. The apoptosis of CTL and decline of
cytokines result in chronic persistent infection, which serves
as one of the pathogenic mechanisms of CHB [7]. Other
chain reactions will further lead to the hardship of the clinical
cure on CHB, such as immune tolerance, Th1/Th2 imbal-
ance, and CTL-induced hepatocyte damage [8]. As HBV
infection persists, inadequate immune responses and the
undetachable virus in hepatocytes result in weakened recog-
nition capabilities of the immune system in hosts, and the
virus cannot be completely cleared. Antigen-antibody reac-
tions on the host liver membrane induce continuously hepa-
tocyte damage [9]. The infection will become long-standing
and recurrent [10].

In China, the implementation of the hepatitis B vaccina-
tion policy in the 1990s made prominent relief on HBV
prevalence; however, CHB is still a public health problem
at present [11]. The dominant clinical treatments of CHB
are nucleoside (acid) analogues, polyethylene glycol inter-
feron α (PEG-IFNα) or interferonα (IFNα), and other
therapies, such as anti-inflammatory, antioxidation, liver
protection, and antifibrosis. The first-line drugs entecavir
(ETV), tenofovir disoproxil (TDF), and tenofovir alafena-
mide (TAF) mainly focus on the inhibition of DNA duplica-
tion. However, long treatment cycles, drug resistance, and
dosage-dependent effects cause heavy economic burdens to
the patients and drag down the quality of life [12].

Traditional Chinese medicine (TCM) is a classical med-
ical system existing over thousand years [13]. With the
advantages of relatively low cost and good safety, most Chi-
nese CHB patients have been treated with TCM therapies,
especially those with CHB liver fibrosis [14]. TCMs are
defined as complex systems with the natural characteristics
of relatively high differentiation and personalized varieties
with multiple herb combinations. Therefore, the molecular
mechanisms of TCM are difficult to clarify using the same
approaches in research on chemical drugs. Fortunately, net-
work analysis may get access to the solutions on the mecha-
nism investigation of TCM [15]. In 1999, Professor Li et al.
firstly hypothesized a potential association between the bio-
molecular network and the “ZHENG”—the key pathological
principle and medication guidance in TCM. In 2002, Li et al.
revealed the “tiny and multiple” effects of traditional
Chinese herbs in the treatment of complex diseases [16].
Based on computational analysis and animal experiments,
Li et al. constructed a neuroendocrine–immune network to
understand the basis of hot and cold ZHENG in 2007 [17].

In 2008, Professor Hopkins raised the concept of “network
pharmacology” and predicted the new research mode as
the next paradigm in drug discovery [18, 19]. In 2011, the
“network target” was mentioned by Li et al., and the network
target was used for synergistic drug combination screening
in TCMs [20]. Since then, network analysis has been widely
used in TCM research, and related theory, standards, and
methodology guidance have gradually been established
[21–23]. With network analysis, the multitarget, multifactor,
and multifunction features of TCM could be fitted into
nodes and edges in the network to explore the material basis
and pharmacodynamic mechanism.

Ganweikang (GWK) tablets serve as an exclusive propri-
etary Chinese medicine that has been marketed for years.
The original formulation consisted of eight herbs—Astragali
Radix (Astragalus membranaceus (Fisch.) Bge. var. mongho-
licus (Bge.) Hsiao) (Huangqi), Verbenae Herba (Verbena
officinalis L.), Stellariae Radix (Stellaria dichotoma L. var.
lanceolata Bge.) (Mabiancao), Atractylodis Macrocephalae
Rhizoma (Atractylodes macrocephala Koidz.) (Baizhu),
Stellaria dichotoma L. var. lanceolata Bge (Yinchaihu),
Saposhnikoviae Radix (Saposhnikovia divaricata (Turcz.)
Schischk.) (Fangfeng), Pogostemonis Herba (Pogostemon
cablin (Blanco) Benth) (Huoxiang), Forsythiae Fructus
(Forsythia suspensa (Thunb.) Vahl) (Lianqiao), and Glycyr-
rhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.)
(Gancao). As sovereign herbs in the formulation, Huangqi
has been proven to have anti-HBV effects and is commonly
used in clinics, while Mabiancao is usually combined with
other herbs for its anti-inflammatory and antioxidant activ-
ities [24, 25]. Glycyrrhizic acid preparation from the GWK
formulation Gancao is also included in the guidelines for
the prevention and treatment of CHB in China. Based on
TCM theory, Huangqi combined with Mabiancao invigo-
rates qi-flowing to strengthen the spleen, clears heat toxin,
and promotes blood circulation to remove blood stasis.
Huoxiang and Baizhu assist sovereign herbs in inducing
diuresis to remove edema. Lianqiao and Yinchaihu help
remove heat toxins. Fangfeng eliminates dampness and acti-
vates liver qi-flowing. Gancao invigorates the spleen and
replenishes qi. The combination of herbs in GWK shows
the effecacy of clearing heat and promoting diuresis, remov-
ing toxic substances, and promoting blood circulation for
removing blood stasis. However, the complete pharmacody-
namic material basis and underlying mechanism are still not
clear. In this study, we focused on pharmacological basis
research on GWK tablet, integrating network analysis,
molecular docking, and chemical profiling including
UPLC-QTOF/MS and GC-MS, aiming on the illustration
of the pharmacodynamic mechanism of GWK. The work-
flow is showed in Figure 1.

Ultraperformance liquid chromatography coupled with a
hybrid quadrupole orthogonal time-of-flight mass spec-
trometer (UPLC-QTOF-MS) is a technology that has been
successfully used for fast and high-resolution determination
of nonvolatile components and with the required sensitivity
and accuracy. It has become a crucial tool for compositional
analysis of complex TCM systems [26]. In addition, gas
chromatography-mass spectrometry (GC-MS) technology
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is used for identification of volatile components in tested
samples by conducting a comparative analysis on the deter-
mined mass spectrum of the individual components with
those of the standard substances recorded in the well-
established data library [27]. Since the GWK tablet contains
both volatile and nonvolatile components, in the present
study, both UPLC-QTOF/MS and GC-MS were conducted
to identify the chemical compositions.

2. Materials and Methods

2.1. Data Collection and Processing. The Ganweikang
(GWK) tablet consists of eight herb components—Astragali
Radix (Astragalus membranaceus (Fisch.) Bge. var. mongho-
licus (Bge.) Hsiao) (Huangqi), Verbenae Herba (Verbena
officinalis L.), Stellariae Radix (Stellaria dichotoma L. var.
lanceolata Bge.) (Mabiancao), Atractylodis Macrocephalae
Rhizoma (Atractylodes macrocephala Koidz.) (Baizhu),
Saposhnikoviae Radix (Saposhnikovia divaricata (Turcz.)
Schischk.) (Fangfeng), Pogostemonis Herba (Pogostemon
cablin (Blanco) Benth) (Huoxiang), Forsythiae Fructus
(Forsythia suspensa (Thunb.) Vahl) (Lianqiao), and Glycyrrhi-
zae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.) (Gancao).

2.1.1. Collection of Chemical Ingredients. The chemical
ingredient information of GWK was acquired from three
chemical databases: Traditional Chinese Medicine Database
and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp
.php) [28], Traditional Chinese Medicines Integrated Data-
base (TCMID, http://www.megabionet.org/tcmid) [29], and
Shanghai Institute of Organic Chemistry of CAS. Chemistry
Database (http://www.organchem.csdb.cn/scdb/default.asp)
[30]. Common amino acids and compounds with high
molecular weights were first excluded, and then, the
compounds were standardized by a canonical simplified

molecular-input line-entry system (SMILES) through the
PubChem database (http://pubchem.ncbi.nlm.nih.gov) [31].
Furthermore, the candidate compounds were determined
by positive oral bioavailability (OB) (log Kð%FÞ > 0) accord-
ing to the admetSAR database (http://lmmd.ecust.edu.cn/
admetsar2) [32].

2.1.2. Chemical Ingredient Target Prediction. The relevant
targets of each compound were predicted using the similar-
ity ensemble approach (SEA, http://sea.bkslab.org/), which is
a protein target prediction tool based on chemical similarity.
The similarity is computed from the daylight fingerprint and
involves information from the MDL Drug Data Report
(MDDR) database. The ligand significances are ranked by
similarity scores, and a minimum spanning tree is generated.
The clusters are mapped merely based on chemical similar-
ities; nevertheless, some of the biological sensitivities are pre-
sented as well [33]. The human targets with MaxTc > 0:57
were selected as candidate targets.

2.1.3. Disease Target Collection. Disease-original targets were
partially collected from three databases: Comparative Toxi-
cogenomics Database (CTD, https://ctdbase.org/) [34],
Online Mendelian Inheritance in Man (OMIM, http://www
.omim.org) [35], and Kyoto Encyclopedia of Genes and
Genomes (KEGG, http://www.genome.jp/kegg) [36] by the
term “Chronic hepatitis B” or “hepatitis B”. The UniProt
database (http://www.uniprot.org) [37] was used to perform
protein ID standardization on each target.

2.2. Transcriptome Microarray Analysis. The main portion
of disease-original targets was obtained from differentially
expressed genes (DEGs) of the chronic hepatitis B (CHB)
blood sample microarray data. In this data, we selected the
transcriptome data of 10 healthy donors and 9 CHB patients
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Figure 1: Roadmap of the study.
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from our cohort to do DEG analysis. The cDNA samples
were hybridized onto the NimbleGen Homo sapiens 12 ×
135K Array (Roche, CAT No. A6484-00-01). The raw data
were processed using NimbleScan 2.5 software. Quantile
normalization and background correction were conducted
[38]. R language 3.6.1 [39] “limma” package was adopted to
do DEG analysis. Packages “pheatmap” and “ggplot2” were
used to obtain the heatmap and volcano map. Biological func-
tional annotation was conducted by using KEGG pathway
enrichment analysis with the R package “clusterProfiler”.

2.3. Network Analysis

2.3.1. Target-Pathway-Target (TPT) Network Construction.
The molecular mechanism of traditional Chinese medicine
(TCM) is difficult to clarify due to its features of complexity
and holism; however, network analysis may provide access
to this solution. From the perspective of “network” and “sys-
tem,” network analysis developed as a novel paradigm for
the research of holistic medical system [22]. The network
in TCM is based on the interactions between drugs, targets,
pathways, and diseases, including the drugome network, dis-
easome network, and molecular interactome network. The
analysis of nodes, edges, motifs, and modules serves as the
underlying basis for the pathogenesis of complex diseases
and the mechanism of drugs; meanwhile, it also provides
indications for drug investigation as well [40].

A single target is usually associated with multiple path-
ways, and vice versa, one pathway is related to multiple tar-
gets. The target-pathway-target (TPT) network was
constructed to delineate the target interactions in terms of
related pathways. The novel network analysis approach
TPT network turns two-mode “target-pathway” relation-
ships into one-mode “target-target” interactions. Targets
related to similar pathways tend to be identified in the same
network module. The biological information between targets
and pathways was clearly demonstrated in a single network
[41]. The network of the “target-target” relationship was
obtained by Pajek 5.13 software [42] from two-mode net-
work between targets and pathways. The TPT network was
visualized by Gephi 0.9.2 software [43], and modularity
analysis was done by the Louvain algorithm. In the TPT net-
work, nodes represent targets, and edges represent related
pathways. Each target was assessed by a network efficiency
(NE) calculation, which was defined as the total reciprocals
of the shortest path lengths of each pair of targets. Then,
the targets were eliminated, and new NEs were calculated.
The decreased value of the new NE was called the network
efficiency decrease (NED) for each specific target, which
revealed the efficacy of each single target in the entire TPT
network. Targets with high NED values were considered
key targets. The details of the TPT network and NE calcula-
tions can be referred to in our previous work [44].

In graph theory, centrality indicators are commonly
identified as the measurements of node importance in a
network. In this study, we selected three centrality indica-
tors—degree, closeness, and betweenness—as the input
variables in the TPT network centrality analysis. Three cen-
trality indicators were standardized and averaged. Targets

with high normalized centrality values were considered key
targets. In this study, both the NED method and centrality
were implemented to assess the TPT network.

2.3.2. Compound-Target-Pathway (CTP) Network Construction.
A compound-target-pathway (CTP) network was constructed
after the key targets were identified through the TPT network.
The CTP network was conducted to illustrate the scientific
basis of GWK. Based on a comprehensive network analysis,
the multiple relationships between compounds, targets, and
relative pathways are clearly revealed. The nodes stand for
key targets, correlated compounds, and hepatitis B- (HBV-)
related pathways. HBV-related pathways were defined accord-
ing to the KEGG term “Hepatitis B –Homo sapiens (human).”
The CTP network was visualized by Cytoscape 3.9.0 soft-
ware [45].

2.3.3. Statistical Verification. The association between the
network module and disease targets was verified using a
chi-square (χ2) test. The robustness of target rank under
the NE approach in the TPT network was tested by the
paired sample Wilcoxon test. Spearman’s test was adopted
for the correlation between the NED value in the TPT net-
work and the frequency of CHB literature on each target.
The existing literature was retrieved from the PubMed data-
base (PubMed; http://ncbi.nlm.nih.gov) using “chronic hep-
atitis B” AND “target name” in the field of “title/abstract.”
Spearman’s correlation test was then conducted on the
NED values and the literature frequencies.

2.4. Molecular Docking

2.4.1. Protein and Ligand Preparation. The three-dimensional
(3D) structures of key protein targets were downloaded from
the Protein Data Bank (PDB) database (https://www.rcsb
.org/) [46]. Crystal structure resolution is one of the quality
standards that represents atomic position precision. Protein
structures with lower resolution values should be chosen.
However, resolution should not be the only selection criterion.
Some high-resolution structures may lack eutectic ligands,
which leads to difficulties in determining the active pocket.
Thus, we chose target structures from crystal structures
obtained by the X-ray diffraction method with no more than
3.0Å resolution to the greatest extent in the PDB database.
The PDB structures were prepared by removing the water ions
and ligands and adding hydrogens through PyMOL 4.4 soft-
ware [47] and AutoDockTools 1.5.6. software [48]. The active
pockets of the structures were based on the ligand coordinates
in macromolecules, while the active sites of the structures
without ligands were predicted by POCASA 1.1 web version
(http://altair.sci.hokudai.ac.jp) [49]. The 3D structures of the
correlated active ingredients were downloaded from the
PubChem database. The structures were transformed into
PDB formats by Open Babel 1.1 software [50] for molecular
docking.

2.4.2. Protein-Ligand Molecular Docking. Molecular docking
was conducted using AutoDockTools 1.5.6. software with a
genetic algorithm and default parameters. Docking mode
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visualization and file format conversion were implemented
using PyMOL 4.4 software and Open Babel 1.1 software.

2.5. Chemical Profiling. The compositions of volatile and non-
volatile components in GWK were separately detected by
ultraperformance liquid chromatography coupled with quad-
rupole time-of-flight mass spectrometry (UPLC-QTOF/MS)
and gas chromatography-mass spectrometry (GC-MS).

2.5.1. Chemicals and Reagents. Formic acid, methanol, aceto-
nitrile, and leucine-enkephalin of LC-MS grade were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Ethanol
(HPLC grade) was purchased from RCI Labscan Limited
(Thailand). All other reagents and chemicals were of analyt-
ical grade. Milli-Q water was prepared using a Milli-Q
system (Millipore, MA, USA). Samples of volatile and non-
volatile extracts of GSW were provided by Jiaheng (Hengqin,
Zhuhai) Pharmaceutical Technology Co., Ltd.

2.5.2. UPLC-QTOF/MS. The nonvolatile components in
GWK were analyzed on a Waters ACQUITY-UPLC CLASS
system (Waters Corp., Milford, USA) with an ACQUITY
UPLC HSS T3 column (150mm × 2:1mm, 1.8μm) (Waters
Corp., Milford, USA) maintained at 35°C. Elution was per-
formed with a mobile phase of A (0.1% FA in water) and
B (0.1% FA in ACN) under a gradient program: 0-25min,
5%–50% B, and 25-45min, 50-100% B. The flow rate was
0.4mL/min, and the injection volume was 5μL.

Mass spectrometric detection was carried out using a
quadrupole time-of-flight (QTOF) SYNAPT G2Si High-
Definition Mass Spectrometer (Waters Corp., Milford,
USA) with an electrospray ionization (ESI) interface. The
positive and negative ion modes were used with the mass
range setting at m/z 50-1500Da. The optimized ionization
conditions were set as follows: capillary voltage of 3.0 kV,
source temperature of 120°C, desolvation gas flow of 900 L/
h, desolvation temperature of 450°C, cone voltage of 40V,
cone gas flow of 10L/h, the trap collision energy of 4.0V,
transfer collision energy of 2.0V, and collision energy ramp
of 30 eV to 60 eV. A scan time of 0.2 s with an interval scan
time of 0.1 s was used throughout the detection process.
Moreover, leucine-enkephalin (m/z 556.2771, [M+H]+)
solution, at a concentration of 200 ng/μL with the flow rate
of 10μL/min, was used as the external reference to ensure
accuracy during the MS analysis. Data were collected using
the TOF MSE (MS at elevated fragmentation energy) mode,
in which parent ions and fragment ion mass spectral data
were collected for each detected analyte in a single chro-
matographic run.

2.5.3. GC-MS. The volatile components in GWK were ana-
lyzed on a column (30m × 0:32mm × 0:25 μm) of Agilent
J&W GC DB-1 (Agilent, USA) by the Thermo Trace 1300
gas chromatography system coupled with Thermo ISQ LT
single quadrupole mass spectrometer (Thermo Fisher,
USA). The program was as follows: the column temperature
was increased with a rate of 10°C/min from 50°C to 80°C
(held for 2min), 5°C/min to 140°C (held for 1min), and
20°C/min to 280°C (held for 1min) and then reduced with
a rate of 50°C/min to 50°C (held for 2min). The injector

temperature was maintained at 280°C with splitless injection
(25 : 1) and helium (purity 99.99%) as the carrier gas at a
flow rate of 1.0mL/min. The mass spectrometer was per-
formed at a scan range of 50-500m/z with 70 eV ionization
energy and applied 280°C and 200°C of ion source and
quadruple temperature, respectively. Identification of the
detected peaks was conducted by comparing the mass spec-
trum with the individual peak to those in the NIST MS
Search 2.2 standard spectral library.

3. Results

3.1. Differentially Expressed Gene (DEG) Analysis in
Microarray Data. Based on the transcriptome data of 10
healthy donors and 9 CHB patients, 20033 genes were
obtained after data processing and cleaning, among which a
total of 1129 differentially expressed genes (DEGs) were iden-
tified (p value < 0.05, fold change > 1:5), including 497 upreg-
ulated genes and 632 downregulated genes (Table S1). Data
quality was shown by a PCA plot (Figure 2(a)). The heatmap
and volcano map of the DEGs are presented in Figures 2(b)
and 2(c). Disease-related targets were defined as the
combination of DEGs in CHB transcriptome data and the
CTD, OMIM, and KEGG databases of HBV-related targets.
The total disease-related target number was 1470.

3.2. Target-Pathway-Target (TPT) Network. Eight herbs of
GWKwere correlated with 972 compounds, of which 330 com-
pounds with positive oral bioavailability and 199 targets were
predicted by the SEA approach (Table S2). KEGG pathway
analysis enriched 146 targets, significantly associated with 95
pathways (q-value < 0.05). A TPT network was constructed
based on 146 enriched targets (Figure 3(a)). Five modules
were identified using the Louvain algorithm incorporated into
Gephi software. Most of the targets enriched in HBV-related
signaling pathways belonged to module 2 (Figure 3(b)), while
disease-related targets showed a similar pattern (Figure 3(c)).
The chi-square (χ2) test (p value = 0.01) result indicates an
association between disease-related targets and module 2 as
well. Different modules in the TPT network present
diversified functions in the KEGG pathway enrichment
analysis (Figure 3(d) and Table S3). HBV and related
pathways, such as the “MAPK signaling pathway,” “Toll-like
receptor signaling pathway,” and “JAK-STAT signaling
pathway,” were enriched in module 2. Targets in other
modules were enriched in different aspects of the pathways.
Module 1 was associated with neurocorrelated pathways,
such as the “neuroactive ligand-receptor interaction” and the
“retrograde endocannabinoid signaling pathway.” Module 3
was related to metabolism, such as “arachidonic acid
metabolism” and “tryptophan metabolism.” Modules 4 and 5
were relatively small and enriched in pathways such as “other
glycan degradation” and “nitrogen metabolism.” Based on
these results, module 2 was considered a major module in the
network. Key targets were determined using the NED
method (Table 1) and centrality analysis (Table 2). There was
no significant difference in top target identification under the
two assessment methods (p value = 0.314). Spearman’s test
showed a significant correlation between NED values and
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literature frequencies associated with CHB (p value = 0.001),
which is better than the results of centrality analysis (p value
= 0.05). Thus, CA2, NFKB1, RELA, AKT1, JUN, CA1, CA6,
IKBKG, FOS, EP300, CREB1, STAT1, MMP9, CDK2,
ABCB1, and ABCG2 were identified as key targets.

3.3. Compound-Target-Pathway (CTP) Network. The CTP
network was constructed based on HBV-related pathways:
“Hepatitis B,” “MAPK signaling pathway,” “NF-kappa B
signaling pathway,” “Toll-like receptor signaling pathway,”
and “JAK-STAT signaling pathway.” Thirty-three correlated
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targets and 68 compounds were included (Figure 3(e)). The
importance of ingredients was investigated based on the
connections between targets and pathways in the CTP net-
work for further studies. The node information of the CTP
network is shown in Table S4.

3.4. Molecular Docking. Sixteen key targets implemented
molecular docking with 43 associated active ingredients
(Table 3). In our study, most of the structures could meet
our standards obtained by the X-ray diffraction method with
no more than 3.0Å resolution except ABCG2 (electron
microscope method). Stronger or close affinities were pre-
sented between some of the targets and correlated ingredi-
ents compared with positive control compounds, such as

karenzu DK2 with CA2 (-6.33 kcal/mol) (Figure 4(a)),
EP300 with vanillin (-6.26 kcal/mol) (Figure 4(b)) and cis-
ferulic acid (-5.47 kcal/mol) (Figure 4(c)), wogonin with
CREB1 (-3.75 kcal/mol) (Figure 4(d)), oleanolic acid with
RELA (-7.61 kcal/mol) (Figure 4(e)), chromone O with
AKT1 (-8.8 kcal/mol) (Figure 4(f)), 3,4-methylenedioxy-10-
hydroxy aristololactam (aristololactam IIIa) with CDK2
(-7.99 kcal/mol) (Figure 4(g)), formonentin with ABCB1
(-7.19 kcal/mol) (Figure 4(h)), and 7-methoxy-2-methyliso-
flavone with CA1 (-7.18kcal/mol) (Figure 4(i)). According to
the docking results, the key ingredients were recognized as
ferulic acid, oleanolic acid, ursolic acid, tormentic acid, 11-
deoxyglycyrrhetic acid, dibenzoyl methane, anisaldehyde, wogo-
nin, protocatechuic acid, psoralen, caffeate, dimethylcaffeic acid,
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Figure 3: Network analysis and molecular docking for Ganweikang herbs. (a) TPT network module analysis. (b) Distribution of HBV-related
signaling pathways in TPT network. (c) Distribution of HBV-related targets in TPT network. (d) KEGG pathway enrichment analysis in each
TPT network module. (e) Compound-target-pathway (CTP) network, green nodes represent compounds, red nodes represent targets, and
lavender nodes represent HBV-related pathways.

Table 1: Network efficacy (NE) of TPT network.

ID Modularity NE0 NE NED

CA2 5 5171.021 5134.971 36.05078

AKT1 2 5171.021 5137.447 33.57426

NFKB1 2 5171.021 5148.723 22.298

RELA 2 5171.021 5148.996 22.02505

JUN 2 5171.021 5150.569 20.45252

IKBKG 2 5171.021 5151.989 19.032

FOS 2 5171.021 5152.703 18.31796

STAT1 2 5171.021 5157.11 13.91142

EP300 2 5171.021 5158.114 12.90776

CREB1 2 5171.021 5158.52 12.50135

CDK2 2 5171.021 5159.81 11.21124

MMP9 2 5171.021 5160.424 10.59769

NLRP3 2 5171.021 5162.762 8.259579

ABCB1 3 5171.021 5162.824 8.197806

ABCG2 3 5171.021 5163.057 7.964864
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vanillin, aristololactam IIIa, formonentin, β-amyrenyl acetate,
and 7-methoxy-2-methyl isoflavone. The positive control
binding modes can be seen in Figure S1, and the binding
patterns between the positive ligands and targets are shown
in Figure S2. The detailed molecular docking affinity results
of the key targets are shown in Table S5.

3.5. Chemical Profiling. Ultraperformance liquid chromatog-
raphy with quadrupole time-of-flight mass spectrometry
(UPLC-QTOF/MS) and gas chromatography-mass spec-
trometry (GC-MS) was adopted to analyze the volatile and
nonvolatile oil compositions of GWK.

The UPLC-QTOF/MS chromatograms of nonvolatile
components in GWK were identified under positive ion
mode and negative ion mode (Figure 5(a)). Based on the
detected accurate molecular weight and the major fragments
obtained from the MS2 spectrum, 25 components were
tentatively identified, including 6 triterpenoid saponins, 12
flavones and their glycosides, 2 phenylpropanoids, 2 organic
acids, and 3 other components. Seven ingredients were cor-
respondingly predicted as key active ingredients in the net-
work analysis (Table 4), which further verified the network
analysis and molecular docking results. Thus, the key active
ingredients of GWK in the treatment of CHB were identified
as ferulic acid, oleanolic acid, ursolic acid, tormentic acid,
11-deoxyglycyrrhetic acid, dibenzoyl methane, anisaldehyde,
wogonin, protocatechuic acid, psoralen, caffeate, dimethyl-
caffeic acid, vanillin, beta-amyrenyl acetate, formonentin,
aristololactam IIIa, and 7-methoxy-2-methyl isoflavone.

In the GC-MS profile, 25 volatile components of GWK
were detected (Figure 5(b)). The mass spectrum of each peak
under GC-MS was analyzed using the NIST MS Search 2.2
standard spectral library. Volatile components in GWK were
identified as (1) 4-methylheptane, (2) n-octane, (3) 2,4-
dimethylheptane, (4) 2,4-dimethyl-1-heptene, (5) 3-thujene,
(6) α-pinene, (7) sabinene, (8) β-pinene, (9) o-cymene, (10)
1,2,6-dimethylnonane, (11) β-terpinyl acetate, (12) γ-terpi-

nene, (13) (Z)-1,4-dimethylcyclooctane, (14) terpinen-4-ol,
(15) 1,3-di-tert-butylbenzene, (16) 4,6-dimethyldodecane,
(17) 2-isopropyl-5-methyl-1-heptanol, (18) (5E)-5-icosene,
(19) 2-hexyl-1-decanol, (20) 2,4-di-t-butylphenol, (21)
4βH,5α-eremophila-1(10),11-diene, (22) γ-elemene, (23) tri-
chloroacetic acid, (24) atractylon, and (25) 2,2-dimethoxy-2-
phenylacetophenone. The detailed component information
of UPLC-QTOF/MS and GC-MS is shown in the supplemen-
tary file (Tables S6 and S7).

4. Discussion

Traditional Chinese medicines (TCMs) usually present the
characteristics of multicomponents, multitargets, and com-
prehensive curative effects, of which the mechanisms are dif-
ficult to completely clarify by canonical pharmaceutical
research methods. However, network analysis turns out to
be an effective approach to investigate the pharmacological
mechanism complexities of TCM [51, 52]. The network
analysis in this study was assessed based on the “Network
Pharmacology Evaluation Methodology Guidance” [23].
Reliability, standardization, and verification were considered
in the study in terms of data collection, network analysis,
and verification of the results.

In this study, we focused on the molecular mechanism of
the exclusive proprietary Chinese medicine Ganweikang
(GWK) tablet in the treatment of chronic hepatitis B
(CHB). Based on network analysis, the key targets were
identified as CA2, NFKB1, RELA, AKT1, JUN, CA1, CA6,
IKBKG, FOS, EP300, CREB1, STAT1, MMP9, CDK2,
ABCB1, and ABCG2, and the key activate ingredients were
ferulic acid, oleanolic acid, ursolic acid, tormentic acid, 11-
deoxyglycyrrhetic acid, dibenzoyl methane, anisaldehyde,
wogonin, protocatechuic acid, psoralen, caffeate, dimethyl-
caffeic acid, vanillin, β-amyrenyl acetate, formonentin,
aristololactam IIIa, and 7-methoxy-2-methyl isoflavone.
Detailed information on the key activate ingredients and

Table 2: Centrality analysis of TPT network.

ID Modularity Closeness Betweenness Degree Normalized mean

NFKB1 2 0.658879 668.6669 84 0.664042

AKT1 2 0.646789 699.2082 80 0.649083

RELA 2 0.655814 581.8133 83 0.638257

JUN 2 0.618421 340.2727 71 0.515198

IKBKG 2 0.613043 366.4912 70 0.514695

FOS 2 0.61039 278.2019 68 0.484652

CA2 5 0.382114 1430 16 0.433084

CREB1 2 0.524164 103.653 50 0.329828

GABBR1 1 0.507194 265.5581 37 0.306186

GABBR2 1 0.507194 265.5581 37 0.306186

EP300 2 0.536122 99.59604 43 0.305632

MMP9 2 0.536122 88.26423 43 0.302991

STAT1 2 0.505376 59.06365 43 0.281899

ABCB1 3 0.496479 475.2315 17 0.267778

NLRP3 2 0.482877 15.02849 29 0.203568
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targets is listed in Tables S8 and S9. Information on key
activate ingredients was retrieved from the SwissADME
database (http://www.swissadme.ch) [53]. The information
on key targets was retrieved from the UniProt database and
the GeneCards database (http://www.genecards.org) [54].

Most of the key active ingredients in GWK have been
reported to be associated with CHB, HBV, or hepatopathy,
mainly correlated with antivirus and liver protection. Ferulic
acid, which exists as a phenolic acid in nature, has been
reported to have liver protection effects. The antioxidant
and anti-inflammatory effects of ferulic acid were revealed
to protect acute hepatocyte injury induced by carbon tetra-
chloride (CCl4) in mice via NOX4/P22PHOx/ROS-JNK/

P38 MAPK signaling pathway [55]. Also, ferulic acid was
able to attenuate hepatic fibrosis and the activation of
hepatic stellate LX-2 cells through the inhibition of TGF-β/
Smad signaling pathway [56]. The natural triterpenoids
oleanolic acid (OA) and ursolic acid (UA) are isomers. Both
OA and UA have potential inhibitory effects on the tumori-
genic activities mediated by HBx in HBV in vitro and
in vivo. HBx protein could induce cell migration by
activating SP-1 and Smad3/4 in Huh7 and FL83B cells,
simultaneously promoting MMP-3 secretion and inhibiting
TGF-β-induced apoptosis in Hep3B cells. UA almost
blocked all the tumorigenic activities mediated by HBx,
while OA presented partial inhibitory effects. The liver

Table 3: Molecular docking results.

Target PDB ID Compound name PubChem CID Affinity (kcal/mol)

NFKB1
1SVC Psoralen 6199 -6.11

Tectochrysin Positive control -6.23

AKT1
6HHG

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)
chromone (chromone O)

14604081 -8.8

GT4 Positive control -9.01

JUN

5FV8 cis-Ferulic acid 1548883 -4.25

Dimethylcaffeic acid 717531 -4.23

JNK-IN-8 Positive control -6.01

CA2

3DC3 Caffeate 1549111 -5.7

Protocatechuic acid 72 -5.62

Karenzu DK2 8433 -6.33

AZM Positive control -5.86

CREB1
5ZKO Wogonin 5281703 -3.75

666-15 Positive control -2.03

EP300

4PZS cis-Ferulic acid 1548883 -5.47

Vanillin 1183 -6.26

ACO Positive control -4.7

RELA

1NFI 3-Epioleanolic acid 11869658 -6.78

Tormentic acid 73193 -6.29

β-Amyrenyl acetate 345510 -7.56

Ursolic acid 49867942 -7.58

Oleanolic acid 49867939 -7.61

Dihydroartemisinin Positive control -5.19

STAT1

1YVL Dimethylcaffeic acid 717531 -5.58

Daidzein dimethyl ether 136419 -4.56

Glazarin 746449 -5.42

Fludarabine Positive control -2.21

CDK2
2IW8 3,4-Methylenedioxy-10-hydroxy aristololactam 5319620 -7.99

4SP Positive control -7.58

ABCB1

6UJN Formononetin 10378473 -7.19

Daidzein dimethyl ether 136419 -7.26

Tepotinib Positive control -6.53

CA1
1AZM 7-Methoxy-2-methylisoflavone 354368 -7.18

AZM Positive control -5.7

CA6

3FE4 Scopoletin 5280460 -5.81

Sinapic acid 54710960 -5.63

Zonisamide Positive control -8
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protection effects of UA and OA were imposed through the
activation of the MAPK signaling pathway in western blot-
ting results [57]. Dibenzoyl methane (DBM), also known
as karenzu DK2, is a minor component in Glycyrrhizae
Radix et Rhizoma, with the effects of anticancer and antiox-
idative damage. DBM showed protective effects against
CCl4-induced liver injury in a mouse model, which was
attributed to the activation of HO-1 expression and the
Nrf2 signaling pathway. Moreover, DBM also activated
Akt/protein kinase B, mitogen-activated protein kinases,
and AMP-activated protein kinases, leading to the increase
of intracellular calcium levels. Inhibitions of JNK, AMPK,
or intracellular calcium signal could significantly reduce
HO-1 expression induced by DBM [58]. Other compounds
have also been reported to have liver protection effects, such
as tormentic acid [59] and 11-deoxyglycyrrhetic acid [60].

With regard to active antivirus ingredients, the natural
flavonoid wogonin has been reported to have anti-inflam-
mation, antitumor, antivirus, neuroprotection, and antianx-
iety effects. Wogonin displayed inhibiting actions on HBV
surface antigen (HBsAg) secretion and directly reduced
HBV levels in human HBV-transfected HepG2.2.15 liver
cells and mouse model [61]. Involved in various cellular
signaling pathways, including PI3K-Akt, p53, NF-κB, and
MAPK, the antiviral effects of wogonin have been widely
reported and studied. Besides HBV, other viruses, such as
the replication of herpes simplex virus types 1 and 2
(HSV-1 and HSV-2), were sensitive to wogonin as well
[62]. Protocatechuic acid (PCA) is a phenolic compound
that widely exists, amounting to antiviral Chinese herbal
medicines. HNF4α and HNF1α are members of the hepato-
cyte nuclear factor (HNF) family, which play important roles
in the transcription of HBV-related biological targets. Previ-
ous studies found that PCA suppressed HBV antigen
secretion and HBV DNA replication in HepG2.2.15 cells.
Anti-HBV mechanism studies of PCA indicated that PCA
inhibited HBV replication by activating the ERK1/2 pathway
and subsequently downregulating HNF4α and HNF1α in
HepG2.2.15 cells [63]. Furan coumarin psoralen is derived
from the medicinal herb Fangfeng in the GWK prescription.
It was reported that psoralen had significant inhibitory
effects on HBV E antigen (HEeAg) in HepG2.2.15 cells

and downregulated HBV DNA replication [64]. Formono-
netin is one of the ingredients of herb Huangqi with antia-
poptotic and anti-inflammatory effects against multiple
liver diseases, such as autoimmune hepatitis (AIH) [65]
and nonalcoholic fatty liver disease (NAFLD) [66]. The anti-
tumor capability of formononetin was also revealed in the
treatment of hepatocellular carcinoma through its interac-
tion with ubiquitin-specific protease 5 (USP5) [67]. Also,
several other GWK active ingredients, such as dimethyl caf-
feic acid and caffeate, were reported to have antiviral and
anti-inflammatory effects as well [68, 69].

Seven of the predicted active ingredients of GWK in the
treatment of CHB were also detected in the chemical profil-
ing. The representative docking affinities, such as 3,4-methy-
lenedioxy with CDK2, formononetin with ABCB1, and
7-methoxy-2-methylisoflavone with CA1, were stronger than
the positive controls with the same active pockets. The binding
modes are demonstrated in Figures 4(g)–4(i) and Figure S1F-
S1H, while the binding patterns are shown in Figure S2. The
binding modes of wogonin with CREB1 (-3.75kcal/mol), β-
amyrenyl acetate with RELA (-7.56kcal/mol), artemisinin
with ABCB1 (-7.26kcal/mol), and scopoletin with CA6
(-5.81kcal/mol) could be referred to Figure S5A-D. These
active integrates and related targets were mainly involved in
antivirus, anti-inflammatory, and antioxidant activities, which
indicates the molecular mechanisms of GWK in the treatment
of CHB. In addition, some of the ingredients, such as vanillin,
had not been reported to be directly related to HBV;
nevertheless, molecular docking results showed outperformed
affinities compared to positive control compounds, which
indicated that these ingredients might have potential
therapeutic effects, and further verifications were needed.

These results suggest that GWK may exert its anti-CHB
effects through both antiviral protection and liver protection
with multitargets CA2, NFKB1, RELA, AKT1, JUN, CA1,
CA6, IKBKG, FOS, EP300, CREB1, STAT1, MMP9, CDK2,
ABCB1, and ABCG2 and multipathways such as MAPK
and NF-κB signaling pathways. Moreover, some of the key
targets in our study, such as the AP1 transcription factors
JUN and FOS, were associated with the molecular mecha-
nism of HBx protein in HBV infection. HBx protein, acting
as a transactivator of HBV X antigen (HBxAg), not only

2.2

2.3
SER-231

GLN-242

CA1-7-methoxy-2-methylisoflavone: –7.18
kcal/mol
Positive control: –5.7 kcal/mol

(i)

Figure 4: Schematic diagrams for the binding modes between active ingredients and targets: (a) CA2 with karenzu DK2 (DBM); (b) EP300
with vanillin; (c) EP300 with cis-ferulic acid; (d) CREB1 with wogonin; (e) RELA with oleanolic acid; (f) AKT1 with chromone O; (g) CDK2
with 3,4-methylendioxy; (h) ABCB1 with formononetin; (i) CA1 with 7-methoxy-2-methylisoflavone.
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interacts with nuclear transcription factors such as C-Jun,
NF-κB, and AP-1 to influence cellular activities at the tran-
scription level but also participates in the regulation of mul-
tiple intracytoplasmic signaling pathways like the C-RAF,
P53, and JAK-Stat pathways [70, 71]. These results indicate
that the scientific basis for the efficacy of GWK in the treat-
ment of CHB might be associated with multiple HBV-
related signaling pathways and HBx proteins.

Certainly, several limitations should be noted in this
study. First, the protein target prediction tool SEA is based
on the chemical similarity of the two-dimensional (2D)
structure of compounds (SMILES information), which
means that the isometric compounds would be treated the
same, and duplicate targets would be predicted. Second, fur-
ther experimental verifications should be conducted based
on the key active ingredients and targets in GWK.
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5. Conclusion

In conclusion, GWKmay exert anti-CHB effects through anti-
viral and liver protection. The key targets include CA2,
NFKB1, RELA, AKT1, JUN, CA1, CA6, IKBKG, FOS,
EP300, CREB1, STAT1, MMP9, CDK2, ABCB1, and ABCG2.
The related key active ingredients are ferulic acid, oleanolic
acid, ursolic acid, tormentic acid, 11-deoxyglycyrrhetic acid,
dibenzoyl methane, anisaldehyde, wogonin, protocatechuic
acid, psoralen, caffeate, dimethylcaffeic acid, vanillin, β-amyr-
enyl acetate, formonentin, aristololactam IIIa, and 7-methoxy-
2-methyl isoflavone. Using computational and experimental
methodologies, this study provides a scientific basis for fur-
ther mechanism elucidation of GWK tablets in the treatment
of CHB.
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