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Despite tremendous advances in the prevention and treatment of infectious diseases, only few antiparasitic drugs have been
developed to date. Protozoan infections such as malaria, leishmaniasis, and trypanosomiasis continue to exact an enormous toll
on public health worldwide, underscoring the need to discover novel antiprotozoan drugs. Recently, there has been an
explosion of research into the antiprotozoan properties of quercetin, one of the most abundant flavonoids in the human diet.
In this review, we tried to consolidate the current knowledge on the antiprotozoal effects of quercetin and to provide the most
fruitful avenues for future research. Quercetin exerts potent antiprotozoan activity against a broad spectrum of pathogens such
as Leishmania spp., Trypanosoma spp., Plasmodium spp., Cryptosporidium spp., Trichomonas spp., and Toxoplasma gondii. In
addition to its immunomodulatory roles, quercetin disrupts mitochondrial function, induces apoptotic/necrotic cell death,
impairs iron uptake, inhibits multiple enzymes involved in fatty acid synthesis and the glycolytic pathways, suppresses the
activity of DNA topoisomerases, and downregulates the expression of various heat shock proteins in these pathogens. In vivo
studies also show that quercetin is effective in reducing parasitic loads, histopathological damage, and mortality in animals.
Future research should focus on designing effective drug delivery systems to increase the oral bioavailability of quercetin.
Incorporating quercetin into various nanocarrier systems would be a promising approach to manage localized cutaneous
infections. Nevertheless, clinical trials are needed to validate the efficacy of quercetin in treating various protozoan infections.

1. Introduction

Protozoan infections continue to exact a heavy toll on public
health in underdeveloped countries. In 2021, the number of
malaria cases was estimated to be 247 million, resulting in
619,000 deaths. Approximately 700,000 to 1 million new
cases of leishmaniasis occur per year, and 1 billion people
who live in endemic areas are at risk of infection [1]. The
global distribution of countries reporting cases of malaria
or leishmaniasis demonstrates an overlap of these diseases
in Central and South America, Africa, and South Asia [1].
In the African region, about half of the malaria cases globally
were found in countries such as Nigeria, the Democratic
Republic of Congo, Uganda, Angola, Burkina Faso, and
Mozambique [2]. In 2022, about 85% of global visceral leish-
maniasis (VL) cases were reported from seven countries:

Brazil, Ethiopia, India, Kenya, Somalia, South Sudan, and
Sudan. The highest reported cases of cutaneous leishmania-
sis (CL) worldwide is observed in Afghanistan, Algeria, Bra-
zil, Colombia, Iran, Iraq, Peru, and the Syrian Arab Republic
[3]. Due to underreporting, however, there is no reliable way
to estimate the true burden of all protozoan infections.
Despite tremendous progress in the prevention and
treatment of infectious diseases over the past century, only
few antiparasitic drugs have been developed so far. Agents
for satisfactory treatment of certain parasitic infections, par-
ticularly African trypanosomiasis (sleeping sickness) and
Chagas’ disease, are still lacking [4]. The problem is further
aggravated by the intrinsic toxicity of the antiparasitic drugs.
Another issue concerning these medications is the develop-
ment of drug resistance in protozoan pathogens (e.g., chlo-
roquine in Plasmodium, metronidazole in anaerobic
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parasites, sulfonamide in Toxoplasma gondii, and diloxanide
for intestinal protozoa) [5]. Therefore, there is an urgent
need to find novel chemotherapeutic agents with low toxicity
while maintaining high antiparasitic efficacy. Since natural
products from animal and plant sources represent an inex-
haustible repertoire of antimicrobials, they have long enticed
a great interest among researchers [6, 7].

The therapeutic properties of plants have been recog-
nized since time immemorial, and even today, they remain
an essential source for identifying new potential drugs [8].
Salient examples of plant-derived natural compounds that
have become indispensable for modern pharmacotherapy
can be found in the field of anticancer drugs such as pacli-
taxel, vincristine, vinblastine, and camptothecin. The histor-
ical relevance of plant-derived compounds in the
development of antimalarial medications including quinine
and artemisinin implies that botanicals represent an impor-
tant source of new antimicrobial agents [8].

Plant secondary metabolites are key compounds that
bestow upon plants their color, flavor, and odor, as well as
mediating plant responses to unfavorable environmental
conditions [9]. Polyphenols are secondary metabolites that
are found ubiquitously across plants. These compounds are
involved in pigmentation, reproduction, and protection
against phytopathogens. Flavonoids are the most abundant
polyphenols with robust antioxidant properties that are
ingested in large quantities as part of the human diet [10].

Quercetin (3,3',4',5,7-pentahydroxyﬂavone; Que) is one
of the most commonly consumed flavonoids that can be
found in a variety of edible vegetables and fruits. Que has a
bitter taste and is poorly soluble in water, but is quite soluble
in alcohol and lipids. Its poor aqueous solubility, chemical
instability, and short biological half-life may decrease its effi-
cacy in food and pharmaceuticals [11]. Que usually exists as
sugar conjugates such as rutin, quercitrin, or isoquercetin.
Its bioavailability is influenced by the type of glycosides
found in different food sources. Only the free form of Que
was believed to be absorbed at the intestinal level through
passive diffusion because of its hydrophobic nature, but later
studies revealed that the adsorption of Que glycosides nearly
doubles that of its corresponding aglycon [12].

Que has a wide range of biological properties, including
anticancer, anti-inflammatory, antidiabetic, antibacterial,
antiviral, cardioprotective, neuroprotective, antiaging, and
rejuvenating properties, making it potentially useful for drug
development [13, 14]. To our knowledge, no attempt has
been made to review antiprotozoan properties of Que. Thus,
this review is the first to summarize the current state of
knowledge regarding both in vitro and in vivo effects of
Que on protozoan pathogens of medical and veterinary
importance, with an emphasis upon underlying mechanisms
of action. Major features of the relevant pathogens are also
briefly described.

2. Leishmania spp.

Leishmaniasis is a neglected vector-borne disease, caused by
obligate intracellular kinetoplastids of the genus Leishmania
[15]. The pathogen has a dimorphic life cycle that alternates
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between an invertebrate vector and a mammalian host.
Extracellular flagellated promastigotes exist in the alimen-
tary tract of sandflies, whereas nonmotile, round-shaped
amastigotes multiply within host cells [16]. The clinical
forms of leishmaniasis are largely dependent on the parasite
species that show tropism for either skin or viscera, as well as
the genetic background, nutritional status, and immuno-
competence of the host. The broad spectrum of clinical man-
ifestations ranges from self-healing cutaneous lesions to
disfiguring mucocutaneous lesions and even to life-
threatening systemic infections [17]. For instance, Leish-
mania tropica, Leishmania major, and Leishmania aethio-
pica are the main causative agents of the Old World CL,
while Leishmania donovani and Leishmania infantum (both
in the Old World) or Leishmania chagasi (in the New
World) can cause a serious visceral disease (commonly
known as kala-azar). In the New World, Leishmania brazi-
liensis is responsible for severe forms of cutaneous and
mucocutaneous infections [15].

Treatment of human leishmaniasis is a challenging issue,
and no vaccine has yet been approved for commercial use
against any form of the disease [18]. Pentavalent antimonials
such as sodium stibogluconate (SSG, Pentostam®) and
meglumine antimoniate (Glucantime®) have been the main-
stay of therapy for decades. These agents seem to inhibit bio-
energetic pathways, especially glycolysis and fatty acid
oxidation, in Leishmania amastigotes. Growing rates of drug
resistance to antimonials in conjunction with their intrinsic
toxicity have necessitated the development of new drugs
with novel targets [5].

2.1. Effects of Que on Leishmania amazonensis. Several stud-
ies demonstrated that Que treatment caused a dose-
dependent reduction in the viability of L. amazonensis
in vitro. Notably, Montrieux et al. [19] found that Que was
more potent than the reference drug Glucantime® in inhibit-
ing the growth of L. amazonensis promastigotes and amasti-
gotes. The available evidence [19, 20] also indicates that Que
has a higher specificity for intracellular amastigotes than
peritoneal macrophages (Tables 1 and 2).

The study by Fonseca-Silva et al. [20] provided mecha-
nistic insight into how Que Kkills L. amazonensis. In this
respect, reactive oxygen species (ROS) production and dys-
function of mitochondrial membrane potential (A¥,,) could
play a pivotal role in Que-evoked cell death in L. amazonen-
sis. A separate study also found that Que is a mixed inhibitor
of L. amazonensis arginase (ARG-L). This metalloenzyme
catalyzes the hydrolysis of L-arginine to urea and L-orni-
thine, providing a substrate for polyamine biosynthesis
[23]. Polyamines are indeed necessary for the cell prolifera-
tion and the production of trypanothione, a low-
molecular-mass dithiol that is used by specific enzymes to
neutralize the ROS generated by the macrophages during
infection [69]. According to structure-activity relationship
analyses of several dietary flavonoids, such as Que, the
hydroxyl group at position 3 is involved in arginase inhibi-
tion, whereas the hydroxyl group at position 5 is not. The
presence of the catechol group appears to be a key feature
of ARG-L inhibitors [70]. Docking simulations also
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TaBLE 2: In vitro cytotoxic activities of quercetin against mammalian cells.
Incubation
Cells Methods . CCs, References
time
Human Chang liver cell line MTT assay 48h 868.22 +3.81 uM [56]
Human fetal lung fibroblast cell line Alamar Blue assay 72h >80 uM [27]
MRC-5
Human hepatocellular carcinoma cell line Alamar Blue assay 72h >80 M [27]
HepG2
Human intestinal adenocarcinoma cell
line HCT-8 MTT assay 48h >100 uM [60]
Human keratinocyte cell line HaCaT LDH assay 24h >10 uM for both Que and QAgNPs [68]
Human macrophage cell line U937 Acid pi‘s’zg hatase 48h 70 +10.7 uM (33]
Human monocyte cell line U937 Adid pahszzg hatase 48h 24.9+3.5uM [33]
Eiirégn promyelocytic leukemia cell line Alamar Blue assay 72h 51.3+0.4uM [27]
Human red blood cells Measurement of Hb 30 min A hemolysis percentage of <1 at 1000 ug/ [67]
release mL
Human red blood cells Measurement of Hb 3h A hemolysis percentage of <10 at 1000 ug/ [43]
release mL
Monkey kidney cell line BGM MTT assay 24h >1000 pg/mL [55]
fi/lllaédln—Darby canine kidney (MDCK) cell MTT assay 48h 5100 uM [60]
Rat myoblast cell line L6 Alamar Blue assay 72h 37.1 ug/mL [32]
Murine macrophage cell line J774.2 Trypan blue assay 72h 125.44 yM [25]
Murine macrophage cell line J774 MTT assay 144h >1000 pug/mL for both Que and QPNPs [36]
Murine macrophage cell line RAW 264.7  Trypan blue assay 24h 27.3 uM [41]
Murine peritoneal macrophages MTT assay 24h No loss of viability at 48 and 70 uM [26]
Murine peritoneal macrophages MTT assay 48h 44.5+1.7uM (13.3 £ 0.5 yg/mL) [19]
Murine peritoneal macrophages Microscopic counting 48h 1400 and 1600 uM fo.r Que and QAunp, [34]
respectively
Murine peritoneal macrophages Alamar Blue assay 72h 80.2 uM [20]
Hamster peritoneal macrophages MTT assay 48h 478 + 89 uM [28]

CCj,: the 50% cytotoxic concentration; Hb: hemoglobin; LDH: lactate dehydrogenase; QAgNPs: quercetin-conjugated silver nanoparticles; QAunp: quercetin-
conjugated gold nanoparticles; QPNPs: quercetin-loaded poly-e-caprolactone nanoparticles; Que: quercetin.

demonstrated that the catechol group of Que interacts with
Asp-29, contributing to the formation of a metal bridge for
the cofactors Mn>*, and Mn**; in the active site of ARG-
L [23]. Since ARG-L is the first enzyme in the polyamine
pathway, its inhibition by Que could cause oxidative stress
due to insufficient production of trypanothione [71].

Studies in BALB/c mice revealed that daily oral doses of
Que (16 mg/kg body weight) for 30 and 51 days reduced the
lesion sizes and parasite loads [72, 73]. Surprisingly, oral
Que was superior to intraperitoneal SSG in decreasing para-
site loads (76% vs. 62%) [72]. Since the parasite burden was
examined 30 days after drug withdrawal, Que appeared to
have a long-lasting activity, at least in CL [72]. Following five
intralesional injections of Que (30 mg/kg) every 4 days, a sig-
nificantly lower parasite burden (p < 0.05) was observed at 4
and 6 weeks postinfection in comparison to the vehicle-
treated or untreated groups [19].

When encapsulated in lipid-core nanocapsules (LNCs)
of poly-e-caprolactone, 0.4 mg/kg of oral Que was sufficient

to significantly (p < 0.01) decrease lesion sizes as compared
to free (noncapsulated) Que [73]. This result indicates a
notable increase in the potency of Que after encapsulation.
It seems that the LNC polymeric shell protects Que against
gastric and intestinal degradation, allows for a better drug
absorption, and may consolidate structural integrity in blood
circulation. There were no compound-related clinical signs
of toxicity (Table 3). Based on these observations, nanoen-
capsulation in LNC could be considered as a new and safe
strategy to improve the oral efficacy of Que against CL.

2.2. Effects of Que on Leishmania braziliensis. A recent study
demonstrated that Que had a dose-dependent cytotoxicity
against both L. braziliensis promastigotes and amastigotes
[28]. However, several studies have shown that Que had
lower antileishmanial activity than amphotericin B [24,
27], SSG [25], and miltefosine [28]. Compared to mamma-
lian cell lines, Leishmania promastigotes are more suscepti-
ble to the inhibitory effects of Que (Table 2).
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The couple tryparedoxin/tryparedoxin peroxidase uses
trypanothione as a source of electrons to neutralize the
hydrogen peroxide produced by the macrophages during
infection. This detoxification pathway is an attractive drug
target because it is indispensable for parasite survival and
absent in the human host [81]. Using in silico docking anal-
ysis, the binding energy score between modeled L. brazilien-
sis tryparedoxin peroxidase (Try P) and Que was calculated
as —11.8601 kJ/mol. Accordingly, Que seems to have strong
binding interactions with L. braziliensis Try P. A further
finding was that the amino acids Pro-11, Asp-134, and
Lys-136 in Try P were shown to interact with Que [82].
These data provided initial insights into the potential of
Que as a Try P inhibitor.

As reported by Cataneo et al. [26], Que promoted pro-
mastigote killing through upregulation of ROS, phosphati-
dylserine externalization, and loss of plasma membrane
integrity, which are evocative of dual modes of apoptotic/
necrotic death in Que-treated promastigotes. Que was also
capable of modulating cytokines, decreasing tumor necrosis
factor-alpha (TNF-«a), and increasing interleukin 10 (IL-10)
production without changing nitric oxide (NO) levels [26].
It was proposed that the mechanisms contributing to L. bra-
ziliensis eradication by Que were independent of the oxida-
tive burst activation. It is worth mentioning that NO
generation by the inducible nitric oxide synthase (iNOS)
plays a key part in controlling infections caused by Leish-
mania parasites. Indeed, various stimuli such as interferon-
gamma (IFN-y), IL-1f3, TNF-«, and parasitic/bacterial infec-
tions induce iNOS expression in macrophages [83].

Iron starvation could be considered as an ideal therapeu-
tic strategy to control leishmaniasis. Que was shown to
reduce the labile iron pool, increase iron bound to transfer-
rin, and upregulate both nuclear factor erythroid 2-related
factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions
[26]. The transcription factor Nrf2 plays a central role in
augmenting antioxidative defense and functions as a modu-
lator of iron signaling by regulating the expression of various
genes such as HO-1, ferroportin, and ferritin [84]. In con-
gruence with these results, one study showed that free Que
can gain access to the cytosol where it shuttles labile iron
from cell compartments followed by its transfer to transfer-
rin [85]. Taken together, Que appears to impair iron uptake
by the parasite, besides acting as an iron chelator.

In a recent study, treatment of L. braziliensis-infected
hamsters with oral Que (20 mg/kg, five times a week), for
eight weeks starting from the first week of infection, signifi-
cantly decreased lesion thickness and parasite load [28].
However, oral Que exhibited lower in vivo efficacy com-
pared to intraperitoneal Glucantime® (80 mg/kg, three times
a week). Treatment of the hamsters with Que for eight
weeks did not alter the levels of creatinine, alanine trans-
aminase, and aspartate transaminase when compared to
the untreated animals, indicating that Que had no renal
and hepatic toxicity. Further research is needed to confirm
and extend these results.

2.3. Effects of Que on Leishmania donovani. Que was shown
to exert a dose-dependent inhibitory effect on the growth of
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both L. donovani promastigotes and amastigotes in vitro
[29]. Que has superior selectivity for L. donovani amasti-
gotes over the mammalian cells (Tables 1 and 2). In compar-
ison to standard drugs (miltefosine, pentamidine, and SSG),
Que showed weaker growth inhibitory activities toward L.
donovani [30, 32, 35].

Que is able to arrest cell-cycle progression, leading to
increased apoptotic cell death [29, 35]. Que can also induce
DNA damage and NO production [35], both of which are
thought to play a regulatory role in apoptosis in Leishmania
[86]. Nuclear condensation, appearance of lipid reservoirs,
and disruption of the mitochondrion-kinetoplast complex
are other effects of Que on L. donovani promastigotes. The
appearance of lipid reservoirs could probably result from
the entry of substance into vacuoles by simple diffusion
and/or production of abnormal lipids in response to Que
treatment [35]. The latter might distort the flagellar pockets.
Besides inducing morphological changes, the expression
levels of both trypanothione reductase and trypanothione
synthetase were found to be downregulated in the Que-
treated parasites. It should not be forgotten that both of
these two enzymes are unique to Leishmania and are crucial
for the parasite survival [43]. In summary, Que appears to
work simultaneously on various targets in Leishmania, cul-
minating in cell death.

Que is capable of intercalating into the DNA [31],
inducing double-stranded DNA damage [35], and inhibit-
ing both catalytic activity of topoisomerase II and DNA
synthesis in vitro [29]. In one study, exposure of L. dono-
vani promastigotes to Que caused a drastic increment in
total mass of kinetoplast DNA (kDNA) minicircles con-
taining nicks/gaps and linearized minicircle molecules,
which were generated by topoisomerase II-mediated
double-strand cleavage of minicircles from the KDNA net-
work [29]. In another study [31], Que was found to be a
potent inhibitor of the recombinant L. donovani topoisom-
erase I. This effect appears to arise from stabilization of
the topoisomerase I-DNA cleavage complexes, which
impedes the subsequent religation step. In light of these
findings, topoisomerase inhibition seems to be one of the
major mechanisms responsible for antileishmanial activity
of Que.

Iron and heme are necessary for various conserved met-
abolic pathways such as electron transport and signal trans-
duction. Since Leishmania lacks cytosolic iron storage
proteins and is a heme auxotroph, the parasite must acquire
nutritional iron and heme from its host [87]. Given the
importance of iron acquisition for survival and pathogenic-
ity of Leishmania parasites, iron deprivation might be con-
sidered as an effective strategy to control leishmanial
infections. Evaluation of the interaction between Fe’* and
Que revealed a metal-chelating ability of Que [76]. The
observed Fe’*-reducing ability of the flavonoids could be
ascribed to the catechol structure of the B ring and the pres-
ence of a 3-hydroxy group in the C ring [88]. Moreover, Que
appears to limit the availability of Fe to intraphagosomal
parasites by decreasing Fe distribution in peritoneal macro-
phages [76]. Thus, Que could interfere with iron metabolism
in L. donovani.
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FIGURE 1: Schematic representation of various potential biomedical applications of Que for future studies on protozoan diseases.

Recently, the combination of antiparasitic drugs with
nanocarriers has become a promising strategy for the treat-
ment of leishmaniasis [89]. In this regard, Que-conjugated
gold nanoparticles (QAunp) have proved to be highly effec-
tive against both axenic and intracellular L. donovani amas-
tigotes [34]. In particular, QAunp was superior to Que alone
in inhibiting the growth of wild type, SSG-resistant, and
paromomycin-resistant strains of L. donovani (Table 1). It
seems that gold nanoparticles impair the parasite’s oxygen
metabolism. When combined with Que, gold nanoparticles
act synergistically to potentiate the activity of Que against
the pathogens in macrophages. Another finding worthy of
mention is the trivial toxicity of both Que and QAunp
against murine peritoneal macrophages, underpinning the
safety of these agents (Table 2). In fact, the use of nanocarri-
ers offers a number of advantages, such as reduction of drug
toxicity, enhancement of treatment efficacy, improvement of
selectivity, modulation of the drug pharmacokinetics, drug
solubilization enhancement, protection of drugs against deg-
radation, and sustained drug release directly at the site of
action [89].

In golden hamsters infected with amastigotes of L. dono-
vani, orally administered Que (14 mg/kg body weight) was
remarkably efficient in reducing the splenic parasite burden
[29]. When administered intraperitoneally to BALB/c mice,
Que (30mg/kg of body weight/day) was demonstrated to
diminish the hepatic burden of L. donovani [32]. Consistent
with these findings, others [74, 76] reported high potency of
Que in reducing parasitemia in the spleens of the infected
animals. In one study, Sarkar et al. [77] intercalated Que into

different vesicular suspensions (Table 3), with the aim of
boosting its efficacy and reducing its in vivo toxicity. With
an 87% reduction in the splenic parasite burden, Que-
intercalated nanoparticles were the most effective treatment,
followed by Que-intercalated niosomes (68%). In compari-
son, a reduction in splenic burden by approximately one-
quarter was evident in animals exposed to free Que. It was
realized that smaller vesicles could be more effective than
the larger ones. Nanocapsulated Que was the most effective
in mitigating both hepatotoxicity and renal toxicity as com-
pared with other tested vesicular forms and free Que [77].
Based on these data, it remains to be determined whether
such formulations are clinically advantageous in the treat-
ment of leishmaniasis.

Sen et al. [76] reported that the combination treatment
with Que and serum albumin (Salb) led to a decreased
incorporation of *Fe in the amastigotes collected from
infected hamsters. This combination remarkably reduced
the activity of ribonucleotide reductase (RR) in L. dono-
vani amastigotes isolated from infected hamsters [76].
The reduction in the activity of RR seems to be associated
with the Que-mediated decrease in Fe acquisition by the
amastigotes. RR is an iron-containing enzyme that cata-
lyzes the rate-limiting step in the de novo synthesis of
DNA building blocks, thereby playing a key role in cellular
proliferation [90]. Overall, Que may be able to prevent
leishmanial growth by interfering with iron metabolism
and targeting RR.

Considering the antioxidant properties of flavonoids,
Sen et al. [74] investigated the ability of five flavonoids
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(e, Que; rutin; hesperidin; 5-hydroxy 3,6,7,3',4'-penta-
methoxy flavone; and diosmin) to control VL-associated
anemia in golden hamsters. Que was the most effective of
all agents tested in dampening the oxidation of both lipids
and proteins on the membranes of red blood cells (RBCs)
in L. donovani-infected hamsters [74]. It is noteworthy that
lipid peroxidation causes the production and dissemination
of lipid radicals, oxygen uptake, rearrangement of the double
bonds in unsaturated lipids, and eventual damage to the
RBC membrane lipids [91]. Que also excelled as the most
potent flavonoid compared to others in rectifying VL-
associated anemia in hamsters. In this connection, decre-
ments in both hemoglobin (Hb) level and RBC half-life
due to VL were remarkably reversed by Que treatment
[74]. The greater number of hydroxyl groups and the pres-
ence of 3-hydroxyl in Que could explain the superiority of
Que over the studied flavonoids in decreasing both oxidative
hazards and premature destruction of RBCs.

Combination therapy for VL has been advocated as an
auspicious approach to improve treatment efficacy and tol-
erability, to reduce treatment duration and expenditure,
and to prevent the emergence of drug resistance [92]. In
one study [74], treatment of L. donovani-infected hamsters
with a combination of SSG and Que was more successful
in decreasing hydroxyl radical production (57.9%) in RBCs
than either Que (47.4%) or SSG (23.7%) alone. Examining
the protein profile of the RBC membrane in the infected ani-
mals also revealed a better efficacy of this combination in
preventing proteolytic degradation compared to single ther-
apy. Additionally, simultaneous treatment of the infected
animals with both agents demonstrated greater effectiveness
in replenishing decreased Hb levels, reversing shortened
RBC lifespan, and restoring the Salb deficit caused by L.
donovani [74]. VL appears to be associated with serum
hypoalbuminemia, which in turn may weaken the potency
of Que against the disease [74]. With this in mind, Sen
et al. [75] sought to answer the question of whether a Que/
hamster Salb combination could aggrandize the in vivo bio-
availability of Que. Compared with Que alone, the combina-
tion therapy caused a gradual increase in Que levels in the
cytosol of RBCs collected from L. donovani-infected animals.
Likewise, in another study, an increased bioavailability of
Que content in the liver of infected animals was also achieved
with the combination treatment [76]. The combination of Que
with Salb killed L. donovani more potently than Que alone, as
judged by lower splenic parasite loads in animals receiving the
combination treatment [76]. Concurrent use of Que and ham-
ster Salb was also found to be more effective than Que alone in
reducing cellular iron decompartmentalization and hydroxyl
radical production in RBCs, thereby enhancing the lifespan
of hamster RBCs during infection [75]. Cumulatively, the
combination of Que with other drugs/carriers may well be
viewed as a protective measure against premature hemolysis
by free radicals during VL.

2.4. Effects of Que on Leishmania infantum. Lately, Garcia
et al. [37] have shown that several natural phenolic sub-
stances, such as Que, were able to impede the in vitro activity
of L. infantum arginase (ARGLI). Investigation of the struc-
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tural characteristics of the phenolic compounds with potent
inhibitory activity on ARGLI revealed that they all possess a
catechol group [37]. Clearly, further research should be
undertaken to advance our knowledge about the structure-
activity relationship of the phenolic substances.

Encapsulation of Que into poly-e-caprolactone (PCL)
nanoparticles seems to be an effective and safe approach
to enhance the antileishmanial activity of Que in vitro
[36]. Compared to Que alone, Que-loaded PCL nanoparti-
cles (QPNPs) exhibited not only higher killing activities
against L. infantum promastigotes and intracellular amasti-
gotes (Table 1) but also lower cytotoxicity toward murine
macrophages (Table 2). It would therefore be desirable to
determine whether Que-loaded nanoparticle formulations
could be effective against Leishmania infections in animal
models.

2.5. Effects of Que on Leishmania major. Recent in vitro
studies have shown that Que eliminates L. major promasti-
gotes in a dose- and time-dependent manner (see Table 1).
When L. major promastigotes were exposed to Que
(400 uM) for 24h, they underwent morphological changes
reminiscent of necrosis and, to a lesser extent, apoptosis.
Upon further experimentation, it was found that Que insti-
gates a protease-independent programmed cell death in the
parasites [10].

Another important in vitro finding is that Que has
greater activity against L. major than Glucantime® [38, 41].
In another study, Que-capped silver nanoparticles exhibited
substantially higher leishmanicidal activities against L. major
promastigotes than Que alone or Glucantime® [42].
Undoubtedly, nanocarriers hold great potential for improv-
ing the antileishmanial activity of Que.

In an in vivo study, Hamidizadeh et al. [78] reported a
higher percentage of recovered animals receiving Que
(14mg/kg) through different routes of administration
compared with the Glucantime®-treated group. Neverthe-
less, this difference was not statistically significant, which
could be due to the small number of mice tested. Using
the murine air pouch mode that mimics the phlebotomine
infection in BALB/c mice, Que was shown to reduce neu-
trophil influx in the air pouch cavity at 24h postinfection.
However, the density of resident macrophages in Que-
treated infected mice was not statistically different from
that in the untreated infected animals [10]. It is worth
mentioning that the recruitment of a specific cell popula-
tion after Leishmania infection can affect the outcome of
the disease [93].

Reductions in both lesion size and inflammatory
responses, along with acceleration of wound healing, were
observed in Que-treated animals infected with L. major
[40-42, 94]. In one study, the abundance of apoptotic neutro-
phils containing apoptotic amastigotes in Que-treated mice
was noticed [10], suggesting that exposure to Que could mark-
edly abrogate L. major-induced apoptosis delay. Furthermore,
Que restored ROS generation and TNF-a-induced iNOS
activity in subcutaneous tissues of BALB/c mice at 24 and
96h after L. major infection [10]. Overall, Que may hold
promise for the treatment of uncomplicated CL.



BioMed Research International

2.6. Effects of Que on Leishmania tropica. A recent study
found that L. tropica amastigotes and promastigotes, unlike
human RBCs, were susceptible to Que [43]. Que-treated
promastigotes also exhibited clear signs of DNA fragmenta-
tion, one of the biochemical hallmarks of apoptosis [86]. It is
possible that DNA damage-associated apoptosis could be the
cause of the observed loss of parasite viability.

In silico docking analysis unveiled that Que could be
seated appropriately inside the binding pocket of both trypa-
nothione reductase and trypanothione synthetase [43]. Fur-
ther in silico evidence in favor of this finding was obtained
by molecular dynamics simulations, indicating strong inter-
action between Que and both enzymes [43]. It should be
noted that both trypanothione reductase and trypanothione
synthetase play a pivotal role in maintaining leishmanial
growth and do not exist in human cells.

3. Trypanosoma spp.

Like Leishmania, Trypanosoma is a kinetoplastid protozoan.
Trypanosomiasis is one of the neglected tropical diseases
[95]. Poor and marginalized populations are the primary
victims of the diseases. T. cruzi is responsible for Chagas’
disease (American trypanosomiasis) in Latin America,
whereas T. brucei causes human African trypanosomiasis
(HAT) or sleeping sickness in East and West Africa. These
parasites have digenetic life cycles that involve an inverte-
brate vector (a triatomine bug infected with T. cruzi or a
tsetse fly infected with T. brucei) and a mammalian host.
For both diseases, treatment is available, but sometimes, a
cure cannot be achieved [96].

Nifurtimox and benznidazole are the only approved par-
asiticidal drugs for the treatment of Chagas’ disease. They
are highly effective in treating acute and recent infections,
as well as in preventing maternal-fetal transmission, but
their effectiveness declines with chronic infection. Both
drugs are also fraught with adverse clinical effects. As for
T. brucei, only four drugs are registered for the treatment
of early- and late-stage HAT: pentamidine, suramin, melar-
soprol, and eflornithine [5].

3.1. Effects of Que on Trypanosoma brucei. In vitro evidence
suggests that Que is far more toxic to bloodstream trypo-
mastigote forms of T. b. brucei than different mammalian
cells (Tables 1 and 2). Que also appears to induce dose-
and time-dependent apoptosis in T. b. gambiense. In con-
trast to T. b. gambiense, no clear evidence of apoptosis in
Que-treated human normal leukocytes was reported,
whether activated by parasite-soluble factors or not [46].
Trypanosome infection instigates the rapid production
of inflammatory components such as TNF-a and ROS/
RNS like NO. Classically activated macrophages are known
as the major effector cells against trypanosomes, relying on
ROS/RNS  production, trypanolytic function of soluble
TNF, and parasite engulfment [97]. Mamani-Matsuda et al.
[46] found that Que markedly hampered TNF-« production
in human macrophages that had already been activated by
either anti-CD23 monoclonal antibody (mAb) or T. b. gam-
biense. In the presence of Que, a substantial decrease in NO
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production was also observed in anti-CD23 mAb-activated
macrophages [46]. Although macrophage-derived TNF-a
and NO are involved in trypanocidal activity, chronic over-
expression of these mediators may contribute to the patho-
physiology of HAT. Thus, Que seems to be helpful in the
amelioration of inflammation during trypanosome infection.
However, the mechanisms underlying the anti-inflammatory
actions of Que in macrophages still remain a mystery and
deserve further investigation. Overall, Que could be of
potential use in the treatment of HAT owing to its anti-
inflammatory and trypanocidal effects.

Kinetoplastids require keeping their proteome function
in response to different stress factors. To this end, heat shock
proteins (Hsps), whose main function is to facilitate proteos-
tasis, play a crucial role in the survival and cell stage differ-
entiation. Several Hsp chaperones and cochaperones have
been characterized in kinetoplastids and classified based on
their molecular masses, such as Hspl110, Hsp90, Hsp70,
Hsp60, and Hsp40 [98]. Proteins belonging to the Hsp70
class aid in coordinating multiple key cellular processes,
including the folding and assembly of newly synthesized
proteins, the refolding of misfolded and aggregated proteins,
and the proteolytic degradation of denatured or unstable
proteins [99]. Genome annotation revealed that T. brucei
harbors a dozen Hsp70 chaperones [100]. TbHsp70.c is a
Hsp70 from T. brucei, whose expression levels were previ-
ously shown to be upregulated in response to heat stress.
TbHsp70.c also acts as a holdase, suppressing protein aggre-
gation. Cytosol-localized Tbj2 was shown to increase the
ATPase activity of TbHsp70.c, suggesting that it may func-
tion as a cochaperone of TbHsp70.c [101]. Que also inhib-
ited the ATPase activity of TbHsp70.c, in either the
presence or absence of Tbj2. Molecular docking analysis sug-
gests that Que can bind to the nucleotide binding pocket of
TbHsp70.c [101]. Notwithstanding this, further research is
necessary to corroborate these findings.

T. brucei exclusively uses glycolysis to generate ATP in
the mammalian bloodstream [102]. Hexokinase catalyzes
the first step in glycolysis, facilitating the transfer of the y-
phosphoryl group of ATP to glucose for producing
glucose-6-phosphate [103]. The T. brucei genome encodes
two hexokinases, namely, TbHK1 and TbHK2, that are
98% identical in terms of amino acid sequence. These
enzymes have been detected in the glycosomes of both
bloodstream and procyclic forms of the parasites [103]. Larit
et al. [39] utilized molecular docking to show that there is a
strong affinity between Que and TbHK1. They proposed that
TbHK1 could be a potential target of Que. Intriguingly, Que
could act as a mixed inhibitor of recombinant TbHK1 with
respect to ATP [44]. Spectroscopic analysis showed that
Que quenches the emission of Trp-177, which is located
close to the hinge region of this enzyme. Que also appeared
to partially accumulate in glycosomes, the subcellular home
of TbHK1. Manipulated procyclic T. brucei cells overexpres-
sing TbHK1 were more resistant to the inhibitory effects of
Que as compared with the Que-treated control parasites,
whereas RNA interference-mediated silencing of TbHKI
expression in T. brucei cells rendered them more sensitive
to the compound [44]. Indeed, further experiments are
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needed to better understand how changes in the expression
levels of TbHK1 influence the vulnerability of T. brucei cells
to Que.

3.2. Effects of Que on Trypanosoma cruzi. Two studies [21,
48] demonstrated that Que has antiprotozoal activity against
T. cruzi trypomastigotes (see Table 1). Nevertheless, the
inhibitory activity of Que was weaker than that of benznida-
zole [32]. Research is needed to determine whether Que
works synergistically in combination with antitrypanosoma-
tid drugs.

Oxidative phosphorylation in T. cruzi is mediated by a
mitochondrial Mg”*-stimulated adenosine triphosphatase
(ATPase), similar to all other known eukaryotic or prokary-
otic systems [104]. In vitro evidence suggests that Que acts
as an inhibitor of soluble and membrane-bound mitochon-
drial ATPases from T. cruzi [47]. Therefore, Que has the
potential to disrupt mitochondrial energy metabolism by
inhibiting T. cruzi mitochondrial ATPase. A deeper under-
standing of mitochondrial enzymes in trypanosomes would
clearly advance our efforts to develop new antitrypanosoma-
tid drugs.

As previously mentioned, bloodstream trypomastigotes
are highly dependent on glycolysis for energy generation
because they lack a functional Krebs cycle and mitochon-
drial respiratory chain [105]. This dependence on glycolysis
as a source of energy marks glycolytic enzymes of T. cruzi as
potential new drug targets. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) is one of the major enzymes in
the glycolytic pathway that catalyzes the reversible oxidative
phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-
bis-phospho-D-glyceric acid in the presence of NAD" and
inorganic phosphate. Inhibition of the glycosomal GAPDH
would preclude T. cruzi from being infective [106]. It is
worth mentioning that a substantial decrease in ATP supply
due to specific inhibition of GAPDH would result in the
rapid death of T. cruzi [107]. Freitas and co-workers [49]
also proposed Que as an inhibitor of T. cruzi GAPDH. These
findings would be useful for future research aimed at devel-
oping new, specific inhibitors of trypanosomatid GAPDH.

4. Plasmodium spp.

The phylum Apicomplexa consists of a group of diverse pro-
tists sharing common morphological features. These para-
sites possess an apical complex, a suite of structures
allowing them to invade the host cell. Most of them also
have a relict plastid, the apicoplast, which is nonphotosyn-
thetic but vital for their survival [108]. In humans, the med-
ically important apicomplexans include Plasmodium,
Babesia, Cryptosporidium, Cyclospora, Isospora, and Toxo-
plasma [109].

Malaria is a life-threatening mosquito-borne blood dis-
ease caused by species of the genus Plasmodium. Five species
of Plasmodium have long been known to cause human
malaria including P. falciparum, P. malariae, P. ovale, P.
vivax, and P. knowlesi [110]. P. falciparum is the deadliest
malaria parasite, causing the vast majority of malaria-
associated mortality and morbidity [111]. Quinoline deriva-
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tives, antifolates, and artemisinin compounds are three main
classes of antimalarial drugs [5]. Deplorably, efforts to con-
trol malaria have been thwarted by the emergence of drug
resistance. Furthermore, the complicated life cycle of Plas-
modium represents a major challenge for developing an
effective vaccine [112].

4.1. Effects of Que on Plasmodium berghei. To test the effec-
tiveness of antimalarial drugs, many researchers have used P.
berghei-infected mouse models [113]. When Que (50 mg/kg
body weight) was administered orally to mice infected with
P. berghei once daily for three consecutive days, it effectively
reduced the parasitemia by 52% and 44% on days 5 and 7,
respectively [55]. In another study [56], daily intraperitoneal
administration of Que to animals infected with P. berghei for
four consecutive days not only curtailed the development of
parasitemia but also prolonged the median survival time as
compared to the nontreated infected group (Table 3). Dur-
ing a 30-day observation period, no major physical and
behavioral changes (e.g., excess urination, diarrhea, lethargy,
or locomotor activity decrements) were recorded in the non-
infected mice receiving Que in comparison to the control
group [56]. These studies suggest that Que is well tolerated
in animals without any overt toxic effects.

Glycogen synthase kinase-3 (GSK3) is an evolutionary
conserved serine/threonine protein kinase comprising two
highly similar paralogs, namely, GSK3«a and GSK3p. The
former is thought to be regulated by phosphorylation at
Ser-21 (inhibition) and Tyr-279 (activation), while the cor-
responding amino acids in the latter are Ser-9 and Tyr-216
[114]. With more than 40 known targets and over 500
proposed candidate substrates, GSK3 fulfills its role in
numerous signaling pathways in the cell, such as inflam-
mation, immune response, apoptosis, autophagy, and
wound healing [115, 116]. GSK3 could therefore be con-
sidered as a potential target for therapeutic interventions.
Interestingly, evidence suggests that Que plays a
cytokine-modulatory role through GSK3f in P. berghei-
infected mice [56]. When administered intraperitoneally,
Que increased GSK3f (Ser-9) phosphorylation in the liver
of P. berghei NK65-infected mice, thereby inhibiting
GSK3p activity in their livers. Since GSK3f affects the
immune responses by regulating cytokine production
[115], the higher GSK3f activity in the liver of untreated
NK65-infected animals may be associated with enhanced
production of proinflammatory cytokines during inflam-
mation [56]. Remarkably, exposure of P. berghei NK65-
infected animals to Que resulted in not only a profound
decrement in the levels of the proinflammatory cytokines
such as TNF-« and IFN-y but also a striking increase in
the levels of the anti-inflammatory cytokines, especially
IL-4 and IL-10. This modulation of cytokine balance
may be a sequel of the suppressive effect of Que on
GSK3p. GSK3 inhibition has also been proposed to drive
the maturation and function of natural-killer (NK) cells
[117]; hence, this could contribute to pathogen clearance.

Davoodi et al. [79] observed that Que nanophytosomes
(NQ; 10mg/kg) substantially reduced histopathological
damage (e.g., Kupffer cell hyperplasia, hepatic necrosis,
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hemosiderosis, and periportal inflammation) and serum
levels of both IL-1$ and TNF-« in P. berghei-infected mice.
Moreover, the best results were achieved when NQ (10 mg/
kg) was applied in combination with hydroxychloroquine
sulfate (2 mg/kg). Future research may consider using phyto-
somes in combination with various antimalarial drugs in
clinical trials.

4.2. Effects of Que on Plasmodium falciparum. In a study
conducted by Helgren et al. [118], different drug-resistant
strains of P. falciparum were vulnerable to Que treatment
(see Table 1). Similarly, several P. falciparum field isolates
in Bangladesh were shown to be sensitive to Que [53]. Evi-
dence also suggests that Que is highly specific for Plasmo-
dium compared to mammalian cells [55, 56]. As regards
combination therapy, the simultaneous use of Que, luteolin,
and apigenin was shown to have an apparent additive inhib-
itory effect on the intraerythrocytic growth of the 7G8 strain
[52]. In light of this observation, combinations of Que with
other flavonoids merit further attention.

Plasmodium parasites acquire fatty acids by scavenging
from the vertebrate host and the mosquito vector. They are
also able to produce fatty acids de novo via the type two fatty
acid synthesis (FAS-II) pathway [119]. The FAS-II pathway
is localized to the apicoplast, a relict nonphotosynthetic plas-
tid homologous to the chloroplasts of plants and algae [120].
This pathway catalyzes rounds of fatty acid elongation
through the function of four important enzymes, namely,
B-ketoacyl-acyl carrier protein (ACP) synthase I/II (FabB/
F), B-ketoacyl-ACP reductase (FabG), f-hydroxyacyl-ACP
dehydratase (FabZ), and enoyl-ACP reductase (FabI) [121].
The FAS-II pathway seems to be the ideal target since it
has no homologs in humans. In a study conducted by Tasde-
mir et al. [51], a large library of flavonoids was tested against
FabG, FabZ, and Fabl. These three enzymes contribute to
the fatty acid biosynthetic pathway in P. falciparum. Luteo-
lin, Que, fisetin, and morin had inhibitory activities against
all three enzymes. Structure-activity relationship analysis
for the inhibition of FabG, FabZ, and Fabl revealed that
when the phenyl ring B is hydroxylated in two or three posi-
tions, the polyphenol becomes a very potent inhibitor of
these enzymes, irrespective of the additional hydroxy group
at C-3. Que exhibited strong inhibitory activity against the
above-mentioned enzymes, with IC;, values ranging from
1.5 to 54uM [51]. Likewise, Sharma et al. [122] demon-
strated that Que can reversibly inhibit P. falciparum enoyl-
ACP reductase with Ki values in the nanomolar range. These
findings suggest that inhibition of P. falciparum fatty acid
biosynthesis is one of the possible mechanisms underlying
the antiplasmodial effects of Que.

To avoid heme toxicity, Plasmodium is equipped with a
unique detoxification system that converts soluble heme to
an insoluble, nontoxic, crystalline pigment called hemozoin
[123]. This process is facilitated by action of various proteins
including heme detoxification protein (HDP) and histidine-
rich proteins 2 and 3 (HRP-2 and HRP-3, respectively). Of
these, HDP is the most potent in hemozoin formation and
plays an indispensable role in parasite survival [124]. Inter-
estingly, homologs of HDP have also been reported in other
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blood-feeding parasites such as Theileria, Babesia, and Toxo-
plasma [124]. Drugs that inhibit the conversion of heme to
hemozoin have potent antimalarial activity. In this respect,
numerous compounds such as azoles, isonitriles, quinolines,
xanthones, and methylene blue have been shown to interfere
with the free heme detoxification pathway, causing the path-
ogen to experience oxidative stress [123]. The crystal struc-
ture of the synthetic form of hemozoin is called -hematin
which can be used for in vitro assay analysis. Recently, in
silico and in vitro studies have shown that Que can inhibit
the formation of -hematin [125, 126]. It has been suggested
that the inhibition of 8-hematin occurs due to the formation
of a heme-Que complex [125]. However, further studies are
needed to evaluate whether Que can inhibit the above-
mentioned heme detoxification enzymes in Plasmodium
species.

Oral pretreatment of Swiss albino mice with 50 mg/kg
(body weight) of Que was shown to be effective in mitigating
both hepatotoxicity and oxidative stress caused by chloroquine
administration. Intriguingly, the same amount of Que resulted
in a notable decrease in lipid peroxidation induced by chloro-
quine. Que was also capable of recouping the loss of glutathione
content to almost normal levels in mice subjected to a high dose
of chloroquine [127]. Glutathione plays a pivotal role in the
antioxidative defense system of cells, protecting them against
both oxidative damage and harmful xenobiotics [128]. Que
can also augment the activity of several antioxidant enzymes
(ie., catalase, superoxide dismutase, glutathione reductase, and
glutathione peroxidase) in chloroquine-treated animals. More-
over, pretreatment with Que was beneficial in relieving murine
liver damage caused by chloroquine treatment [127]. Based on
these data, one may suggest coadministration of Que and chlo-
roquine for antimalarial treatment, especially when the latter is
utilized as a long-term prophylactic therapy.

4.3. Effects of Que on Plasmodium juxtanucleare. Hemospor-
idians have been associated with reductions in the reproduc-
tive success and longevity in chronic infections and
sometimes lead to disease outbreaks with high mortality
rates in birds. P. gallinaceum and P. juxtanucleare are two
species that naturally infect domestic chickens, causing
“chicken malaria” [129]. In one study, chickens infected with
P. juxtanucleare were immunocompromised by intramuscu-
lar injection of methylprednisolone before receiving 50 mg/
kg (body weight) Que or chloroquine diphosphate by gavage
for four consecutive days [80]. Interestingly, both treated
groups exhibited a significant decrease in parasitemia as
compared to the control group (p < 0.01) within the 30 days
following the infection. Based on these preliminary in vivo
data, it seems that Que has the potential to be used in animal
husbandry and poultry farming.

5. Toxoplasma gondii

Humans and almost all warm-blooded animals are infected by
Toxoplasma gondii, an obligate intracellular apicomplexan
parasite. Members of the cat family are the only definitive
hosts. The pathogen is transmitted to humans by eating
undercooked meat from animals that have tissue cysts,
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contacting with infected cat feces, blood transfusion or organ
transplantation, and vertical transmission during pregnancy
[130]. The disease may be severe or life-threatening in immu-
nocompromised patients. T. gondii typically forms tissue cysts
in skeletal muscles, the myocardium, brains, and eyes in
human hosts [131]. A combination of two antimicrobial
agents is usually used to treat toxoplasmosis, inhibitors of
dihydrofolate reductase (pyrimethamine and trimethoprim)
and dihydropteroate synthase (sulfadoxine, sulfadiazine, and
sulfamethoxazole). These two enzymes are sequentially
involved in the folate pathway of nucleic acid synthesis [132].

5.1. Effects of Que on Toxoplasma gondii. In vitro experi-
ments revealed an inhibitory effect of Que (100uM) on
the expression of bradyzoite antigen [BAGI1/hsp30
(BAGS5)], which is triggered by either pH8.1 or sodium
nitroprusside. There was also a three- to fourfold decrease
in the Hsp70 expression in T. gondii after being exposed
to 100uM of Que at pHS8.1 [57]. From these data, it
seems that Que could hinder stress-mediated induction
of bradyzoite differentiation, possibly via inhibition of heat
shock protein(s).

Using murine astrocytes to foster the development of the
T. gondii cysts, Halonen et al. [58] examined the inhibitory
effects of Que on cyst induction. When added to mature
cysts (72h old cysts developed in murine astrocytes), 12.5
M of Que increased the total number of cysts. However, high
concentrations of Que (>25uM) decreased the total number
of cysts as compared to the nontreated control, suggesting
that the effects of Que on mature cysts are biphasic. Addi-
tion of Que to cultures at the time of infection resulted in
increased cyst formation [58]. At higher concentrations of
Que, the absolute number of cysts decreased while the per-
centage of cyst antigen-positive vacuoles increased. It has
been noted that inhibition of T. gondii growth by Que is
associated with the induction of cyst formation [58]. Taken
together, these findings underscore the importance of both
exposure time and concentration of Que in inhibiting cyst
formation.

In one study, transfection of T. gondii tachyzoites with
antisense oligonucleotides (AntiA, targeting the start codon
of parasite Hsp70) and subsequent treatment with Que
(50 uM) was found to be more effective than Que (50 uM)
alone (without AntiA treatment) in reducing Hsp70 expres-
sion [59]. When RAW 264.7 cells were infected with treated
virulent parasites to diminish Hsp70 expression, levels of
iNOS message were substantially increased [59]. Likewise,
virulent T. gondii strains expressing reduced levels of
Hsp70 were not able to hinder the translocation of NF-«B
from the cytoplasm to the nucleus of murine splenocytes.
By contrast, inhibition of Hsp70 expression in the avirulent
strains of T. gondii had no significant impact on transloca-
tion of NF-xB to the nucleus [59]. Since various Hsps and
other proteins classically associated with the stress response
have major roles in bradyzoite differentiation, they may
serve as potential drug targets for toxoplasmosis [133].

The above-mentioned treatment (i.e., AntiA and Que)
also effectively diminished Hsp70 expression in virulent
(RH and ENT) and avirulent (ME49 and C) strains of T.

BioMed Research International

gondii recovered from the peritoneal cavities of BALB/c mice
[59]. In response to combination therapy, animals receiving
the virulent T. gondii strains with reduced Hsp70 expression
showed a lower splenic parasite burden than those infected
with untreated virulent strains. Further preclinical studies
are needed to fully investigate these events.

6. Cryptosporidium spp.

Cryptosporidium is an intracellular protozoan parasite
belonging to the phylum Apicomplexa. The pathogen has
emerged as one of the major causes of diarrheal diseases
worldwide [134]. Mammalian cryptosporidiosis is most
commonly caused by C. parvum. Nitazoxanide is the only
Food and Drug Administration- (FDA-) approved drug for
treating diarrhea caused by Cryptosporidium in individuals
with healthy immune systems. Currently, there is no vaccine
to prevent cryptosporidiosis [135].

6.1. Effects of Que on Cryptosporidium parvum. In a study
conducted by Mead and McNair [60], Que was active against
the C. parvum Iowa strain in the 5-32 yM range. The study
found that Que was much more toxic to C. parvum than
the host cells (Table 2). Although the infection stimulated
apoptosis of the host cells to some extent, no additional apo-
ptosis was observed after treatment with Que [60]. Further
research is needed to elucidate the anticryptosporidial mech-
anisms of Que.

7. Eimeria spp.

Coccidiosis is a widespread disease in livestock and poultry.
It is caused by protozoan parasites of the apicomplexan
genus Eimeria. The disease leads to high mortality, poor per-
formance, and reduced productivity in domestic livestock
[136]. All Eimeria species are monoxenous because their life
cycle is completed within a single host. They are transmitted
directly through the oral-fecal route. Infection occurs when
oocysts are ingested. Sick animals often suffer from acute
diarrhea with or without blood, decreased appetite, and
depression [137]. Anticoccidial drugs belong to one of two
categories: The first class is polyether antibiotics including
monovalent ionophores (e.g., monensin, narasin, and salino-
mycin), monovalent glycosidic ionophores (e.g., madurami-
cin and semduramicin), and a divalent ionophore (e.g.,
lasalocid). The second class is synthetic compounds includ-
ing inhibitors of parasite mitochondrial respiration (e.g.,
decoquinate and clopidol), inhibitors of the folic acid path-
way (e.g., sulfonamides), competitive inhibitors of thiamine
uptake (e.g., amprolium), and drugs with an unknown mode
of action (e.g., diclazuril, halofuginone, nicarbazin, and
robenidine). Combination drugs, consisting of either a syn-
thetic compound and ionophore or two synthetic com-
pounds, are also available [138].

7.1. Effects of Que on Eimeria spp. Debbou-Iouknane et al.
[61] conducted a study to determine the required time for
maximum reduction of Eimeria spp. oocysts by measuring
the kinetics of oocyst lysis in response to Que treatment.
The oocysts, isolated from fresh feces of broiler chickens
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with coccidiosis, were a mixture of E. acervulina, E. tenella,
E. mitis, E. brunetti, and E. maxima. The maximum
observed decrease in the number of Eimeria spp. oocysts
(45.4%) occurred after 8h of incubation with Que
(0.139 mg/mL). In another study [63], however, Que exhib-
ited no growth inhibitory activity against E. tenella at con-
centrations up to 50 uM.

Secondary messengers like Ca** regulate a multitude of
cellular events in apicomplexan protozoa and serve as
important intermediaries during their life cycle stages. In
fact, changes in Ca®" concentration play a pivotal role in
protein secretion, motility, invasion, differentiation, and
egress from infected cells [139]. Calcium-dependent protein
kinases (CDPKs) are major effector molecules involved in
calcium signaling pathways [140], thereby affecting above-
mentioned physiological processes. Recently, molecular
docking was used to screen several plant-based natural com-
pounds for their potential inhibitory effects on Eimeria
CDPK [141]. Que had the best interaction with Eimeria
CDPK among the tested compounds (i.e., 6'-de-O-acetylcu-
pacinoside, apigenin, artemisinin, cupacinoside, and rutin),
with a binding energy of —7.04 kcal/mol. Additionally, the
concentration needed to yield half-maximum inhibition in
relation to the active site pocket interaction with Que was
6.94 uM. Another study by Sun et al. [63] provided some
molecular-level insights into the anti-Eimeria mechanism
of action of Que. They observed that Que efficiently stymied
the enzymatic activity of the hexokinase from E. tenella
(EtHK) (see Table 1). Future studies should examine the
interaction of EtHK with other flavonoids.

In one study, del Cacho et al. [62] used immunogold
labelling of surface spreads of meiotic chromosomes from
E. tenella oocysts to examine the effects of Que on the
expression and ultrastructural localization of Hsp70. Immu-
noblot analysis of Hsp70 contents in Que-treated and non-
treated oocysts revealed that the density of the bands
decreased when the amount of Que was increased. Interest-
ingly, exposure of E. tenella oocysts to Que caused a pro-
found inhibition of Hsp70 synthesis (Table 1).
Consequently, there was a failure to form synaptonemal
complexes (SCs) or complete desynapsis and the inability
to develop haploid sporozoites. The SC is a crucial and
deeply conserved protein lattice that brings parental chro-
mosomes into close proximity during the meiotic prophase,
stabilizes their pairing, and regulates genetic recombination
[142]. Considering its chaperon function, Hsp70 in Eimeria
SCs may contribute to stabilization of structures essential for
chromosomal paring and segregation. Overall, Que inhibits
Hsp70 synthesis in E. tenella oocysts, prevents sporulation,
and interrupts SC formation or desynapsis.

8. Babesia spp.

Babesia species are tick-borne apicomplexan pathogens that
are obligate parasites of RBCs [143]. They reproduce asexu-
ally in the RBCs of mammalian hosts and sexually in their
arthropod vectors. Over a hundred species are acknowl-
edged to infect mammalian and avian hosts. Some species
are known to be capable of causing infection in humans.
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Zoonotic species include, but not limited to, B. microti, B.
divergens, and B. duncani. The epidemiology of human
babesiosis is complex due to the diversity of Babesia species
[144]. The existing armamentarium of chemotherapeutics
for the treatment of human babesiosis relies principally
upon atovaquone, azithromycin, clindamycin, and qui-
nine [145].

8.1. Effects of Que on Babesia spp. Que has been shown to act
as a potent growth inhibitor of different Babesia species
in vitro. In this context, IC., values of Que for B. bovis, B.
bigemina, and B. caballi were 8, 7, and 5nM, respectively
[64]. Even ten days after removal of Que, there was no indi-
cation of parasite recrudescence for B. caballi, B. bovis, and
B. bigemina in mice treated with 50, 100, and 100 uM Que,
respectively. Microscopic analyses also revealed morpholog-
ical changes in the intraerythrocytic forms of these parasites
on day 4 after exposure to Que [64]. When injected intraper-
itoneally into mice, Que (14.5 mg/kg) considerably reduced
parasitemia due to B. microti from days 4 to 8 postinocula-
tion as compared to the control group [64]. Although some
promising results were obtained in this study, further
research is needed to replicate and extend these findings.

9. Theileria spp.

Similar to Babesia, Theileria is an apicomplexan tick-borne
pathogen that infects a wide spectrum of domestic and wild
animals [146]. Though Babesia species are primarily para-
sites of RBCs, Theileria species use both white blood cells
and RBCs to complete their life cycle in a sequential manner.
Diseases with the greatest economic impact on ruminants
are East Coast fever (T. parva) and tropical theileriosis (T.
annulata). T. equi causes piroplasmosis in horses, while
T. lestoquardi infects sheep and goats. Only a single drug,
buparvaquone, is available for the treatment of theilerio-
sis [146].

9.1. Effects of Que on Theileria equi. One study reported that
Que had considerable inhibitory effects on the in vitro
growth of T. equi, with an IC,, value of 4nM [64]. Impor-
tantly, the viability test demonstrated no sign of parasite
recrudescence after the removal of Que (50 M) for 10 days.
On day 4 after treatment with 25 M of Que, T. equi para-
sites appeared dot-shaped in RBCs [64]. Nevertheless, the
precise mechanisms underlying these inhibitory -effects
should be elucidated in future studies.

10. Trichomonas spp.

Trichomonas is a genus of amitochondriate flagellated pro-
tists. Many species have symbiotic relationships with differ-
ent animal hosts. There are four species of trichomonads
found in humans including T. vaginalis (found in the uro-
genital tract), T. tenax (found in the oral cavity), Pentatri-
chomonas hominis (inhabits the intestinal tracts), and
Dientamoeba fragilis (inhabits the intestinal tracts). Only
T. vaginalis has a well-established pathogenic potential. T.
vaginalis is the causative agent of the most frequent nonviral
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sexually transmitted infection in humans, trichomonia-
sis [147].

10.1. Effects of Que on Trichomonas gallinarum. T. gallinae
and T. gallinarum are the most prevalent avian trichomonad
pathogens [148]. There is only one study dealing with the
antitrichomonad activity of Que against T. gallinarum [66].
In this respect, the minimal lethal concentration (MLC) of
Que against T. gallinarum was reported to be equal to
0.121 pg/mL after 24h of incubation at 37°C. Therefore,
Que appears to exert strong trichomonacidal activity
in vitro. However, further research on various flavonoid
classes is required to determine the most effective com-
pounds and their optimal doses.

10.2. Effects of Que on Trichomonas vaginalis. One study
revealed that 100 uM of Que inhibited the growth of T. vagi-
nalis strain G3 [65]. A related study showed that half-
maximal growth inhibition of T. vaginalis strain GT15
occurred with only 21.17 +2.60 ug/mL of Que [67]. Not
only did 1000 pg/mL of Que exhibit trivial hemolytic activity
(0.7%) toward human RBCs, but it also imparted maximum
erythroprotective effects (100%) when RBCs were exposed to
2,2 -azobis(2-methylpropionamidine) dihydrochloride
(AAPH). As a water-soluble free radical initiator, AAPH
can inflict oxidative damage on the RBC membrane, culmi-
nating in hemolysis [149]. These findings suggest that Que
could behave as an erythroprotective agent by precluding
radical-induced toxicity in human RBCs, as well as being
an antitrichomonal substance.

10.3. Effects of Que on Tritrichomonas foetus. T. foetus is an
obligate parasite of the bovine reproductive tract and intesti-
nal tract of cats [150]. Que has been reported to be active
against two strains of T. foetus [65]. Only 100 uM of Que
was sufficient to inhibit T. foetus growth (Table 1). A combi-
nation of low doses of metronidazole (a first-line drug) with
bioactive plant compounds could act synergistically against
trichomoniasis in both humans and animals [151].

11. Entamoeba spp.

Members of the genus Entamoeba are pseudopod-forming,
nonflagellated protozoan parasites. Humans are home to
multiple species, but not all of them are associated with dis-
eases. The genus Entamoeba includes many species, six of
which (E. histolytica, E. dispar, E. moshkovskii, E. polecki,
E. coli, and E. hartmanni) reside in the human intestinal
lumen. E. histolytica has long been recognized as a patho-
genic amoeba, associated with intestinal (particularly amoe-
bic dysentery) and extraintestinal infections [152].

11.1. Effects of Que on Entamoeba histolytica. The antipro-
tozoan activity of Que against E. histolytica has seldom been
explored. For instance, one study demonstrated that the
half-inhibitory concentration of Que against E. histolytica
was 44.48 +3.92 ug/mL [67]. Nonetheless, the molecular
mechanisms responsible for the antiprotozoan activity of
Que toward E. histolytica remain mysterious and need to
be elucidated.
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12. Acanthamoeba spp.

Acanthamoeba is a free-living amoeba that is ubiquitously
distributed in the environment such as freshwater, seawater,
chlorinated water from swimming pools, dental treatment
units, contact lens cases, and solutions. It can cause sinusitis,
skin lesions, vision-threatening keratitis, and granulomatous
amoebic encephalitis [153].

12.1. Effects of Que on Acanthamoeba castellanii. A. castella-
nii is an important opportunistic pathogen which causes
amoebic keratitis and occasionally granulomatous amoebic
encephalitis [154]. In a recent study [68], Que or Que-
conjugated silver nanoparticles (QAgNPs) were shown to
exert potent in vitro amoebicidal activity against A. castella-
nii ATCC 50492 (Table 1). Que and QAgNPs (5 and 10 uM,
respectively) also exhibited minimal cytotoxicity in vitro
against the human keratinocyte HaCaT cell line (Table 2).
Unlike Que, QAgNPs effectively inhibited both encystation
and excystation of A. castellanii after 72 h at 30°C, suggesting
superior antiacanthamoebic activity of QAgNPs over Que.
Nevertheless, the effectiveness of these compounds should
be evaluated in an animal model of keratitis caused by A.
castellanii.

13. Future Directions

Over the past decades, pharmaceutical companies have
increasingly opted to exploit plant-based compounds for a
variety of indications. Different side chains in flavonoids
can have a significant impact on the activity of a particular
flavonoid in the same target. To enhance their antiparasitic
effects, several studies have focused on improving the struc-
tural features of Que and its derivatives through the process
of acylation or alkylation of hydroxyl groups [27, 38]. Halo-
gens can also be introduced into natural products or syn-
thetic compounds to bolster their biological activities and
physiochemical properties. For instance, halogenated deriva-
tives of Que have been shown to possess more potent antiox-
idant [155], antitumor [156], and antidiabetic [157]
properties compared with Que alone. Furthermore, the
Que framework could be suitably modified by the insertion
of sulfonate, prenyl, aminomethyl, and phenylethenyl
appendages into its A- and B-rings to provide different
derivatives. These new compounds were shown to have
potent anticancer and hepatoprotective activities in vitro
[158]. Future research should assess the antimicrobial activ-
ities of such novel derivatives against protozoan parasites.
Additionally, it is worth noting that protozoan parasites
have the ability to adapt and acquire resistance to numerous
chemical compounds. Hence, it is imperative to devise strat-
egies that involve a comprehensive understanding of the
mechanisms underlying the action and resistance of newly
discovered compounds, which have already advanced to
later stages of clinical trials. This understanding would
enable the design of alternative and safer molecules [5]. In
future research, it is crucial to delve into the significance of
interaction of Que with cellular components and its impact
on the development of resistance in protozoan parasites.
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Oral administration is by far the most convenient and pre-
ferred route of drug delivery. Poor solubility and instability of
Que remain a major hurdle in achieving sufficient oral bioavail-
ability. However, Que is a drug-like compound that conforms
to Lipinski’s rule of five without any violation, which indicates
that a compound with <5 hydrogen-bond donors, <10
hydrogen-bond acceptors, molecular weight < 500 Daltons,
and calculated octanol-water partition coefficient (ClogP) <5
probably presents a high bioavailability [159]. A great deal of
research has been directed toward enhancing the stability and
bioavailability of Que. Thus far, various nutraceutical delivery
systems such as polymeric micelles [160], nanoparticles [161],
and phytosomes [162] have been developed for improving oral
bioavailability of Que. Moreover, conjugation of Que with dif-
ferent amino acids such as L-glutamic acid, L-alanine, and L-
aspartic acid results in increased solubility, stability, and cellular
permeability as well as biological activity [163]. In this respect,
the Que—glutamic acid conjugate exhibited a remarkable resis-
tance to hydrolases, resulting in a much longer half-life
(180 min). When compared with Que, the Que-aspartic acid
and Que-glutamic acid conjugates demonstrated an enhanced
intestinal permeability in Madin-Darby canine kidney (MDCK)
cells [164]. Que-metal complexes (metals such as germanium,
vanadium, and copper) also showed better pharmacokinetic
properties and have been successfully tested for their activity
on diverse human cancer cell lines [158]. Incorporation of
Que into ointments, creams, gels, emulsions, microneedles,
and various nanocarrier systems would be a promising
approach in the management of localized cutaneous infections
particularly leishmaniasis, ensuring a sustained release of Que
at the desired site of action [165]. Despite this, a number of fac-
tors such as rational dosing, potential toxicity to human cells,
healing kinetics, optimal timing of drug application, and accu-
mulation in target sites ought to be considered in future studies.

Flavonoids could also act synergistically with the existing
antiparasitic drugs. For example, Que, even at low concen-
trations, have already been demonstrated to boost therapeu-
tic potential of antimalarial drugs such as chloroquine or
artemisinin [52, 55, 79]. Moreover, the synergism between
Que and antiparasitic drugs could diminish the development
of drug-resistant pathogens in response to these compounds.
Que can also be used to modulate the immune responses as
well as reducing related pathology [166-168]. The protective
ability of Que to ameliorate several pathological conditions
has been well documented in the literature [169]. Another
major feature of Que is its adjuvant potentiality for use in
vaccines, which should be further explored for possible
mechanistic aspects [170, 171]. Alongside human medicine,
Que could be used in veterinary, animal husbandry, poultry
farming, and aquaculture for both therapeutic and prophy-
lactic purposes (Figure 1). Taken all together, more studies,
especially well-designed clinical trials, are required to
endorse the clinical efficacy of Que for the treatment of par-
asitic infections.

14. Conclusion

Hopes of eradicating the protozoan diseases such as malaria,
leishmaniasis, and trypanosomiasis have been dashed due to
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the emergence of multi-drug-resistant strains together with
the absence of effective vaccines. In recent years, Que has
attracted a great deal of attention owing to its potential par-
asiticidal activity against a broad range of protozoan patho-
gens. A substantial body of scientific evidence has now
provided unprecedented molecular-level insights into the
antiprotozoan mechanisms of Que. Mitochondrial dysfunc-
tion, impairment in iron uptake, inhibition of certain
enzymes involved in fatty acid synthesis and the glycolytic
pathways, stimulation of apoptotic/necrotic cell death, and
reduction in the expression of heat shock proteins are the
major molecular mechanisms responsible for such inhibi-
tory effects. Additionally, there is a burgeoning literature
on protective effects of Que against parasitemia and histopa-
thological damage in several animal models. All in all, Que
could lay the foundation for a new generation of drugs that
hold great promise for the treatment of infectious diseases.
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