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The anti-dementia effect following ischemic stroke with metabolic syndrome (MetS) of the polyherbal functional ingredient
comprising ginger, Chinese date, and wood ear mushroom (GCJ) was hypothesized due to its neuroprotective effect against
stroke. This study was performed to test this hypothesis and to explore the underlying mechanism. Male Wistar rats weighing
180-220 g were induced metabolic syndrome (MetS) with a 16-week high-carbohydrate high-fat diet (HCHF) feeding. The rats
with MetS characteristics were orally administered GCJ at various doses (GCJ100, GCJ200, and GCJ300 mg kg-1 BW) 21 days
pre-induction and 21 days post-induction of reperfusion injury (I/R) at the right middle cerebral artery (MCAO). Memory was
evaluated every 7 days during the study period. At the end of the study, neuron density, AChE activity, and the expressions of
eNOS, BDNF, and pERK/ERK in the prefrontal cortex, and hippocampus were also determined. MetS rats with GCJ treatment
improved memory impairment, enhanced neuron density, and increased the expressions of eNOS, BDNF, and pERK/ERK but
suppressed AChE in both areas. Therefore, the anti-dementia effect following ischemic stroke with metabolic syndrome of GCJ
may involve the improvement of AChE, eNOS, BDNF, pERK/ERK, and neural plasticity. However, this required confirmation
by clinical study.

1. Introduction

Cognitive impairment is one of the most common problems
in stroke survivors. Around 77% of stroke survivors have
problems with memory [1], and this condition is aggravated
by metabolic syndrome. It has been revealed that cognitive
impairment is associated with neurodegeneration induced
by oxidative stress, poor glucose, and poor blood supply
[2–5]. In the comorbidity of cerebral ischemia stimulated
by ischemic stroke and metabolic syndrome, oxidative stress
is higher than in ischemic stroke deprived of metabolic syn-

drome. This elevation is beyond the endogenous buffering
capacity [2, 3]. In addition to oxidative stress, inflammation
is also regarded as a key driver of secondary neurodegenera-
tion and memory impairment following stroke [6]. Due to
the vital role of oxidative stress and inflammation in the
pathophysiology of memory impairment, the beneficial
effects of the substances possessing antioxidant and anti-
inflammation activities have gained much attention [2–4].

The polyherbal recipe containing ginger (Zingiber offi-
cinale Roscoe), Chinese date (Ziziphus jujuba Mill), and
wood ear mushroom or Jew’s ear mushroom (Auricularia
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auricula-judae) has been long-term used in Thailand,
especially in the Thai-Chinese descents, it has been long
term widely used in the Thai-Chinese descents for clearing
and caring for blood vessels. Accumulative lines of evi-
dence also reveal that the herbs just mentioned also pos-
sess the biological assessment related with the
pathophysiology of stroke, metabolic syndrome, and mem-
ory impairment such as antioxidant and anti-inflammation
[7–15]. In addition, our recent study also clearly demon-
strates that GCJ exhibits a cerebroprotective effect against
ischemia-stroke with metabolic syndrome (MetS) [16].
Owing to the potential benefits of the aforementioned
herbs on vascular, the buffering capacity on oxidative
stress and inflammation together with the cerebroprotec-
tive effect against ischemic stroke, the positive variation
effect of GCJ on memory impairment. To the best of our
information, there is no scientific evidence to support this.
Therefore, we aimed to determine whether this formula-
tion improved memory performance and protected against
neurodegeneration in cerebral ischemic rats with metabolic
syndrome. Moreover, the possible mechanism behind the
effects of GCJ was also examined.

2. Materials and Methods

2.1. Preparation of the Polyherbal Functional Ingredient
Containing the Mixture of GCJ. All herbs used in this study
were collected between October 2020 and January 2021.
After the authentication process, the polyherbal functional
ingredient was prepared by mixing an aqueous extract of
ginger, Chinese date, and wood ear mushroom (ratio
1 : 1 : 1). Then, the chromatogram analysis of the functional
ingredient was performed by using high-performance liquid
chromatography (HPLC;Waters Co., Milford, MA), equipped
with pump control module II Waters® 515, a sample of 20μL
loop with Rheodyne injector, and an array detector of
photodiode Waters® 2998. Compounds were separated via a
Poroshell® 120 EC-C18 column (250 × 4:6mm id, 4.0μm;
Agilent Technologies, USA), joined with a Poroshell® 120
EC-C18 (5 × 4:6mm id, 2.7μm, guard column; Agilent Tech-

nologies, USA), and maintained at room temperature. The
mobile phase consisting of 70 percent acetonitrile (solvent
A) and 0.1 percent formic acid (solvent B) in deionized (DI)
water was applied with a gradient, as described in the follow-
ing: 70% A (0-17min), 100% A (18-20min), and 10% A
(20.5-25min). A tested sample was filtered through a 0.22μm
millipore membrane, and 20μL of the filtered sample was
injected with a flow rate of 2mL/min. The chromatographic
profile was detected by using a UV detector at 280nm and
370nm. The data was analyzed using EmpowerTM3.

2.2. Experimental Protocol. All experimental procedures
used in this study were approved by the Animal Ethics
Committee of Khon Kaen University (Record number
IACUC-KKU 42/63). A male Wistar rat with basal weight
ranging from 180 to 220 was sourced from the Northeast
Laboratory Animal Center, Khon Kaen University, Thailand,
and was used as an experimental animal. All rats were housed
in a laboratory with optimal settings of 12 hours of the light-
dark cycle, water and food at ad libitum, and a temperature
maintained at 23 ± 2°C. Then, rats were randomly selected
and placed into either of the 8 experimental groups (6 rats
per group). The description of the MetS-induced HCHF diet
used, and the inclusion criteria for the rats that developed
MetS characteristics were in accordance with our recent
study. The details of the animal grouping are described in
Table 1.

All administrations of the assigned substances were per-
formed once daily, 21 days before and 21 days after MCAO.
Spatial memory was carried out using the Morris water maze
test whereas, nonspatial memory was performed using the
novel object recognition test. All memory assessments were
carried out every 7 days throughout the experimental period.
At the end of the study, AChE activity and the expressions of
brain-derived neurotrophic factor (BDNF), endothelial
nitric oxide synthase (eNOS), and signal transduction mole-
cules of memory such as a total extracellular regulated kinase
(ERK) and a phosphorylated form of extracellular regulated
kinase (pERK) in prefrontal cortex and hippocampus were
determined.

Table 1: Group division of the experimental animals in the study.

Group Name Description

I ND+vehicle Rats were served food with normal diet and administered with vehicle.

II HCHF+sham+vehicle Rats were induced MetS, received sham surgery, and administered with vehicle.

III HCHF+MCAO+vehicle Rats were induced MetS, received MCAO surgically, and administered with vehicle.

IV HCHF+MCAO+vitamin C
Rats were induced MetS, received MCAO surgically, and administered with vitamin C

at the dose of 250mg kg-1 BW.

V HCHF+MCAO+donepezil
Rats were induced MetS, received MCAO surgically, and administered with donepezil

at the dose of 3mg kg-1 BW.

VI HCHF+MCAO+GCJ100
Rats were induced MetS, received MCAO surgically, and administered with GCJ

at the dose of 100mg kg-1 BW.

VII HCHF+MCAO+GCJ200
Rats were induced MetS, received MCAO surgically, and administered with GCJ

at the dose of 200mg kg-1 BW.

VIII HCHF+MCAO+GCJ300
Rats were induced MetS, received MCAO surgically, and administered with GCJ

at the dose of 300mg kg-1 BW.

HCHF: high-carbohydrate high-fat diet; MCAO; reperfusion injury (I/R) at the right middle cerebral artery.
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2.3. Focal Ischemic-Reperfusion Injury Induction. For the
induction of cerebral ischemia reperfusion injury, the surgi-
cal occlusion of the right middle cerebral artery (MCAO)
was temporarily carried out. Rats were administered anes-
thesia using pentobarbital sodium (60mgkg-1 BW). Each
rat was exposed to a 90-minute-occlusion of the right middle
cerebral artery with a coated silicone nylon (no.4, dimension
1.5, Taiwan). At the end of an occlusion period, a nylon was
withdrawn to allow the reperfusion injury [16, 17]. Similar
processes were also carried out for the sham operation
group, except that no filament insertion was performed.

2.4. Memory Assessment

2.4.1. Spatial Memory Assessment. In the summarize proce-
dure, a circular pool (147 cm in diameter) comprising 4
quadrants occupied with water at a temperature of 25 ± 1°C
and 60cm depth. To ensure enhanced the visibility in the
water pool, a nontoxic milk powder was applied to the surface
of the water. All experimental animals were trained to
acclimatize and to remember the location of the escape plat-
form immersed in one fixed quadrant by using extramaze
cues. The latency time to find a platform was recorded and
regarded as escape latency. The rats were reexposed to the
similar state mentioned earlier except that an immersed
platform was withdrawn, and the time spent in the quadrant
previously located an immersed platform was considered
retention memory [5].

2.4.2. Nonspatial Memory Assessment. This test was carried
out using the description of a previous experiment
[18–20]. The rat to be tested was first introduced into an
enclosed arena (50 cm high, 80 cm long, and 60 cm wide)
under a brightly lit area with two similar objects for a 3
minutes regarded as T1 at the middle area, and it was
returned to its cage after each test session. Then, it was
reexposed to a 3-minute-test at 30 minutes and 6 hours
after the administration of the assigned substance, but
one of the objects was replaced by an unfamiliar or novel
object. The objects and the device were cleaned with 70%
ethanol between each trial to avoid an influence of odor.
The time spent for an exploration of each object was doc-
umented and evaluated as a novel object ratio (NOR) as
the following equation:

NOR = Tnovel − T familiar
Tnovel + T familiar

: ð1Þ

(Tnovel represents the period of time expanded to
locate for the novel object, and T familiar represents the
period of time expanded to locate for the familiar object.)

2.5. Histological Assessment. The rat brains were collected
and subsequently fixated with a prepared solution of 4%
paraformaldehyde at a pH7.4 and a temperature of 4° Cel-
sius. The brain tissue was then ensured to be protected in
its integrity by introducing it into the 30% formalin-
sucrose solution for 2-3 days. Then, a cryostat sectioning
was used to prepare the brain section at 10μm thickness.
All sections were taken on slides covered with 0.3% gelatine

buffer and 0.05% aluminium potassium sulfate. For the
staining process, slides were first air dried and rehydrated
in various grades of ethanol and xylene, respectively. Crystal
violet staining was then carried out by incubating the sec-
tions for 8 minutes, followed by decolorization in acetic acid,
dehydration, and cover slip with Permount. The density of
survival neurons in the prefrontal cortex and hippocampus
was evaluated microscopically using a light microscope.
The neuronal density of the viable neurons was analyzed
accordingly [21].

2.6. Determination of Acetylcholinesterase (AChE) Activity.
AChE activity was monitored using the modified spectro-
photometric method of Ellman [6, 22]. Brain homogenate
at a volume of 20μL was combined chemically with the
reaction mixture consisting of 200μL of 0.1mM sodium
phosphate and an assembled reagent of 10μL of 0.2M
5,5′-dithio-bis-2-nitrobenzoic acid (DNTB) and incubated
at room temperature for 5 minutes. Subsequent to the elapse
of the incubation time, an aliquot of 15mM acetylcholine
trichloride at a volume of 10μL was introduced and incu-
bated for 3 minutes. Following this step, the wavelength of
412 nm was posed and the absorbance was absorbance at
412 nm was measured by applying a microplate reader [23].
The activity of AChE was computed by applying the equation
represented below.

AChE activity = ΔA

1:36 × 104
� �

× 1
120/230

� �
C: ð2Þ

ΔA is the change in absorbance per minute; C is the con-
centration of the protein in the homogenate of the brain.
Data were expressed as nmol/minmg protein.

2.7. Western Blot Analysis. Western blot was employed to
assess the expressions of phosphorylated extracellular
signal-regulated kinase/extracellular signal-regulated kinase
(pERK/ERK), endothelial nitric oxide synthase (eNOS),
and brain-derived neurotrophic factor (BDNF) [7, 24] in
the prefrontal cortex and hippocampus. A tissue sample
from the ipsilateral brain was collected and homogenized
with a mixture of the extraction of 1 : 10 ratio of mammalian
reagent and protease inhibitor. A tissue sample from the ipsi-
lateral cortex was mixed and lysed in RIPA buffer comprising
20mM Tris-HCl pH7.5, 150mM NaCl, 1mM EGTA, 1mM
Na2EDTA, 1% sodium deoxycholate, 1% NP-40, 1mM beta-
glycerophosphate, 1mM Na3VO4, 2.5mM sodium pyrophos-
phate, 1μg/ml leupeptin, and 1mM phenylmethanesulfonyl
fluoride. The supernatant was removed and centrifuged at
4°C at 12,000g for 10 minutes. A sample lysate of 80μg was
incubated with Tris-Glycine SDS-PAGE at 95°C for 10
minutes. Then, a sample protein at a volume of 20μL was
loaded on a SDS-polyacrylamide gel and alienated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the
alienated proteins were transferred from gel to nitrocellulose
membrane, flushed with 0.05% TBS-T, and exposed to a
blocking process by incubating a membrane in a blocking
buffer comprising 5% skim milk and 0.1% TBS-T for a period
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of 1 hour at a specific temperature of 25°C. Then, the nitrocel-
lulose membrane was incubated with the following primary
antibodies including anti-BDNF antibody (dilution 1 : 1000),
anti-phospho-Erk1/2 (Thr202/Tyr204) (dilution 1 : 1000),
anti-Erk1/2 (dilution 1 : 1000), anti-eNOS (dilution 1 : 1000)
antibodies at room temperature for 2 hours. However, incuba-
tion with anti-β-actin (dilution 1 : 1000) was performed for 2
hours at a specific temperature of 25°C. At the end of the incu-
bation, all membranes were washed with 0.05% T-PBS for 30
minutes. Then, they were mixed with secondary antibody
(anti-rabbit IgG and HRP-linked antibodies at a dilution of
1 : 2000) to intensify the signal transduction. The protein
bands’ density was evaluated using the ECL system and the
luminescent image analyzer (LAS-4000, GEHealthcare). Band
densities were quantified into numerical values by using the
ImageJ software system. The numeric variables obtained from
the band densities of the control normal group were repre-
sented as the bands’ relative density [8].

2.8. Statistical Analysis. All the numerical data from this
study were expressed using descriptive statistics of the
mean ± standard error of mean (SEM). The SPSS software
version 25.0 was used for statistical analysis to determine
the difference between the groups. The difference was evalu-
ated using a one-way analysis of variance, followed by a
Tukey post hoc test. The p regarded to assess the significant
between the groups was set at less than 0.05.

3. Results

3.1. Fingerprint ChromatogramAnalysis. The polyherbal func-
tional ingredient, “GCJ”, contained 6-gingerol, 6-shogaol,
catechin, chlorogenic acid, and caffeic acid at concentrations
of 36:981 ± 0:62, 8:558 ± 0:19, 0:137 ± 0:04, 0:042 ± 0:007,
and 0:029 ± 0:001μg/50mg extract, respectively, as shown in
Figure 1 and Table 2.

3.2. Memory Performance. The current data showed that
HCHF-treated rats or MetS rats subjected to a sham group
with vehicle showed no significant changes in both escape
latency time and retention time throughout the study period,
as shown in Figures 2(a) and 2(b). In this study, the memory
performance was assessed after each 7 days during the
period of 21 days study. Figure 2(a) shows the effect of
GCJ on the spatial memory assessed by the Morris water
maze test. The sham operation and vehicle ceased to show
a significant change in escape latency in HCHF-treated rats
throughout the study period. MCAO significant elevation
in escape latency in HCHF diet plus vehicle at 7, 14, and
21 days after MCAO (p < 0:001, compared with normal diet
plus vehicle, and p < 0:001, compared with HCHF diet plus
sham plus vehicle). An absence of significant change in this
parameter was observed in the HCHF diet plus MCAO plus
vitamin C or donepezil at 7, 14, and 21 days of treatment.
GCJ at the doses of 100 and 200mgkg-1 BW mitigated an
increment in measured escape latency at 14 days post-
MCAO (p < 0:05 all, compared with HCHF diet plus MCAO
plus vehicle). At 21 days of treatment, an elevation of escape
latency instigated by MCAO was diminished by GCJ at var-
ious doses (GCJ100, GCJ200, and GCJ300mg kg-1 BW)
(p < 0:01 all, compared with HCHF diet plus MCAO plus
vehicle). The effect of GCJ on retention memory is shown
in Figure 2(b). The retention time result was reduced by
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Figure 1: Chromatogram profiles of the functional ingredient “GCJ.” (a) Chromatogram at the wavelength of 280 nm. (b) Chromatogram at
the wavelength of 370 nm.

Table 2: The main ingredients presented in GCJ.

GCJ HPLC phytochemical

6-Gingerol 36:981 ± 0:62
6-Shogaol 8:558 ± 0:19
Catechin 0:137 ± 0:04
Chlorogenic acid 0:042 ± 0:007
Caffeic acid 0:029 ± 0:001
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MCAO rats fed with HCHF and vehicle throughout the
study period (p < 0:001 all, compared with normal diet plus
vehicle; p < 0:001 all, compared with HCHF diet plus sham
plus vehicle). Donepezil and GCJ at doses of 100 and
300mgkg-1 BW significantly increased retention time in
the HCHF diet plus MCAO at 7, 14, and 21 days, respec-
tively (p < 0:05, 0.01, and 0.01 all, compared with HCHF diet
plus MCAO plus vehicle).

Figure 3(a) reveals that at 7 days after MCAO, no mean-
ingful change in the novel object ratio (NOR) was observed
in any groups when an assessment was performed 30
minutes after the administration of the assigned substance.
MCAO significantly decreased the NOR of HCHF plus
vehicle-treated rats at 14 (p < 0:01, compared with normal
diet plus vehicle), and 21 days post-MCAO (p < 0:001,
compared with normal diet plus vehicle; and p < 0:05;
compared with HCHF plus sham plus vehicle). Only donep-
ezil, a standard drug used for treating memory impairment,

produced significant NOR in HCHF diet plus MCAO
(p < 0:01; compared with HCHF diet plus MCAO plus
vehicle). The current data demonstrated that vitamin C,
donepezil, and all doses of GCJ significantly increased
NOR in HCHF diet plus MCAO (p < 0:01, 0.001, 0.01,
0.001, and 0.001, respectively; compared with HCHF diet
plus MCAO plus vehicle). The assessment of the NOR was
also performed 6 hours after the administration of the tested
substances, and results are shown in Figure 3(b). It was
shown that no significant difference in NOR was noted in
any group after 7 days of treatment. HCHF diet plus MCAO
plus vehicle significantly decreased NOR at 14 and 21 days
of treatment (p < 0:001 all, compared to normal diet plus
vehicle; p < 0:01 and 0.001, respectively, compared with
HCHF diet plus sham plus vehicle). When compared with
HCHF diet plus MCAO plus vehicle, the present data
revealed that donepezil and all doses of GCJ produced
significant increases in NOR in HCHF diet plus MCAO
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Figure 2: (a) The outcome produced by the herbal formulation comprising GCJ on an escape latency time. (b) The outcome produced by
the herbal formulation comprising GCJ on a retention time. Data were stated as themean ± SEM. AAA stands for statistical significance from
normal diet plus vehicle at p < 0:001; BBB stands for p < 0:001, statistical significance from HCHF diet plus sham plus vehicle; ∗ ,∗∗ stand for
p < 0:05 and 0.01, respectively, statistically significance from HCHF diet plus MCAO plus vehicle (n = 6 per each group).
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(p < 0:001 all). However, vitamin C could significantly
enhance NOR in HCHF diet plus MCAO rats only 21 days
after treatment (p < 0:01; compared with HCHF diet plus
MCAO plus vehicle).

3.3. Neuroprotective Effect. Figure 4 indicates the outcome
produced by GCJ on the neuronal density of surviving neu-
rons in the prefrontal cortex. MCAO significantly reduced
the neuron density in this area of HCHF plus vehicle
(p < 0:001, compared with normal diet plus vehicle, and
p < 0:001, compared with HCHF diet plus sham plus vehi-
cle). Donepezil and GCJ at doses of 200 and 300mgkg-1

BW attenuated the reduction of neuron density induced by
MCAO in HCHF plus MCAO (p < 0:05, 0.01, and 0.01,
respectively, compared with HCHF diet plus MCAO plus
vehicle). In this study, we also evaluated the effect of GCJ
on the density of the survival neurons in various regions of
the hippocampus including CA1, CA2, CA3, and dentate
gyrus, MetS rats subjected to MCAO. Figure 5 shows that
MCAO also reduced neuronal density in the hippocampus
(CA1, CA2, CA3, and DG) of HCHF diet plus vehicle
(p < 0:001, compared to normal diet plus vehicle, and
p < 0:001, compared with HCHF diet plus sham plus vehi-

cle). These changes in the areas just mentioned were miti-
gated by donepezil and all doses of GCJ (p < 0:05, 0.01,
0.05, and 0.05; p < 0:001 all; p < 0:01, 0.05, 0.01, and 0.001;
p < 0:01, 0.001, 0.001, and 0.001, compared with HCHF diet
plus MCAO plus vehicle).

3.4. Biochemical Changes. To observe the effect of GC on the
alteration of cholinergic activity, the main neurochemical
system playing a role in learning and memory [25]. We also
determined the effect of AChE in both the prefrontal cortex
and hippocampus and the important areas in learning and
memory process [26]. The outcome produced by GCJ on
AChE activity in both the prefrontal cortex and hippocampus
was also conducted, and data are shown in Figures 6(a) and
6(b), respectively. Our data revealed the elevation of AChE
activity in both areas of HCHF diet plus MCAO plus vehicle
(p < 0:001 all, compared with normal diet plus vehicle and
p < 0:001, compared with HCHF diet plus sham plus vehicle).
The rise of AChE activity in the prefrontal cortex of HCHF
plus MCAO-treated rats was mitigated by donepezil and all
doses of GCJ (p < 0:001, compared with HCHF diet plus
MCAO plus vehicle). All treatments mentioned above also
produced the same pattern of change in the hippocampus
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Figure 3: The outcome produced by the herbal formulation comprising GCJ on novel object recognition test. (a) Novel object ratio assessed
at 30 minutes after the substance administration. (b) Novel object ratio assessed at 6 hours after the substance administration. Data were
stated as the mean ± SEM. AA,AAA stand for p < 0:01 and 0.001, compared with normal diet plus vehicle; B,BBB stand for p < 0:05 and
0.001, compared with HCHF diet plus sham plus vehicle; ∗∗ ,∗∗∗ stand for p < 0:01 and 0.001, compared with HCHF diet plus MCAO
plus vehicle (n = 6 per each group).
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(p < 0:001, 0.05, 0.01, and 0.001, respectively, compared with
HCHF diet plus MCAO plus vehicle).

In Figure 7, our data revealed that the HCHF-treated rats
which received sham operation and vehicle did not produce
the significant changes in the expressions of BDNF, pERK/
ERK, and eNOS in PFC when compared with the normal
diet plus vehicle-treated rats. HCHF diet plus MCAO plus
vehicle significantly reduced the expressions of eNOS,
BDNF, and pERK/ERK in the prefrontal cortex (p < 0:001
all, compared with normal diet plus vehicle, and p < 0:05,
0.001, and 0.001, respectively, compared with HCHF diet plus
sham plus vehicle). Vitamin C produced a significant mitiga-
tion effect on the reduction of eNOS and pERK/ERK in the
prefrontal cortex of HCHF diet plus MCAO (p < 0:01 and

0.001, compared with HCHF diet plus MCAO plus vehicle).
When compared with HCHF diet plus MCAO plus vehicle,
donepezil, and all doses of GCJ, they mitigated the reduction
of eNOS (p < 0:05, 0.05, 0.001, and 0.01), BDNF (p < 0:05,
0.001, 0.001, and 0.001), and pERK/ERK (p < 0:05, 0.05,
0.01, and 0.001).

The effect of GCJ on the expressions of all parameters
mentioned earlier in the hippocampus was also determined,
and results are shown in Figure 8. The outcome produced by
GCJ on the aforementioned parameters in hippocampus are
also explored, and the cause produced is shown in Figure 8.
The MCAO procedure resulted in significant reduction in
the expression of eNOS, BDNF, and pERK/ERK in the
hippocampus of HCHF diet plus vehicle (p < 0:001 all,
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compared with normal diet plus vehicle, and p < 0:001 all,
compared with HCHF diet plus sham plus vehicle). Vitamin
C significantly mitigated the reduction of eNOS expression,
whereas donepezil and a low dose of GCJ significantly miti-
gated the reduction of eNOS and pERK/ERK expressions in
the hippocampus of HCHF diet plus MCAO (p < 0:01 all
and 0.001 all, respectively, compared with HCHF diet plus
sham plus vehicle). Conversely, the medium and high
administered doses of GCJ significantly mitigated the reduc-
tion of eNOS, BDNF, and pERK/ERK expressions in the

hippocampus of HCHF diet plus MCAO (p < 0:001 all,
compared with HCHF diet plus MCAO plus vehicle).

4. Discussion

The present research findings clearly illustrated that “GCJ”, a
functional ingredient, improves spatial and nonspatial memory
in cerebral ischemic rats with metabolic syndrome. It also
improves the survival of neurons, especially in the areas that
contribute an essential role in learning and memory, such as
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the hippocampus. The decrease in the activity of AChE and the
increase in the expressions of eNOS, BDNF, and pERK/ERK in
both areas mentioned earlier are also observed.

Our data reveal that vitamin C, a well-known antioxi-
dant used in this study, fails to show the positive modulation
effect on all parameters monitored in this study. The dis-
crepancy in these data from our previous work may be asso-
ciated with the poor shelf life of the drug after long-term
storage. In addition, the variation in temperature of the stor-
age condition, donepezil, a standard drug, still produces pos-
itive modulation effects on all parameters used in this study.

It has been revealed that the hippocampus is accountable
for learning and memory, whereas the prefrontal cortex
(PFC) plays a crucial role in working memory. In addition,
the hippocampal-prefrontal cortex (Hip-PFC) circuit also
plays a substantial function in cognitive and memory
consolidation [27]. A recent report demonstrates that pre-
frontal–hippocampal networks with cholinergic exerts a
pivotal role on brain synaptic plasticity and memory process
[9]. Interestingly, our data clearly demonstrate that GCJ
increases neuron density in both the prefrontal cortex and
hippocampus but suppresses AChE activity in the areas
mentioned. In addition, GCJ also increases both spatial and
nonspatial memory performance. Therefore, these data sug-
gest that GCJ increases the functional circuit of Hip-PFC
and the interaction of prefrontal–hippocampal networks with
cholinergic which in turn increase brain synaptic plasticity
and memory process, particularly encoding, consolidation,
and retrieval process [27–29]. Our findings also confirm the
previous findings [30–32].

However, brain plasticity and memory processes are
under the regulation of many factors including brain-
derived neurotrophic factor [7, 10] and cerebral blood flow
[33–35]. A reduction in cerebral blood flow can induce
deterioration in memory performance [34], whereas an
increase in cerebral blood flow can improves memory per-
formance [35]. It has been reported that cerebral blood

flow is tightly associated with endothelial nitric oxide syn-
thase (eNOS), a key enzyme for synthesizing a main vaso-
relaxation agent such as nitric oxide [36, 37]. The
activation of the nitric oxide signaling process is also
under the influence of acetylcholine, a physiological stimu-
lator [37]. In this study, we have demonstrated that GCJ
suppresses AChE which in turn increases ACh and
increases the expression of eNOS in the prefrontal cortex
and the hippocampus. Therefore, GCJ can enhance mem-
ory performance partly via the suppression of AChE, giv-
ing rise to the elevation of ACh, which stimulates the
expression of eNOS in both areas mentioned earlier,
resulting in the increase in memory performance. How-
ever, the regulation of eNOS is also under the influence
of many factors. Our data show that vitamin C increase
eNOS expression in both areas but failed to suppress AchE.
Therefore, an increase in eNOS expression in the mentioned
areas of HCHF-treated rats that were subjected to MCAO
and vitamin C may occur due to fluid shear stress, VEGF,
and bradykinin [38]. Unfortunately, these factors are not
monitored in this study, and this requires further
investigation.

BDNF plays a crucial role not only in the memory
process but also in the survival of neurons. Its action is
associated with activating the extracellular signal-regulated
kinase (ERK) signaling pathway [39, 40]. The activation of
this pathway leads to an increase in its kinase activity, giving
rise to the enhancement of the transcription process of many
proteins, including proteins essential for the proliferation
and survival of neurons [41]. These data corresponds with
the current data which demonstrates the reduction in both
BDNF and the expression of pERK/ERK together with the
decrease in survival neurons in the prefrontal cortex and
all investigated hippocampus regions in cerebral ischemia
rat with MetS. The current data reveal that GCJ enhances
the expressions of BDNF and pERK/ERK in the prefrontal
cortex and the hippocampus. These changes correspond
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with the increase in neuron density and memory perfor-
mance. Therefore, the memory enhancer effect of GCJ
may also occur as the results of an elevation of BDNF
which intern increases in pERK/ERK expression, and
increases in neuron density and memory performance.
Furthermore, the elevation in BDNF and pERK/ERK sig-
naling molecule can also increase eNOS expression [42].
Thus, GCJ can also enhance BDNF, leading to an eleva-
tion of eNOS expression.

Taken all together, the current study demonstrates an
increase in BDNF, which in turn increases brain plasticity,
and eNOS, which in turn increases in neuron density in
the prefrontal cortex and hippocampus. GCJ also suppresses
AChE, giving a rise to an increase in ACh in both areas just
mentioned. The increase in both neuron density and cholin-
ergic function gives rise to an elevation in the Hip-PFC func-
tional circuit which plays an important role in learning and
memory. Moreover, an elevation in cholinergic function can
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also increase memory performance. Currently, the epige-
netic mechanisms are controlling activity-dependent gene
transcription leading to regulate synaptic plasticity in the
brain, eNOS and memory function [43, 44]. In addition,
signal transduction via ERK influences on epigenetic mech-
anisms [45]. Therefore, it may be possible that GCJ modu-
lates signal transduction of ERK by increasing pERK/ERK
which in turn modulates epigenetic mechanism in brain
plasticity encouraged by BDNF, eNOS, and an improvement
of cholinergic function in the prefrontal cortex and hippo-

campus. Unfortunately, we did not measure the alteration
of epigenetic mechanisms in this study. However, it is worth
further exploring the neurogenomic effect of GCJ to estab-
lish the clear connection between epigenetic mechanisms
and all the changes observed in this study.

5. Conclusions

The functional ingredient of GCJ can increase the expres-
sions of eNOS, BDNF, and pERK/ERK and enhance neuron
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density and neural plasticity in the prefrontal cortex and hip-
pocampus. All of the factors mentioned earlier can improve
memory performance, antidementia effect following ischemic
stroke with the metabolic syndrome, and neuroprotective
against stroke. However, this required confirmation by a
clinical study.
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