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Objective. Oral squamous cell carcinoma (OSCC) is the most frequent oral cancer, constituting more than 90% of all oral
carcinomas. The 5-year survival rate of OSCC patients is not satisfactory, and therefore, there is an urgent need for new
practical therapeutic approaches besides the current therapies to overcome OSCC. Scutellaria baicalensis Georgi (SBG) is a
plant of the family Lamiaceae with several pharmaceutical properties such as antioxidant, anti-inflammatory, and anticancer
effects. Previous studies have demonstrated the curative effects of SBG in OSCC. Methods. A systems biology approach was
conducted to identify differentially expressed miRNAs (DEMs) in OSCC patients with a dismal prognosis compared to OSCC
patients with a favorable prognosis. A protein interaction map (PIM) was built based on DEMs targets, and the hub genes
within the PIM were indicated. Subsequently, the prognostic role of the hubs was studied using Kaplan-Meier curves. Next, the
binding affinity of SBG’s main components, including baicalein, wogonin, oroxylin-A, salvigenin, and norwogonin, to the
prognostic markers in OSCC was evaluated using molecular docking analysis. Results. Survival analysis showed that
overexpression of CAV1, SERPINE1, ACTB, SMAD3, HMGA2, MYC, EIF2S1, HSPA4, HSPA5, and IL6 was significantly
related to a poor prognosis in OSCC. Besides, molecular docking analysis demonstrated the ΔGbinding and inhibition constant
values between SBG’s main components and SERPINE1, ACTB, HMGA2, EIF2S1, HSPA4, and HSPA5 were as <-8.00 kcal/
mol and nanomolar concentration, respectively. The most salient binding affinity was observed between wogonin and
SERPINE1 with a criterion of ΔGbinding < −10 02 kcal/mol. Conclusion. The present results unraveled potential mechanisms
involved in therapeutic effects of SBG in OSCC based on systems biology and structural bioinformatics analyses.

1. Introduction

Oral carcinoma is the most frequent cancer in the head and
neck area [1]. Oral squamous cell carcinoma (OSCC)
represents 90000 of all types of oral cancers [2], ranking
sixth among all forms of carcinomas worldwide [3]. Tobacco
and alcohol consumption, as well as human papillomavirus
(HPV), are the most common independent risk factors
for OSCC [4]. Chemotherapy, surgery, radiotherapy, and
immunotherapy are commonly used to treat OSCC [5].
However, the 5-year survival rate of patients with OSCC
has remained at 50 to 60% in the primary stages, and it

decreases to 30 to 40% of patients in the late stages of the dis-
ease [6]. Thus, there is an urgent need for novel therapies in
combination with the current therapeutic approaches to over-
come OSCC. Likewise, targeted therapies use specific drugs
per the tumor location, leading to high selectivity, low toxicity,
and high therapeutic outcomes in cancer treatment [7, 8].

Medicinal plants have long been used to flavor foods and
to treat/prevent several human disorders, and herbal nutra-
ceuticals are in the interest of many medicians for primary
healthcare. It is worth mentioning that most of the approved
drugs are organic-based agents [9]. Scutellaria baicalensis
Georgi (SBG) is a plant of the family Lamiaceae with many
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Figure 1: (a) The score plot in the predictive (X-axis) and orthogonal (Y-axis) components of miRNA dataset GSE52633 achieved from the
OPLS-DA. (b) The volcano plot of miRNAs in the primary OSCC tissues compared with the normal samples. OPLS-DA: orthogonal partial
least squares discriminant analysis; OSCC: oral squamous cell carcinoma.
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useful pharmaceutical features such as anticancer, antimi-
crobial, antioxidant, and anti-inflammatory properties [10,
11]. Its dried root, Huang Qin, is one of the primary medic-
inal sources in traditional Chinese medicine [12, 13]. SBG
has also been confirmed by the European Pharmacopoeia
(EP 9.0) and British Pharmacopoeia (BP 2018) [14]. Huang
Qin has shown curative effects in allergic disorders, respira-
tory and gastrointestinal diseases, hepatitis, colitis, and
pneumonia [15, 16]. In addition, several studies have indi-
cated that SBG might serve as a vital herbal source of thera-
peutic components for treating OSCC due to its outstanding
properties and low side effects [17–19]. Secondary metabo-
lites in plants are active agents responsible for the biological
activities of herbs [20]. According to the study by Hou et al.
[21], five flavonoids, including baicalein, wogonin, oroxylin-
A, salvigenin, and norwogonin, are closely associated with
the therapeutic effects of SBG against OSCC. Besides, these
components have shown inhibitory effects against cancer
cell development [22].

Herein, it was hypothesized that baicalein, wogonin,
oroxylin-A, salvigenin, and norwogonin might target essen-
tial genes mediating poor prognosis in patients with OSCC.
Therefore, an integrated bioinformatics study was executed
to identify negative prognostic markers in OSCC patients.
The prognostic markers were assigned as potential targets
for SBG components. Subsequently, the binding affinity of
baicalein, wogonin, oroxylin-A, salvigenin, and norwogonin
to the binding sites of targets was evaluated using molecular
docking analysis. Therefore, the present study followed two
parts: (1) a systems biology study for identifying potential
biomarkers associated with a dismal prognosis in patients
with OSCC and (2) structural bioinformatics analysis to
indicate binding affinities between prognostic markers and
SBG active components.

The systems biology section of the study was carried out
by reanalyzing the high-throughput sequencing GSE52633
dataset developed by Yoon et al. [23] to identify differentially
expressed miRNAs (DEMs) in primary OSCC tissue samples
achieved from patients with poor 5-year survival compared
to early-OSCC tissue specimens obtained from patients with
favorable 5-year survival. After that, validated targets of
DEMs were indicated, a protein interaction map (PIM)
was constructed, and hub genes within the PIM were identi-
fied. Next, the prognostic role of the hubs was evaluated
using the Kaplan-Meier curves.

2. Materials and Methods

2.1. MicroRNA Dataset Recovery and Statistical Analysis. The
high-throughput sequencing miRNA dataset GSE52633 [23]
was downloaded as a TXT file from the NCBI GEO, available

Table 1: Thirteen miRNAs were indicated to be differentially
expressed in early-OSCC patients with poor survival rates compared
with favorable prognoses.

miRNA FDR Log2 FC

Upregulated

hsa-miR-30c-5p 0.045 2.555

hsa-miR-4532 0.045 2.274

hsa-miR-4792 0.043 2.222

hsa-let-7a-5p 0.043 1.628

hsa-let-7b-5p 0.040 1.588

hsa-miR-199a-5p 0.039 1.578

Downregulated

hsa-miR-7641 0.035 −1.161
hsa-miR-1307-3p 0.032 −1.229
hsa-miR-199b-5p 0.031 −1.274
hsa-miR-1246 0.024 −1.281
hsa-miR-23b-3p 0.022 −1.369
hsa-miR-145-5p 0.019 −1.610
hsa-miR-4497 0.015 −1.650

FDR: false discovery rate; FC: fold change.

Table 2: Top-30 hub genes based on the degree centrality in the
PPI network associated with early-stage OSCC patients with
dismal prognoses.

Gene ID Degree Betweenness

TP53 187 0.094

ACTB 168 0.071

MYC 161 0.055

EGFR 137 0.034

SRC 135 0.037

HRAS 132 0.036

PTEN 132 0.028

CCND1 126 0.029

KRAS 122 0.025

NOTCH1 121 0.020

VEGFA 120 0.018

ESR1 115 0.024

CDH1 115 0.020

IL6 114 0.018

HIF1A 114 0.014

CASP3 109 0.018

ERBB2 109 0.014

SIRT1 96 0.022

SMAD4 92 0.017

SOX2 90 0.009

EZH2 88 0.014

SMAD3 87 0.012

MDM2 84 0.013

CD44 83 0.006

CDKN1A 81 0.011

GSK3B 80 0.011

CDK4 78 0.007

POU5F1 78 0.005

NANOG 77 0.008

STAT1 70 0.009

PPI: protein-protein interaction; OSCC: oral squamous cell carcinoma.
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from http://www.ncbi.nlm.nih.gov/geo [24]. The dataset
included early-OSCC tissue samples collected from patients
with poor 5-year survival (n = 10) and favorable 5-year sur-
vival (n = 10) based on the GPL16791 platform (Illumina
HiSeq 2500 (Homo sapiens)).

The Min–Max method was used for normalizing the
dataset using the R programming version 4.2.2 [25]. An
advanced multivariate statistical analysis, orthogonal partial
least squares discriminant analysis (OPLS-DA) [26], was
utilized to indicate DEMs between the studied groups; this
was done using the “genefilter,” “limma,” and “ropls” pack-
ages from the R language. miRNAs with a p value < 0.05
and fold change (FC) difference of >2 or <1/2 were assigned
significant features between the studied groups. Further, the
Shiny server, available from https://huygens.science.uva.nl/
[27], illustrated the volcano plot of the dataset GSE52633.

2.2. Networking and Gene Set Enrichment Analysis. Vali-
dated targets of DEMs were identified using the mirTarBase
database [28]. Only the genes that were experimentally vali-
dated using at least one of the robust evidence methods
(including reporter assay, western blot, and qPCR) or at least
two of the less intense evidence approaches (including
microarray, NGS, pSILAC, and CLIP-Seq) were assigned
targets of DEMs. Possible interactions among DEMs targets
were indicated using the STRING version 11.5 knowledge
base, available from http://string-db.org [29]. The STRING
provides valuable information about billions of interactions
between millions of proteins achieved from thousands of
organisms. The Cytoscape 3.9.1, available from https://
cytoscape.org/ [30], visualized the PIM and calculated the
centrality of the nodes within the graph. Unconnected pro-
teins were eliminated from the network [31]. Subsequently,
the genes with degree and betweenness centralities above
the average of the nodes in the network were considered
hub genes. They were evaluated for their possible role in

the prognosis of patients with OSCC. Modules within the
PIM were demonstrated using the MCODE plugin [32] to
see whether the prognostic markers are involved in clusters
associated with pathways and biological processes (BPs)
mediating the pathogenesis of OSCC patients with poor
prognoses. Condensed regions with the following features
were considered significant modules and were selected for
further pathway and BP analysis: (1) MCODE score > 3,
(2) the number of genes > 10 [33], and (3) including prog-
nostic marker(s). Significant pathways and BPs affected by
the clusters were explored using the g:Profiler tool, available
from https://biit.cs.ut.ee/gprofiler/gost [34]. A cutoff condi-
tion was set to false discovery rate FDR < 0 05 and the
number of enriched genes within the term > 10.

2.3. Survival and Boxplot Analyses. Kaplan-Meier curves
were achieved using the GEPIA2 database, available from
http://gepia2.cancer-pku.cn/#survival [35], to evaluate the
prognostic impact of the hub genes in OSCC. The prognos-
tic role of the genes with the log-rank test and hazard ratio
(HR) p value < 0.05 were considered significant. The GEPI
A2 applies powerful analyses on RNA sequencing data from
The Cancer Genome Atlas [36] and Genotype-Tissue
Expression [37] databases, leading to reliable results for
survival and boxplot analyses in patients with cancer as
compared to healthy individuals. In addition, the expression
patterns of negative markers in OSCC tissues and healthy
control samples were evaluated using relevant data from
the GEPIA2 database.

2.4. Structural Preparation of the Ligands and Receptors. The
hub genes with a significant role in the prognosis of patients
with OSCC were assigned possible targets for baicalein,
wogonin, oroxylin-A, salvigenin, and norwogonin. Most of
the targets’ three-dimensional (3D) structures were achieved
from the RCSB database, available from https://www.rcsb

Figure 2: The MCODE plugin identified three clusters within the PPI network associated with early-OSCC patients with poor prognoses.
PPI: protein-protein interaction; OSCC: oral squamous cell carcinoma.
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.org [38]. For receptors with no structural data in the RCSB,
the similarity of their templates was checked in the PDB. For
targets with templates with a similarity above 30% [39],

homology modeling was performed using the SWISS-
MODEL web server, available from https://swissmodel.expasy
.org/ [40]. Otherwise, threading modeling was executed using
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Figure 3: The most significant pathways associated with (a) cluster no. 1 and (b) cluster no. 2 and biological processes related to (c) cluster
no. 1 and (d) cluster no. 2 regulated by the SBG components in patients with oral squamous cell carcinoma. The X-axis shows the minus
value of the Log10 FDR. Y-axis demonstrates the name of the term. FDR: false discovery rate; SBG: Scutellaria baicalensis Georgi.
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Figure 4: Prognostic role of EIF2S1, CAV1, SERPINE1, ACTB, SMAD3, HMGA2, MYC, IL6, HSPA4, HSPA5, PDGFRA, E2F2, ESR1,
DDX17, and AGO4 was significant in patients with OSCC. The X-axis and Y-axis represent the survival time of OSCC patients and the
survival probability, respectively. The dotted lines are 95% confidence intervals. OSCC: oral squamous cell carcinoma.
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the I-TASSER server, available from https://zhanggroup.org/I-
TASSER/ [41].

Subsequent to the initial modeling, a refinement process
was applied to enhance the structure of the modeled proteins,
utilizing the GalaxyWEB server, accessible at https://galaxy
.seoklab.org/index.html [42]. Subsequently, the integrity of
the modeled proteins’ structures underwent additional scru-
tiny to ascertain the dependability of the outcomes. To this
end, assessments were conducted using the UCLA-DOE
LAB – SAVES v6.0 web server encompassing ERRAT [43],
Verify 3D [44], and PROCHECK [45] analyses, accessible at
https://saves.mbi.ucla.edu/. Additionally, the protein structure
analysis (ProSA) tool [46] was employed to provide an
overarching evaluation of the overall quality of the predicted
structures.

The energy minimization (EM) process was applied on
all proteins before molecular docking analysis using the
Swiss-PdbViewer version 4.1.0, available from https://spdbv
.unil.ch [47]. The structures of ligands were obtained as
SDF files and converted into PDF formats, followed by EM
[48, 49]. Kollman charge and polar hydrogens were added
to the structures of receptors. Besides, local charge and rota-
tional motion were included in ligands. Finally, the PDBQT
files were built for the proteins and small molecules using
the MGL tools [50].

2.5. Molecular Dockings, Dynamics, and Interaction Mode
Analyses. A Windows-based PC with the following features
was used for in silico analyses: system type, 64-bit; installed
RAM, 64GB DDR5; and processor, Intel 24-Core i9-
13900KF. The Gibbs free energy of binding (ΔGbinding) between
ligands and receptors was calculated using the AutoDock 4.0
software. A total of 100 independent runs were set for each
component. The most negative ΔGbinding value in the root
mean square deviation (RMSD) table was considered binding
energy between ligands and receptors [50].

Discovery Studio Client (DSC) version 16.1.0.15350 was
used to uncover interactions between SBG active com-
pounds and OSCC prognostic markers. Molecular dynamics
(MD) was executed in a 100-nanosecond (ns) computer sim-
ulation using the DSC tool to evaluate the structural stability
of the most salient complex in comparison to the reference
drug [51–53]. In configuring the computer simulations, the
specified parameters were as follows: orthorhombic cell
shape, 10Å minimum distance from the boundary, water
as the solvent, 310K target temperature, CHARMM as the
force field, the explicit periodic boundary for solvation
model, and a point charge distribution [54].

Notably, the preeminent molecular docking outcome,
elucidating the interaction between receptors and ligands,
was meticulously juxtaposed with that of a reference phar-
maceutical agent. Furthermore, the results derived from
MD simulations for the most prominent complex were sys-
tematically contrasted with those of the unbound receptor
and the receptor inhibited by the reference drug.

3. Results

3.1. DEMs and Their Targets in OSCC Patients with Poor
Prognosis. The OPLS-DA model significantly differentiated
early-OSCC tissue samples with poor 5-year survival from that
with favorable 5-year survival (R2X = 0 536, R2Y = 0 632, and
Q2 = 0 125) Figure 1(a). Thirteen DEMs with the criteria of
p value < 0.05 and Log2 FC > 1, including six upregulated
and seven downregulated DEMs, were identified between
the studied groups (Figure 1(b) and Table 1). A total of
476 genes were indicated as experimentally validated targets
of DEMs.

3.2. Topological and Functional Analyses of Protein-Protein
Interaction Network. The interactions between DEM targets
were illustrated with a confidence score of ≥0.4 using the
STRING database. Disconnected nodes were removed from

Table 3: A total of 15 genes were found to be prognostic markers in patients with OSCC.

Gene symbols HR (high) p (log-rank test) p (HR)

EIF2S1 1.7 0.00016 0.0002

CAV1 1.5 0.0016 0.0016

SERPINE1 1.5 0.0024 0.0025

ACTB 1.5 0.0054 0.0057

SMAD3 1.4 0.017 0.018

HMGA2 1.4 0.017 0.018

MYC 1.3 0.028 0.029

IL6 1.3 0.029 0.029

HSPA4 1.3 0.035 0.036

HSPA5 1.3 0.042 0.043

PDGFRA 0.74 0.024 0.024

E2F2 0.74 0.024 0.024

ESR1 0.74 0.024 0.025

DDX17 0.74 0.027 0.027

AGO4 0.74 0.028 0.028

OSCC: oral squamous cell carcinoma.
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the graph, and the Cytoscape demonstrated the protein-
protein interaction (PPI) network, including 442 vertexes
and 5226 edges. Topological analysis revealed 88 proteins with
the degree and betweenness centralities above the average value
of the nodes and, therefore, assigned hub proteins in the PPI
network associated with the pathogenesis of OSCC patients
with poor prognoses (Supplementary Table 1). Table 2
provides the first 30 genes according to the degree of the
nodes. The average values for betweenness and degree were
recorded as 0.0038 and 23.65, respectively. Three modules
were identified in the PPI network with a number of genes >
10 and MCODE score above three (cluster nos. 1, 2, and 4).
By performing survival analysis, it was found that module 1
and module 2 contain prognostic markers associated with a
poor prognosis in OSCC patients (Figure 2). A total of 427
BPs and 47 pathways were enriched by cluster 1. Besides,
cluster 2 was involved in 265 BPs and 35 pathways. Top-10
significant pathways and BPs affected by clusters 1 and 2 are
presented in Figure 3.

3.3. Survival and Expression Analyses. The Kaplan-Meier
curves revealed that the upregulation of ten genes, including
CAV1, SERPINE1, ACTB, SMAD3, HMGA2, MYC, EIF2S1,
HSPA4, HSPA5, and IL6, was significantly related to a dis-
mal outcome in patients with OSCC. Besides, the overex-
pression of PDGFRA, E2F2, ESR1, DDX17, and AGO4 was
associated with a favorable prognosis in OSCC patients
(log-rank test and HR p values < 0.05) (Figure 4 and
Table 3). Moreover, the boxplot analysis revealed that all
negative markers in OSCC, except IL6, exhibited higher

expression in OSCC tissues compared to the normal samples
(Figure 5).

3.4. Structural Preparation and Binding Site Detection. The
3D coordinates of SERPINE1, ACTB, SMAD3, MYC,
EIF2S1, HSPA5, and IL6 were available from the RCSB data-
base. SWISS-MODEL web server was used to model the
structure of HSPA4. Further, the structures of CAV1 and
HMGA2 were prepared using the I-TASSER tool.

Following the implementation of the model refinement
process and a comprehensive evaluation of the modeled pro-
teins’ structures, HMGA2 successfully cleared all assessment
criteria. Conversely, HSPA4 did not meet the requirements
of the Verify 3D analysis. Nevertheless, the overall structural
integrity of HSPA4 was verified through the ProSA web
server, justifying its inclusion in the study for subsequent
molecular docking analysis. On the other hand, CAV1 did
not meet the specified quality assessment parameters,
leading to its exclusion from further analysis. For a detailed
overview of all model assessment analyses, refer to Supple-
mentary File 1.

Different strategies were used to indicate the central res-
idues involved in the binding sites of the receptors. The DSV
tool revealed the interacting residues of SERPINE1 with the
ligand inside the PDB file of the protein (PDB entry, 1A7C).
The HMGA2 binding residues were indicated using the
UniProt database. Besides, the CASTp server unraveled
interacting residues of EIF2S1. Table 4 presents the (1) dif-
ferent sources used for achieving 3D structures of receptors,
(2) strategy for identifying binding sites, (3) main residues in
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Figure 5: Gene expression pattern of negative markers in OSCC from the boxplot analysis achieved from the GEPIA2 database based on 519
OSCC samples (orange color) and 44 normal tissues (green color). The data show overexpression of CAV1 (a), SERPINE1 (b), ACTB (c),
SMAD3 (d), HMGA2 (e), MYC (f), EIF2S1 (g), HSPA4 (h), and HSPA5 (i) and downregulation of IL6 (j) in OSCC. However, SMAD3
and MYC demonstrate a mild overexpression in OSCC. OSCC: oral squamous cell carcinoma.
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binding sites, and (4) grid box settings. The Gasteiger charge
assigned to baicalein exhibited a value of −0.0002, whereas
for wogonin, oroxylin-A, salvigenin, and norwogonin, the
Gasteiger charges were each registered at −0.0001. Compre-
hensive details of the Kollman charges applied to the pro-
teins are elaborated upon in Table 5 [51, 55].

3.5. Binding Affinity Assessment. The higher binding affinity
between ligands and receptors results in a smaller ΔGbinding
value. It has been demonstrated that ΔGbinding < −7 00 kcal/
mol shows a robust binding affinity [67]. The results show
the ΔGbinding and inhibition constant (Ki) values between
SBG components and SERPINE1, ACTB, HMGA2, EIF2S1,
HSPA4, and HSPA5 were calculated as <−8.00 kcal/mol and
nanomolar scale, respectively. Therefore, these receptors
were assigned as potential targets of SBG components. Thus,
inhibiting these proteins might be involved in the therapeu-
tic effects of SBG in patients with OSCC. All ΔGbinding and Ki

values between SBG components and receptors are pre-
sented in Tables 6 and 7, respectively.

The most salient binding affinity was observed between
wogonin and SERPINE1 with the criteria of ΔGbinding and
Ki values as −10.02 kcal/mol and 45.08 nM, respectively. Fol-
lowing the selection criteria, colforsin (PubChem ID, 47936;
DrugBank ID, DB02587) was indicated as a positive control
inhibitor for SERPINE1, leveraging information from the
DrugBank database accessible at https://go.drugbank.com/
[68]. The calculated ΔGbinding score and Ki value, represent-
ing the binding affinity between SERPINE1 and colforsin,
stood at 11.3 kcal/mol and 5.17 nM, respectively.

3.6. Interaction Mode Analysis and MD Simulation. Interac-
tions between wogonin and SERPINE1 were demonstrated
utilizing the DSC tool. Accordingly, wogonin formed five
hydrogen bonds and six hydrophobic interactions with the
residues of SERPINE1 (Figure 6(a)). In comparison, colfor-
sin exhibited two H-bonds and eight hydrophobic interac-
tions with residues incorporated inside the SERINE1 active
site (Figure 6(b)).

Moreover, the MD simulations delved into the behavior
of SERPINE1 when complexed with wogonin and colforsin.
The root mean square deviation (RMSD) plot (Figure 7(a))

revealed a notably more stable structure of SERPINE1 when
in complex with colforsin compared to wogonin. Specifi-
cally, the SERPINE1 backbone atoms achieved stability after
approximately 10ns of computer simulation, maintaining at
around 7Å in the presence of colforsin. In contrast, when
complexed with wogonin, stability was attained after 30 ns,
with the protein’s backbone atoms stabilizing at approxi-
mately 8Å. Analyzing the root mean square fluctuation
(RMSF) plot (Figure 7(b)), it became apparent that the back-
bone atoms of SERPINE1 within the enzyme’s active site
exhibited greater stability when complexed with colforsin in
comparison to wogonin. Further MD analyses unveiled that
during the initial 30ns of the simulation, the radius of gyration
(ROG) of SERPINE1 was lower in the presence of colforsin
than wogonin. Between the simulation times of 30-60ns, the
ROGs of SERPINE1 were approximately equivalent when
complexed with both ligands. Additionally, within the
simulation timeframe of 60-90ns, the ROG for SERPINE1
was lower when bound to wogonin compared to colforsin
(Figure 7(c)). Interestingly, the total energy of SERPINE1
remained consistently lower throughout the entire simulation
period when engaged with wogonin compared to the reference
drug (Figure 7(d)).

4. Discussion

Accumulating evidence suggests that SBG is a valuable plant
source with curative effects in OSCC [17–19]. The present
study performed an integrated bioinformatics analysis to
identify potential mechanisms involved in the therapeutic
effects of SBG in OSCC. Our systems biology analysis indi-
cated that CAV1, SERPINE1, ACTB, SMAD3, HMGA2,
MYC, EIF2S1, HSPA4, HSPA5, and IL6 upregulation is sig-
nificantly associated with a poor prognosis in patients with
OSCC. Additionally, structural bioinformatics analysis
showed that SBG active metabolites had a considerable bind-
ing affinity to SERPINE1, ACTB, HMGA2, EIF2S1, HSPA4,
and HSPA5 (ΔGbinding < −8 kcal/mol and Ki value at nano-
molar concentration). The most salient binding affinity was
observed between wogonin and SERPINE1 with the criteria
of ΔGbinding < −10 02 kcal/mol and Ki value as 45.08 nM.
Wogonin exhibited five hydrogen and six hydrophobic interac-
tions with Ala156, Leu163, Val164, Leu165, Leu315, Val317,
Ala318, and Gln319 within the SERPINE1 binding site.

Previous reports have indicated anti-inflammatory, anti-
oxidant, immunomodulatory, and antitumor properties for
wogonin [69]. Wogonin also has a chemosensitizer effect
in cancer chemotherapy. It has induced cancer cell apoptosis
when combined with cisplatin, doxorubicin, etoposide, and
5-FU [70, 71]. Wogonin conducts its antitumor activities
through several molecular mechanisms [72, 73]. You et al.
[74] reported that wogonin downregulated the epithelial-
mesenchymal transition (EMT) in colorectal cancer cells.
Wogonin also diminished the transcriptional coactivator
YAP1 and interferon regulatory factor 3 (IRF3) expression
in vitro and in vivo, leading to the Hippo signaling pathway
upregulation. Zhang et al. [75] demonstrated that wogonin
elevated the apoptosis process in pancreatic cancer cells by

Table 5: AutoDock 4.0 employed the incorporation of Kollman
charges onto the receptors.

Protein Kollman charges

SERPINE1 9.771

ACTB −5.742
SMAD 14.054

HMGA2 13

MYC 6.26

EIF2S1 −7.831
HSPA4 −14
HSPA5 2

IL6 1.761
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Table 6: The Gibbs free energy of binding between SBG components and nine markers associated with poor prognosis in patients with
OSCC was calculated in kcal/mol using the AutoDock 4.0 tool.

Baicalein Wogonin Oroxylin-A Salvigenin Norwogonin

Targets

SERPINE1 −9.56 −10.02 −9.14 −9.61 −9.8
ACTB −9.84 −9.22 −9.25 −8.77 −7.5
SMAD −6.51 −6.83 −6.13 −6.1 −6.88
HMGA2 −9.26 −8.8 −9.08 −8.63 −9.48
MYC −6.7 −7.13 −6.35 −5.34 −0.62
EIF2S1 −9.02 −8.91 −7.7 −6.55 −8.93
HSPA4 −8.85 −9.09 −8.75 −8.87 −5.88
HSPA5 −8.44 −7.97 −8.43 −8.14 −8.93
IL6 −7.72 −7.68 −7.04 −6.83 −8.06

SBG: Scutellaria baicalensis Georgi; OSCC: oral squamous cell carcinoma.

Table 7: The Ki values between SBG components and nine markers associated with poor prognosis in patients with OSCC were calculated
using the AutoDock 4.0 tool.

Baicalein Wogonin Oroxylin-A Salvigenin Norwogonin

Targets

SERPINE1 98.59 nM 45.08 nM 200.40 nM 90.23 nM 65.63 nM

ACTB 60.94 nM 173.06 nM 166.22 nM 373.79 nM 3.18 μM

SMAD 16.95μM 9.80μM 31.98μM 33.88μM 9.04 μM

HMGA2 164.13 nM 356.87 nM 220.47 nM 473.27 nM 112.03 nM

MYC 12.32μM 5.97μM 22.15μM 121.01μM 348.41mM

EIF2S1 244.07 nM 296.78 nM 2.28μM 15.89μM 286.11 nM

HSPA4 324.93 nM 218.93 nM 385.93 nM 315.78 nM 49.05 μM

HSPA5 650.41 nM 1.43μM 662.12 nM 1.07μM 286.07 nM

IL6 2.21μM 2.37μM 6.89μM 9.93μM 1.23 μM

SBG: Scutellaria baicalensis Georgi; OSCC: oral squamous cell carcinoma; Ki: inhibition constant.
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Carbon hydrogen bond
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Figure 6: Two-dimensional view of (a) wogonin and (b) colforsin inside the SERPINE1 active site. SERPINE1: plasminogen activator
inhibitor 1.
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downregulating the Akt signaling pathway, leading to
increased gemcitabine sensitivity to pancreatic cancer cells.
Flow cytometry and western blotting methods approved the
study’s results by Zhang et al. [75]. Tsai et al. [76] reported that
wogonin increased reactive oxygen species (ROS) generation
and ER stress in human glioma cells, resulting in caspase-9
and caspase-3 hyperactivity and cancer cell apoptosis. In addi-
tion, Zhao et al. [77] demonstrated wogonin’s antiproliferative
and apoptotic activities in ovary cancer cells.

Herein, other mechanisms were identified to be involved
in the therapeutic effects of wogonin in OSCC. It was found
that wogonin can potentially inhibit five genes associated
with a poor prognosis in patients with OSCC. Wogonin
demonstrated salient binding affinities to SERPINE1
(ΔGbinding < −10 02 kcal/mol), ACTB (ΔGbinding < −9 22

kcal/mol), HMGA2 (ΔGbinding < −8 8 kcal/mol), EIF2S1
(ΔGbinding < −8 91 kcal/mol), and HSPA4 (ΔGbinding < −9 09
kcal/mol).

SERPINE1 (serpin family E member 1) is a serine protein-
ase inhibitor involved in tissue plasminogen activator (tPA)
and urokinase (uPA) inhibition [78, 79]. The oncogenic role
and overexpression of SERPINE1 have been demonstrated in
multiple cancers [80]. In this regard, it has been reported that
SERPINE1 is upregulated in gastric cancer andmediates cancer
cells’ proliferation and invasion behavior [81]. SERPINE1 is
also highly expressed in breast cancer, leading to the metastasis
of tumor cells [82]. Likewise, accumulating evidence has con-
firmed the SERPINE1 overexpression in OSCC [82–84]. Zhao
et al. [85] demonstrated that SERPINE1 is a proproliferative
oncogenic factor in OSCC cells and is negatively regulated by
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Figure 7: The influence of wogonin and colforsin on SERPINE1 backbone atoms was investigated through a meticulous 100 ns MD
simulation, with a specific emphasis on (a) RMSD, (b) RMSF, (c) ROG, and (d) total energy plots. Notably, asterisks within the RMSF
plots signify the locations of the active site on the receptor. SERPINE1: serpin family E member 1; RMSF: root mean square fluctuation;
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miR-167. Zhao et al. [85] concluded that targeting SERPINE1
by miR-167 diminished cellular viability and proliferation,
leading to apoptosis in OSCC. Therefore, it might be suggested
that similar mechanisms are involved in the therapeutic effects
of wogonin and miR-167 in OSCC, although this requires
confirmation.

Our network analysis revealed that cluster no. 1 and clus-
ter no. 2 include nine genes mediating a dismal prognosis in
patients with OSCC. Therefore, targeting prognostic genes in
these clusters might be suggested to regulate pathways and
BPs involved in the etiology of OSCC patients with poor
prognoses. GO annotation analysis demonstrated that the
“regulation of cell population proliferation” (GO:0042127) is
significantly affected by cluster no. 1 and cluster no. 2, consis-
tent with the findings of Zhao et al. [85].

5. Conclusion

Collectively, a total of 13 DEMs (upregulated = six; downreg-
ulated = seven) were identified in early-OSCC patients with a
poor prognosis compared to early OSCC with a favorable
prognosis. A PPI network was constructed based on DEMs
targets, including 442 genes and 5226 edges. Kaplan-Meier
curves demonstrated that overexpression of ten hub genes,
including CAV1, SERPINE1, ACTB, SMAD3, HMGA2,
MYC, EIF2S1, HSPA4, HSPA5, and IL6, was significantly
associated with a dismal prognosis in OSCC. It is suggested
that the SBG’s main components, including baicalein, wogo-
nin, oroxylin-A, salvigenin, and norwogonin, have high bind-
ing affinities to prognostic markers in OSCC. A remarkable
binding affinity was computed between wogonin and SER-
PINE1, meeting the criterion of ΔGbinding < −10 02kcal/mol,
indicative of a significant and stable interaction. SERPINE1
suppression has diminished OSCC proliferation, and there-
fore, it might be suggested that downregulating cell prolifera-
tion is one of the mechanisms mediating the curative effects
of wogonin in OSCC. The present results uncovered prognos-
tic markers and molecular mechanisms mediating poor prog-
noses in patients with OSCC. Likewise, targeting prognostic
markers could be a potential mechanism of SBG, resulting in
curative aspects in patients with OSCC.
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