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A Novel Variant in VPS13B Underlying Cohen Syndrome
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Pathogenic variants in vacuolar protein sorting 13 homolog B (VPS13B) cause Cohen syndrome (CS), a clinically diverse
neurodevelopmental disorder. We used whole exome and Sanger sequencing to identify disease-causing variants in a Pakistani
family with intellectual disability, microcephaly, facial dysmorphism, neutropenia, truncal obesity, speech delay, motor delay,
and insomnia. We identified a novel homozygous nonsense variant c.8841G>A: p.(W2947∗) in VPS13B (NM_017890.5)
which segregated with the disease. Sleep disturbances are commonly seen in neurodevelopmental disorders and can exacerbate
medical issues if left untreated. We demonstrate that individuals with Cohen syndrome may also be affected by sleep
disturbances. In conclusion, we expand the genetic and phenotypic features of Cohen syndrome in the Pakistani population.

1. Introduction

Cohen syndrome (CS) is a rare heritable autosomal recessive
disorder that includes intellectual disability (ID), developmental
delay, microcephaly, and hypotonia. Myopia and retinal dystro-
phy are additional common characteristics, but hypermobility,
facial dysmorphism, and a bulbous nasal tip are rarer features
[1]. Cohen syndrome has a wide range of clinical characteristics
among those who are affected. Additional signs and symptoms
in certain people with this syndrome include neutropenia,
autistic-like features, and truncal obesity. Affected individuals
may also have small hands, feet, and fingers [2]. CS is diagnosed
at a frequency of 0.7% in individuals with unexplained intellec-
tual disability [3].

CS is caused by variants in VPS13B (also known as
COH1), which codes for vacuolar protein sorting 13 homo-

log B. It is a 4022-amino-acid transmembrane protein that is
located on chromosome 8 (8q22.2). The protein encoded by
this gene is a Golgi-associated peripheral membrane protein
involved in Golgi integrity and homeostasis, as well as mem-
brane transport and it is a member of the VPS13 protein
family, which is extremely well preserved in eukaryotic cells
[4]. Chorea acanthocytosis (OMIM: 200150), rapidly pro-
gressive, early-onset autosomal recessive Parkinson’s disease
(OMIM: 616840), and spinocerebellar ataxia, autosomal
recessive 4 (OMIM: 607317) are all possible outcomes of loss
of function variants in other VPS13 family members [5].

With the fast advancement of high-throughput sequenc-
ing technology, exome sequencing has enabled patients with
subtle clinical symptoms to get an early and precise molecular
diagnosis, thereby enhancing patient quality of life and simpli-
fying genetic counseling [6]. Due to its massive benefits such
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as high efficiency, cost, and high accuracy, exome sequencing
has been widely used in clinical practice and research [7]. In
this study, we investigated a large consanguineous pedigree
with ID from Pakistan via exome sequencing.

2. Methods

This research was performed in accordance with the Decla-
ration of Helsinki. Ethical approval for the study was
obtained from the Institutional Review Board (IRB) of the
involved institutions, the International Islamic University
Islamabad (IIUI/BIBT/FBAS-2022/77) and Columbia Uni-
versity (IRB-AAAS3433). Informed consent was obtained
from healthy adult subjects, the parents/legal guardians of
minor subjects, and the ID patients in this study to publish
the findings of the study.

2.1. Clinical Assessment. A large consanguineous family with
ID (MMR-329) of Pashtun ancestry was ascertained in Paki-
stan (Figure 1(a)). Pedigree information was recorded up to
six generations, with a total of seven affected individuals of
whom three (IV : 7, IV : 8, and IV : 9) are deceased. Living
affected individuals were examined by a local neurologist
and psychiatrist (Figure 1(b)). The phenotypic information
of all affected members of the family was noted in detail
(Table 1) which included age, sex, height, ID, facial dys-

morphism, developmental delay, and psychomotor delay
features.

2.2. Exome Sequencing. The extraction of genomic DNA was
done from the blood of the patients and unaffected members
of the family by standard organic methods of phenol-
chloroform for genetic analysis. DNA samples from two
patients (V : 3 and VI : 1) were exome sequenced using the
Twist+RefSeq library preparation kit (Twist Bioscience, San
Francisco, CA, USA). Barcoded libraries were pooled, and
sequencing was performed on the NovaSeq 6000 (Illumina
Inc., San Diego, CA, USA) with an average on-target cover-
age of 40X.

2.3. Bioinformatic Analysis. Reads were aligned to GRCh37/
hg19 using the Burrows-Wheeler aligner (BWA) [8]. Dupli-
cate removal, indel-realignment, quality recalibration, and
variant detection and calling were performed using Picard
and the genome analysis toolkit (GATK) following the
GATK best practices workflows [9]. Variants were annotated
using ANNOVAR [10]. The criteria for variant selection
included a minor allele frequency (MAF) of <0.005 in each
population of gnomAD [11], a CADD-Phred score of >20
for missense variants, exonic variants, splice sites (±12 bp),
and fitting an inheritance model consistent with the pedigree
(autosomal recessive) [12]. Bioinformatic prediction tools
were used to evaluate the effect of the variant on the protein
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Figure 1: (a) The autosomal recessive consanguineous pedigree studied here and the segregation of the VPS13B [c.8841G>A: p.(W2947∗)]
variant. Squares symbolize the male individuals, circles denote female individuals, and filled square and circle indicates the affected
individuals. Double lines denote a consanguineous marriage, and the crossed line specifies the deceased individual. (b) Facial images of
the affected individuals. All individuals shared facial dysmorphism features such as a bulbous nasal tip, a prominent nose root, a short
philtrum, narrow (mouth) roof (palate), prominent upper incisors, large ears, thick eyebrows, long thick eyelashes, and wave-shaped
eyelids. Eye misalignment is seen in V : 1 and VI : 2 individuals only.
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(Table 2). These tools included MutationTaster [13],
FATHMM-MKL [14], DANN [15], LRT-Pred [16], CADD
[17], GERP [18], and VEST4 [19].

2.4. Sanger Sequencing. The VPS13B variant from the WES
data was validated by Sanger sequencing and tested in addi-
tional family members to confirm its segregation with the
disease. Primers were designed through Primer3 (https://
bioinfo.ut.ee/primer3-0.4.0/). PCR-amplified products were
purified by ExoSAP-IT (USB Corp., Cleveland, OH, USA)
and were sequenced using the BigDye Terminator v3.1 Cycle
Sequencing Kit followed by capillary electrophoresis on an
ABI 3730 DNA Analyzer (Applied Biosystems Inc., Foster

City, CA USA). The DNA sequences were then aligned to
the reference genome sequence using the CodonCode
Aligner v7.1.2 (CodonCode Corp., Centerville, MA, USA).

3. Results

3.1. Clinical Findings. A description of the features seen in
each affected individual (V : 1, V : 3, VI : 1, and VI : 2) is listed
in detail in Table 1. Briefly, these individuals presented with
ID and other clinical features including microcephaly, neu-
tropenia, facial dysmorphism, developmental delay, psycho-
motor delay, a bulbous nasal tip, truncal obesity, small
hands, feet, and fingers. One patient (VI : 2) of this CS family

Table 1: Clinical details of the affected individuals.

Patient features V : 1 V : 3 VI : 1 VI : 2

Sex Male Female Male Female

Consanguinity of parents First cousin First cousin

Age (years) 13 7 14 5

Height (cm) 150 117 136 88

Age at first words (months) 20 19 20 19

Age at walking (months) 32 28 33 28

Intellectual disability Moderate Moderate Moderate Moderate

Microcephaly + + + +

Neutropenia + + + +

Hypotonia - - - +

Motor delay - - + +

Speech delay + + + +

Muscular atrophy - - - +

Insomnia/sleep disturbances - - - +

Neonatal feeding difficulties + + + +

Strabismus + - - +

Wave shape eyelid + + + +

Long and thick eyelashes + + + +

Large ear + + + +

Prominent nose root + + + +

Prominent upper central incisors + + + +

Narrow roof mouth + + + +

Short philtrum + + + +

Truncal obesity + + + +

Small hands, feet, and fingers - + - +

+ Present, - absent.

Table 2: Bioinformatic prediction results for VPS13B c.8841G>A: p.(W2947∗).

Bioinformatic tool Prediction Score Prediction range

MutationTaster Disease causing 1 0-1 (close to 1 indicating disease causing)

FATHM-MKL Damaging 0.998 0-1 (close to 1 indicating damaging)

DANN Damaging 0.996 0-1 (close to 1 indicating damaging)

LRT-Pred Deleterious 0.860 0-1 (close to 1 indicating deleterious)

CADD Deleterious 45 1-99 (>20 deleterious)

GERP Deleterious 5.98 >4 highly conserved (deleterious)

VEST4 Mutated 0.861 0-1 (close to 1 indicating the functional mutation
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showed additional features including hypotonia, muscle
atrophy, and insomnia.

3.2. Exome Sequencing and Follow-Up. Exome sequencing of
two affected individuals (V : 3 and VI : 1) in the family revealed
a novel homozygous nonsense variant c.8841G>A (NM_
017890.5) located in exon 48 out of 62 in the VPS13B gene
(Supplementary Figure 1b) at position 8q22.2
(Supplementary Figure 1a). The variant altered the
tryptophan amino acid into a premature stop codon
p.(W2947∗). The average on-target coverage was 40x, and
24x and 33x at the VPS13B c.8841G>A site for both
exomed individuals. Sanger sequencing verified the
segregation of this variant in the pedigree (Supplementary
Figure 1c). This novel nonsense mutation is absent in
gnomAD [20], 1000 genomes [21], GME Variome [22],
Kaviar [23], ABraOM [24], AllofUs [25], and TOPMed [26],
and bioinformatic tools predict that it significantly damages
the function of the VPS13B protein (Table 2). A protein
alignment of amino acid sequence 2941 to 2953 of the wild-
type human and mutant VPS13B with orthologous proteins

of the different species indicated an evolutionary conserved
of the C-terminal domain (Figure 2(b)), and the GERP++RS
score was 5.98 (Table 2). The variant was classified as
pathogenic based on standard guidelines of the American
College of Medical Genetics (ACMG) [27].

4. Discussion

CS is a rare autosomal recessive disorder mainly character-
ized by ID, impaired growth, microcephaly, neutropenia,
truncal obesity, and facial dysmorphism, with other addi-
tional features including myopia and retinal dystrophy,
small fingers, and a bulbous nasal tip [28]. In this study,
we observed phenotypic diversity among the affected indi-
viduals of the same family which includes motor delay
(VI : 1 and VI : 2), strabismus (V : 1 and VI : 2), and hypoto-
nia, muscle atrophy, and insomnia (VI : 2). Furthermore,
all affected individuals manifested characteristic CS features
including moderate ID, microcephaly, neutropenia, develop-
mental delay, truncal obesity, a bulbous nasal tip, small fin-
gers, and facial dysmorphism. Previous studies in Pakistani
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Figure 2: (a) Prediction of membrane topology and domains of VPS13B. The identified variant in the CS patients is shown by a black arrow.
(b) The human VPS13B protein sequence (2941-2953) aligned with orthologous protein sequences of different species indicating
evolutionary conservation of the C-terminal domain of VPS13B.
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consanguineous families underlying CS have described addi-
tional features associated with Cohen syndrome including
cerebellar hypoplasia [29], autistic-like features [30], and
individuals with a milder form of CS [31]. Moreover, in
the present study, we found a previously undescribed feature
(insomnia) in CS in the affected individual (VI : 2). This
individual has difficulty falling asleep, repeated awakenings
with difficulty returning to sleep, or sleep that is nonrestora-
tive or poor in quality. Sleep disturbances such as insomnia
are a common feature in many neurodevelopmental disor-
ders (NDDs) [32] such as the Angelman syndrome (AS),
autism spectrum disorder (ASD), the Smith-Magenis syn-
drome (SMS), the Prader-Willi syndrome (PWS), tuberous
sclerosis complex (TSC) [33], Fragile X syndrome (FXS),
the Williams syndrome (WS), and the Rett syndrome
(RTT). Not only are sleep disturbances significantly higher
in NDDs than in age-matched unaffected children but they
also often last longer as well, such as into adolescence and
adulthood [32]. Untreated sleep disorders can aggravate
their medical issues, and early interventions may be benefi-
cial to the patient’s overall health.

In this study, we report a novel genetic variant in
VPS13B [NM_017890.5, c.8841G>A: p.(W2947∗)] in an
autosomal recessive consanguineous Pakistani CS family.
Over 200 variants have been reported worldwide in multiple
domains of VPS13B associated with CS [34]. VPS13B protein
has ten transmembrane domains and a potential vacuolar
targeting motif, an endoplasmic reticulum retention signal
on the C-terminus and two peroxisomal matrix protein tar-
geting signal 2 (PTS2) consensus sequence both on the N-
and C-terminus (Figure 2(a)) [35]. Our nonsense variant
resides in between the 8th and 9th transmembrane domains
of VPS13B, and at this position, the variant is likely targeted
via nonsense mRNA-mediated decay (NMD), resulting in
no or limited truncated protein expression.

In conclusion, we report a novel nonsense variant in
VPS13B associated with CS in a large Pakistani family which
displayed phenotypic variability and an expanded pheno-
type. This study will help facilitate the diagnosis and genetic
counseling of families with CS-related features in the Paki-
stani population.
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VI : 2) in a homozygous state. (Supplementary Materials)
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