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Despite the recent advancement of treatment strategies, cancer ranks 2nd among the causes of death globally. Phytochemicals have
gained popularity as an alternate therapeutic strategy due to their nontoxic nature. Here, we have investigated the anticancer
properties of guttiferone BL (GBL) along with four known compounds previously isolated from Allanblackia gabonensis. The
cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The study was
extended for the assessment of the effect of GBL in PA-1 cells apoptosis induction, cell cycle distribution, and change in
mitochondrial membrane potential using flow cytometry, Western blot analysis, and real-time PCR. Among the five tested
compounds, GBL displayed significant antiproliferative effects against all tested human cancer cells (IC50 < 10μM). Moreover,
GBL exhibited no significant cytotoxicity towards normal ovarian epithelial cell line (IOSE 364) up to 50 μM. GBL induced
sub-G0 cell cycle arrest and significant upregulation of cell cycle regulatory proteins of ovarian cancer cell PA-1. Furthermore,
GBL induced its apoptosis as depicted by the accumulation of cells both at the early and late apoptotic phase in Annexin V/PI
assay. In addition, it decreased the PA-1 mitochondrial membrane potential and promoted upregulation of caspase-3, caspase-
9, and Bax and downregulation of Bcl-2. GBL also showed a dose-dependent inhibition of PA-1 migration. Altogether, this
study reveals that guttiferone BL, studied herein for the first time, exhibits efficient antiproliferative activity by the induction of
apoptosis through the mitochondrial-dependent pathway. Its investigation as a therapeutic agent against human cancers
especially ovarian cancer should be envisaged.

1. Introduction

The incidence of cancer is increasing, and it remains an
aggressive killer worldwide despite considerable efforts.
The burden of cancer rose to 19.3 million new cases and
almost 10.0 million deaths in 2020 [1]. Among the three

common gynecologic cancers, ovarian cancer ranks top in
mortality [2]. Most of the ovarian cancer cases (up to 70%)
are high-grade carcinomas that grow aggressively, metasta-
size rapidly, and have high chromosomal instability [3].
Though ovarian cancer has a lower occurrence rate in com-
parison with breast cancer, it is three times more lethal [4],
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and it is predicted that, by the year 2040, the mortality rate
of this cancer will rise significantly [1].

To date, chemotherapy is a mainstay of cancer treatment
in addition to surgery, radiotherapy, and antibody-based
immunotherapy. However, the use of conventional chemicals
fails due to various factors including side effects, toxicities [5],
and drug resistance. In the last 10 years, novel synthetic che-
motherapeutic agents have not entirely succeeded in fulfilling
expectations. Therefore, there is an urgent need to develop
new, effective, and affordable anticancer drugs [6].

In the last decade, herbal medicine as an important branch
of complementary and alternative medicine has increasingly
grown as alternative medicine for cancer treatment [7–9].
Moreover, many studies have demonstrated that natural prod-
ucts from plants including African flora can effectively regu-
late proliferation, differentiation, and expression of cancer
cells [10–14]. Allanblackia gabonensis, a plant belonging to
the family of Clusiaceae, is widely distributed in the Demo-
cratic Republic of Congo and Cameroon [15]. It is generally
used as a medicinal plant to improve virility in men and to
treat infections such as dysentery, colds, and toothaches [16].
The phytochemistry of A. gabonensis showed that it contains
compounds of different classes such as xanthones, benzophe-
nones, flavonoids, and phytosterol [17]. Past reports showed
the antimicrobial and antileishmanial [17], analgesic and
anti-inflammatory [18], antibacterial [19, 20], and anticancer
[21] properties of its extracts and derived products.

In our continuous search of natural products to fight
against cancers, this study was undertaking to investigate
the cytotoxicity of polyprenylated benzophenone, guttifer-
one BL along with four known compounds including three
flavonoids, morelloflavone, kaempferol, morelloflavone 7″
-O-β-D-glucopyranoside, and one sterol, β-sitosterol 3-O-
β-D-glucopyranoside, isolated in our previous study from
A. gabonensis. The mode of action of guttiferone BL, the
most active compound, was equally evaluated. To our best
knowledge, this is the first time report on the anticancer
potential of guttiferone BL.

2. Material and Methods

2.1. Chemicals. Mitoscreen kit (5,5′,6,6′-tetrachloro-1,1′,3,3′
-tetraethylbenzimidazolylcarbocyanine iodide, JC-1), FITC-
Annexin V, and CycleTEST plus DNA kit were from BD Bio-
science (San Diego, USA). IMDM and MEM cell culture
medium (Gibco), FBS (Gibco), antibiotic-antimycotic mix-
ture, and trypsin–EDTA were from Invitrogen (USA). 3-
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT), propidium iodide (PI), Tween-20, and dimethyl
sulphoxide (DMSO) were from Sigma-Aldrich, USA. The
compounds used in the present investigation included gut-
tiferone BL (1 or GBL), kaempferol (2), morelloflavone
(3), morelloflavone 7″-O-β-D-glucopyranoside (4), and β-
sitosterol 3-O-β-D-glucopyranoside (5) (Figure 1). The
compounds were isolated from the fruits of A. gabonensis
methanol (MeOH) extract and characterized using spec-
troscopic techniques coupled with a comparison of their
thin-layer chromatography (TLC) profile as described by
Nganou et al. [20].

2.2. Cell Lines and Culture Condition. Cervical cancer cells
(HeLa), human glioblastoma cancer cells (U87MG), ovarian
cancer cell (PA-1), and normal ovarian epithelial cell line
(IOSE 364) were obtained from American Type Culture Col-
lection (Manassas, VA). HeLa and U87MG cells were grown
in IMDM, whereas PA-1 cells were grown in MEM and
IOSE 364 cell line was cultured in medium MCDB 105 and
M-199 in the ratio 1 : 1. All media were supplemented with
10% heat-inactivated fetal bovine serum (FBS) and 1%
antibiotic-antimycotic mixture. Cells were kept at 37°C in a
humidified incubator containing 5% CO2 and passaged
twice weekly. All experiments were performed with cells at
about 90% confluence.

2.3. Cell Viability Analysis. The cytotoxicity of the com-
pounds was assessed by the MTT assay [22]. HeLa,
U87MG, PA-1 cells (7 × 103 cells/well), and IOSE 364
(1 × 104) were seeded separately into 96-well plates sepa-
rately. After attachment, cells were treated with compounds
at various doses and incubated at 37°C in a 5% CO2 humid-
ified environment for 48 h. Cell morphology was checked,
and images were taken by using phase-contrast inverted
microscopy (EVOS, Life Technologies). Thereafter, the
medium in each well was removed and replaced by of fresh
medium containing MTT (1mg/mL). Next, the plates were
incubated at 37°C for 2 h. After incubation, the supernatant
was removed, and the formazan complex was dissolved with
pure DMSO. The optical density was measured by ELISA
reader (Thermo Fisher Scientific) at 550nm. Cell viability
was calculated from the percentage of MTT conversion in
treated cells relative to untreated control cells, and cell
growth inhibition for the most active compound was
expressed in terms of IC50 values, defined as the concentra-
tion that causes 50% of inhibition of cell viability.

2.4. Cell Cycle Analysis. PA-1 (5 x 105 cells/well) was exposed
to varying concentrations of GBL for 24 h. Next, they were
harvested and processed by CycleTest plus DNA kit (BD
Bioscience, San Diego, USA) according to the manufactur-
er’s instructions. Briefly, after treatment, cells were washed
and incubated with trypsin solution for 10min at 25°C
followed by RNAse solution for 10min at 25°C. Next, cells
were incubated with PI solution for 10min at 4°C in the
dark. Thereafter, at least 10,000 cells were acquired using a
flow cytometer (BD LSR Fortessa) and analyzed with FACS-
Diva 8.0.2 software.

2.5. Western Blotting. PA-1-untreated and PA-1-treated cells
were sonicated (Qsonica-LLC, XL-2000) in ice-cold
phosphate-buffered saline (PBS), and proteins were esti-
mated using the BCA Assay Kit (Thermo Fisher Scientific).
Equal amounts of proteins (80μg) were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE, 5–12%) and electrotransferred to nitrocellulose
(NC) membrane. The NC-membrane was then blocked with
Tris-buffered saline- (TBS-) bovine serum albumin (BSA; 2–
5%) for 5–30min and probed with the primary antibody
(1 : 1000 dilution; Cell cycle technologies). Blots were washed
with TBS–Tween-20, incubated with HRP-conjugated
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secondary antibodies (1 : 1000 dilution; Cell cycle technolo-
gies), and detected by Westpico ECL system. Images were
taken by Bio-Rad ChemiDoc MP and evaluated with Image
Lab software version 5.2.1.

2.6. Assessment of Changes in the Mitochondrial Membrane
Potential. Alterations in the mitochondrial membrane
potential (ΔΨm) were determined quantitatively by flow
cytometry, using JC-1 dye (Invitrogen, USA) at 24 h post-
treatment as previously described [21]. JC-1 accumulates
within the intact mitochondria to form J-aggregates that
resulted in a change of fluorescence from red to green indi-
cating decreased ΔΨm. Briefly, PA-1 cells (5 × 105 cells/well)
in a 6-well plate were exposed to GBL for 24 h, then washed
in PBS and incubated with JC-1 (25μM) for 30min in the
dark at 37°C. The percent positive cells with green fluores-
cence (JC-1 monomers) which represented polarized cells
were measured [23]. The experiment was performed using
a flow cytometer (BD LSR Fortessa) and analyses with FACS
Diva 8.0.2 software. At least 10,000 cells were analyzed for
this experiment.

2.7. Annexin V and PI Assay. Externalizations of phosphati-
dylserine were verified by double staining the cells with
Annexin V-FITC and PI as previously described [24]. Cells
(5 × 105 cells/well) were treated with different concentra-
tions of GBL. After 24 h incubation at 37°C in 5% CO2, cells
were washed with phosphate-buffered saline (PBS), resus-
pended in the Annexin V binding buffer according to the
manufacturer’s instructions, and incubated for 45min at
25°C. Cells were further incubated with Annexin V-FITC

and PI for 20min at 4°C in the dark. Data acquisition was
done using a flow cytometer (BD LSR Fortessa) and ana-
lyzed with FACSDiva 8.0.2 software. At least 10,000 cells
were analyzed for this experiment.

2.8. RT-PCR Analysis of Apoptotic Genes. Total cellular RNA
was extracted from GBL-treated and GBL-untreated cells
(1 × 106 cells/well) using an RNeasy Mini Kit (Qiagen),
and 1μg of extracted RNA were reverse transcribed into
complementary DNA (cDNA) with random primers using
transcription system (Promega) according to the manufac-
turer’s protocol. Polymerase Chain Reaction (PCR) of cas-
pase-3, caspase-9, Bcl2, and Bax genes were carried out
with specific forward and reverse primers using a PTC-100
system (MJ Research). The details of primers are listed in
Table S1 (Supplementary material). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as an internal
control. The PCR products obtained were electrophoresed
on an agarose gel (1%), which was stained with ethidium
bromide (EtBr) and visualized under UV light. The signal
intensity of the respective DNA bands was measured with
ImageJ software v 1.50i.

2.9. Scratch Wound Assay. Scratch wound assay was carried
out as previously described [25] with slight modifications.
PA-1 cells were plated in 6-well plates with >90% conflu-
ence. Scratch wounds were made with a micropipette tip,
washed thrice to remove the floating cells, and treated with
GBL at IC50 dose in FBS free medium and incubating them.
Images were taken at 0 hrs, 8 hrs, and 24hrs. The width of
the wounds was estimated from five different fields of three
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Figure 1: Structures of isolated compounds from Allanblackia gabonensis. 1: guttiferone BL; 2: kaempferol; 3: morelloflavone; 4:
morelloflavone 7″-O-β-D-glucopyranoside; 5: β-sitosterol 3-O-β-D-glucopyranoside.
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separate experiments for untreated and treated groups, and
percentage wound healing was calculated from the width at
8 and 24 hrs versus the initial width at 0 hrs, all using ImageJ
software.

2.10. Statistical Analysis. Most of the data shown in this
study were representative of three sets of independent experi-
ments. The results were represented as the mean ± standard
deviation from independent experiments.

3. Results

3.1. Screening of Antiproliferative Activity of an Array of
Compounds. Previously, our lab has evaluated the antipro-
liferative activity of an array of extracted samples prelimi-
nary on cervical cancer cell line HeLa. Among them, the
methanol extract from the fruits of A. gabonensis as well
as their ethyl acetate and hexane fractions showed the
maximum potency of anticancer activity in HeLa cell line
[21]. Here, we have studied five compounds (Figure 1) iso-
lated from the fruit’s methanol extract of A. gabonensis for
their antiproliferative activity on HeLa. Among them, gut-
tiferone BL (GBL) showed the maximum efficacy against
HeLa at 17μM for 48 h (more than 80% growth inhibition)
(Figure 2(a)).

3.2. Guttiferone BL Is a Potent Antiproliferative Compound.
Based on these results, guttiferone BL has been selected and
tested on three different cancer cell lines, namely, Hela, U87-
MG, and PA-1 for the determination of its IC50 values.
Dose-dependent inhibition of cell proliferation was observed
in all these cancer cell lines after 48h of GBL treatment
(Figure 2(b)). The IC50 values obtained were 3.99μM,
5.00μM, and 7.99μM towards HeLa, PA-1, andU87-MG can-
cer cell lines, respectively. The results are summarized in
Table 1. Significant inhibition of PA-1 cell growth as well as
attainment of rounded shape and cluster formation upon
treatment with GBL at 6.64μM and 13.28μM was observed
(Figure 2(c)). However, GBL showed no significant cytotoxic-
ity towards normal ovarian epithelial cell line (IOSE 364) up to
10 × IC50 value of ovarian cancer cell line (Figure 2(d)).

3.3. Guttiferone BL Induced Sub-G0 Cell Cycle Arrest in PA-1
Cells. Considering the results obtained, we have investigated
whether cell death detected would be due to apoptosis
induction. First, we checked the cell cycle status of ovarian
cancer cell line upon GBL treatment and analyzed by a flow
cytometer. The results revealed that GBL induced a
concentration-dependent accumulation of the cell popula-
tion in sub-G0 after 24 h treatment. Cell cycle analysis
exhibits a significant arrest of 8.5% cells in sub-G0 phase at
1/2 × IC50 dose and 30.7% at IC50 dose, against 5.4% for
untreated cells. A concomitant decrease of G0/G1, S, and
G2/M populations in PA-1 cells was also observed
(Figure 3(a)). Moreover, we assessed a few cell cycle regulatory
proteins throughWestern blotting analysis. GBL-treated PA-1
cells exhibited upregulation of P53, Chk1, Chk2, and cdc2
(Figure 3(b)). β-Actin served as a loading control.

3.4. Guttiferone BL Induced Apoptosis in Ovarian Cancer
through the Intrinsic Pathway. Sub-G0 cell cycle arrest is an
indication of cell death. Therefore, we wanted to check
whether GBL induces apoptosis in ovarian cancer. To do
so, we performed Annexin V/PI apoptotic assay using flow
cytometry. Annexin V/PI-positive cells were recorded by a
flow cytometer (including the early and late apoptosis, Q2
and Q4) were 7.7% (control), 48.1% (1/2 × IC50), and
74.19% (IC50) (Figure 4(a)). These results indicated that gut-
tiferone BL induced apoptosis in a concentration-dependent
manner.

Changes in the mitochondrial membrane potential
(ΔΨm) are observed during the intrinsic pathway of
apoptosis. Therefore, we wanted to check the effect of
GBL on mitochondrial depolarization. Data obtained in
this study showed that GBL induced a concentration-
dependent mitochondrial membrane depolarization in
PA-1 cells (Figure 4(b)). These results suggest the associ-
ation of the mitochondrial pathway in GBL apoptotic cell
death in PA-1 cells.

Further, we assessed the expression of a few selected
apoptotic-associated genes (caspase-3 and -9, Bax and Bcl-
2) by RT-PCR. The results demonstrated that GBL pro-
moted a remarkable up-regulation of caspase-3, caspase-9,
(panel A), and Bax (panel B) gene expressions and a
down-regulation of Bcl-2 (panel B) gene compared to
untreated cells. GAPDH served as a loading control
(Figure 4(c)). This indicates that GBL induces apoptosis in
the intrinsic-dependent pathway in PA-1 cells.

3.5. Guttiferone BL Inhibited Cellular Migration in PA-1
Cells. Further, the effect of the guttiferone BL on cell migra-
tion was tested by scratch wound assay. PA-1 cells were
plated in 6-well plates with >90% confluence. Scratch
wounds were made with a micropipette tip, washed thrice
to remove the floating cells treated with IC50 dose of guttifer-
one BL in medium, and incubated for 0, 8, and 24 hours. The
results showed that guttiferone BL inhibited the cellular
migration of PA-1 cancer cells (Figure 5).

4. Discussion

Despite considerable efforts, cancer remains an aggressive
killer worldwide. In the last decade, natural products and
mainly those from plant sources have received increasing
attention for their potential as a novel cancer preventive
and therapeutic agents [7–9, 26–30]. A threshold of IC50 ≤
10μM after 48 h incubation has been set to identify com-
pounds having significant or strong cytotoxicity [27, 31].
Following our previous study which showed that methanol
extract, as well as their ethyl acetate and hexane fractions
from fruits of A. gabonensis, have significant activity against
HeLa cancer cells [21], we have examined five compounds
from the fruit’s methanol extract of A. gabonensis for their
antiproliferative activity. Results showed that guttiferone
BL exerts significant anti-proliferative activity (IC50 < 10
μM) against the tested cancer cell lines. Moreover, GBL
was nontoxic towards normal ovarian epithelial cells indicat-
ing that it exhibits some cytotoxic specificity. Some previous
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studies revealed that several polyprenylated benzophenones
found in the Clusiaceae family have potent biological activi-
ties, especially cytotoxicity against cancer cell lines [32, 33].

Benzophenones were reported to inhibit cancer cell lines
through various mechanisms of action, including apoptosis,
cell cycle arrest, and endoplasmic reticulum response [32].

For instance, guttiferone E, xanthochymol, and guttiferone
H isolated from Garcinia xanthochymus have shown to
induce the cell cycle arrest, caspase activation associated
with interference of the mitochondrial membrane potential,
and the activation of the endoplasmic reticulum stress [34].
Furthermore, isogarcinol, isoxanthochymol, and guttiferone
E were shown to strongly induce apoptosis in the leukemia
cell line CCRF-CEM through activation of caspase-3/cas-
pase-7, caspase-8, and caspase-9 [13].

Apoptosis, a major form of programmed cell death, is a
defense mechanism and a tumor suppressor pathway essen-
tial for the development and maintenance of cellular homeo-
stasis. Deregulated apoptosis leads to resistance to chemo-
and radiotherapy [35]. Most chemotherapeutic agents
induce cancer cell death by the activation of the apoptotic
pathway. A limited number of FDA-approved anticancer
agents directly target apoptotic pathways [36]. Such targeted
therapy against cancer has become important. Earlier studies
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Figure 2: Antiproliferative activity of guttiferone BL. (a) Viability of Hela cells in the presence of the different compounds isolated from A.
gabonensis; 1: guttiferone BL (17 μM); 2: kampherol (35 μM); 3: morelloflavone (18 μM); 4: morelloflavone 7″-O-β-D-glucopyranoside
(19 μM); 5: β-sitosterol 3-O-β-D-glucopyranoside (14 μM). Cisplatin (5 μM) was used as control drug. (b) Guttiferone BL induces a dose-
dependent inhibition of HeLa, PA-1, and U87-MG cancer cell lines after 48 h incubation. (c) Morphological examination of PA-1 cells
after treatment with various concentrations of GBL for 48 h showed inhibition of cellular proliferation (magnification ×20). (d)
Guttiferone BL exhibited no cytotoxicity to normal ovarian epithelial cell (IOSE 364) after 48 h incubation.

Table 1: Summary of the antiproliferative activity of guttiferone BL.

Cancer/normal cell type Cell lines aIC50 values (μM)

Cervical HeLa 3:69 ± 0:36
Grade IV glioblastoma U87-MG 7:99 ± 0:03
Ovarian PA-1 5:00 ± 0:70
Normal ovarian epithelial cell line IOSE 364 >50
aIC50: inhibitory concentration 50 or IC50 represents the concentration at
which a substance exerts half of its maximal inhibitory effect.
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have reported that several phytochemicals can suppress the
growth of cancer cells through disruption of cell cycle pro-
gression [37, 38]. Moreover, cell cycle arrest at sub-G0 phase
with an increasing cell population indicates apoptosis [39,
40]. In this study, cell cycle analysis by a flow cytometer of
PA-1 cells revealed that GBL induced a concentration-
dependent accumulation of the cell population in sub-G0
after 24 h treatment (Figures 3(a) and 3(b)). These results
indicate that GBL induces cell death in PA-1-treated cells.
During early apoptosis phosphatidylserine are exposed on
the external surface of the cell membrane, which can be
assessed using the simultaneous staining of cells with

FITC-Annexin-V/PI [41]. In this study, Annexin V/PI-pos-
itive cells were recorded, indicating that GBL resulted in
the promotion of apoptosis. Loss of mitochondrial mem-
brane potential (Δψm) is an indicator of onset of apoptosis,
which constitutes an irreversible checkpoint during apopto-
sis [42, 43]. These results suggest that GBL induces
mitochondrial-dependent apoptosis in PA-1 cells. Caspase-
3 plays an important role in the execution phase of apoptosis
and its activation and subsequent cleavage of a set of impor-
tant cellular proteins leading to the appearance of apoptotic
morphology [44]. It is also known that caspase-9 induces
loss of mitochondrion membrane concomitant with the
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Bcl-2 and Bcl-xL cleavage [45, 46]. Upregulation of Bax is
also an important parameter that characterized mitochon-
drial depending apoptosis [47]. The results demonstrated
that GBL promoted a remarkable upregulation of caspase-
3, caspase-9 gene expressions, and a downregulation of
Bcl-2 gene compared to untreated cells (Figure 4(c)).

Cellular migration provides the influence of metastasis
to the cancer cells. GBL exhibited a significant reduction of
cellular migration (Figure 5) and thereby inhibiting the
metastatic property of ovarian cancer.

5. Conclusions

In this study, the cytotoxic effects of guttiferone BL along
with five known compounds isolated from the methanol
extract of Allanblackia gabonensis were investigated. Gutti-
ferone BL treatment inhibited the growth of three different
cancer cell lines with various mutation and drug-resistant
properties. Furthermore, it induced apoptosis in ovarian
cancer cells through the mitochondrial pathway. This study
demonstrates for the first time the anticancer potential of
guttiferone BL; thus, its investigation as a therapeutic agent
for the treatment of human cancers especially ovarian cancer
should be envisaged.
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Figure 5: Inhibition of the cellular migration of PA-1 cancer cells. PA-1 cells were plated in 6-well plates with >90% confluence. Scratch
wounds were made with a micropipette tip, washed thrice, and treated with IC50 dose (5:00 ± 0:70μM) of GBL in medium free FBS and
incubated for 0, 8, and 24 hours. The wound width was measured for untreated and treated groups from at least five different fields of
three separate experiments, and percentage wound healing was calculated from the width at 8 and 24 hrs versus the initial width at 0 h,
all using ImageJ software.
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