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Purpose. Segmentation of hepatocellular carcinoma (HCC) is crucial; however, manual segmentation is subjective and time-
consuming. Accurate and automatic lesion contouring for HCC is desirable in clinical practice. In response to this need, our
study introduced a segmentation approach for HCC combining deep convolutional neural networks (DCNNs) and radiologist
intervention in magnetic resonance imaging (MRI). We sought to design a segmentation method with a deep learning method
that automatically segments using manual location information for moderately experienced radiologists. In addition, we
verified the viability of this method to assist radiologists in accurate and fast lesion segmentation. Method. In our study, we
developed a semiautomatic approach for segmenting HCC using DCNN in conjunction with radiologist intervention in dual-
phase gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid- (Gd-EOB-DTPA-) enhanced MRI. We developed a
DCNN and deep fusion network (DFN) trained on full-size images, namely, DCNN-F and DFN-F. Furthermore, DFN was
applied to the image blocks containing tumor lesions that were roughly contoured by a radiologist with 10 years of experience
in abdominal MRI, and this method was named DFN-R. Another radiologist with five years of experience (moderate
experience) performed tumor lesion contouring for comparison with our proposed methods. The ground truth image was
contoured by an experienced radiologist and reviewed by an independent experienced radiologist. Results. The mean DSC of
DCNN-F, DFN-F, and DFN-R was 0 69 ± 0 20 (median, 0.72), 0 74 ± 0 21 (median, 0.77), and 0 83 ± 0 13 (median, 0.88),
respectively. The mean DSC of the segmentation by the radiologist with moderate experience was 0 79 ± 0 11 (median, 0.83),
which was lower than the performance of DFN-R. Conclusions. Deep learning using dual-phase MRI shows great potential for
HCC lesion segmentation. The radiologist-aided semiautomated method (DFN-R) achieved improved performance compared
to manual contouring by the radiologist with moderate experience, although the difference was not statistically significant.
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1. Introduction

Magnetic resonance imaging (MRI) plays a crucial role in
the clinical management of hepatocellular carcinoma
(HCC). Segmentation of HCC on MRI helps clinicians
obtain diagnostic insight on the disease, and treatment rec-
ommendations are usually made based on accurate volume
measurement of the tumor. Radiologic tumor response
assessment is also frequently performed according to tumor
size evaluations [1]. Although manual segmentation of HCC
is reliable, it is time-consuming and labor-intensive. In addi-
tion, strong subjectivity is observed, and accuracy varies
depending on the experience of the radiologists [2].

HCC lesion contouring with computer-aided segmenta-
tion algorithms is reproducible and stable [3]. To date, a
variety of HCC segmentation methods based on shallow
handcrafted features have been proposed, most of which
are problem-dependent [4–7] and thus limited in represent-
ing high-dimensional features of the lesions. Among these
methods, machine learning methods [8, 9] have become
increasingly popular. Foruzan and Chen [9] proposed a
method based on a support vector machine (SVM) and
achieved an average Dice similarity coefficient (DSC) score
of 0.82. Deep learning (DL), a branch of machine learning,
has been increasingly employed in medical image segmenta-
tion owing to its ability to extract highly informative and
representative features. DL models are primarily composed
of multiple processing layers to learn multiple levels of
abstract features [10]. Deep convolutional neural networks
(DCNNs), which are the most common DL networks, learn
simple features (such as signal intensity, edges, and textures)
as components of more complex features such as shapes,
lesions, or organs, thereby leveraging the compositional
nature of images [11]. Li et al. [12] developed a patch-wise
convolutional neural network (CNN) for HCC segmentation
and achieved an average DSC score of 0.80 with CT images.
Li et al. [13] and Duc et al. [14] developed multitask deep
learning and a CNN for HCC segmentation using CT
images, which achieved average and median DSC scores of
0.74 and 0.81, respectively. These authors found that the
DL method enabled accurate segmentation of HCC.

Christ et al. [15] proposed a cascaded fully convolutional
neural network to perform HCC segmentation in diffusion-
weighted MRI, reaching an average DSC of 0.69, which may
not be sufficient for clinical use. This may be because Christ
et al.’s HCC segmentation method [15] is based on single-
phase MRI images, which may lack sufficient information
for tumor lesion segmentation. The utilization of multiple
phases could boost the accuracy of DL-based segmentation.
Currently, few studies have explored the applications of DL
on multiphase MRI images for tumor segmentation. Havaei
et al. [16] attempted to incorporate multiple sequences (T1
weighted, T1WI; T2 weighted, T2WI; T1 contrast-
enhanced; and fluid-attenuated inversion recovery) into a
brain tumor segmentation task. With single-sequence MRI,
the highest average DSC was 0.49, whereas using the four
sequences helped boost the average DSC to 0.75. Regarding
HCC detection on multisequence MRI images, Fabijańska
et al. [17] achieved a detection accuracy of 0.98 using a

CNN with optimized hyperparameter settings. Bousabarah
et al. [18] used multiphasic T1-weighted images to segment
the HCC with DCNN. This yielded an average DSC score
of 0.64 and 0.68 in the validation and test cohort, respec-
tively. Zheng et al. [19] proposed a four-dimensional deep
learning model based on three-dimensional (3D) convolu-
tion and convolutional long short-term memory for HCC
lesion segmentation using multiphase dynamic contrast-
enhanced (DCE) MRI images. This method yielded an aver-
age DSC score of 0.83 highlighting the potential of multi-
phase MRI in HCC segmentation.

Gadolinium-ethoxybenzyl-diethylenetriamine penta-
acetic acid (Gd-EOB-DTPA), a new hepatobiliary-specific
MRI contrast agent [20], has been widely used in HCC diag-
nosis and presurgical evaluation [21]. In the hepatobiliary
phase (HBP) of Gd-EOB-DTPA-enhanced MRI, HCC usu-
ally presents a low signal intensity compared with the sur-
rounding liver tissue. The difference in signal between
tumor tissues and the surrounding liver parenchyma is more
prominent. This highlights the tumor boundaries allowing
delineation and providing valuable information for HCC
lesion segmentation. This study is aimed at investigating
the efficacy of a dual-phase DL model on Gd-EOB-DTPA-
enhanced MRI images for HCC segmentation. Although
several automated segmentation methods have been pro-
posed, no method has achieved stable and high performance
without inspection by clinicians [6]. Previous studies [5, 6,
22, 23] have demonstrated that clinicians remain indispens-
able for correcting false segmentation after automatic seg-
mentation. Thus, we aimed to design a segmentation
approach for moderately experienced radiologists using a
deep learning method that automatically segments accord-
ing to manual location information. In addition, we verified
whether this method is a viable solution for assisting radiol-
ogists in accurate and fast lesion segmentation.

2. Materials and Methods

2.1. Patients and MRI Acquisition. MRI images of patients
with newly diagnosed HCC were retrospectively collected
from January 2012 to June 2015. The ethics committee per-
formed the ethical review, approved this study, and waived
the requirement for informed written consent from the
patients. This dataset included 51 patients (46 men, five
women; age range, 29–84 years) who underwent contrast-
enhanced MRI. MRI scans were conducted on a 3.0T scan-
ner (Magnetom Trio; Siemens Healthineers, Erlangen, Ger-
many) using a body coil in the supine position. The Gd-
EOB-DTPA-enhanced MRI scanning protocol included the
following sequences: T1WI, T2WI, fat-suppressed T1WI
pre-enhanced, dynamic-enhanced fat-suppressed volumetric
interpolated breath-hold T1WI examination (including arte-
rial phase, portal venous phase, and delayed phase), and
hepatobiliary phase scanning (20min after injection). In this
study, two Gd-EOB-DTPA contrast-enhanced T1-weighted
series including the hepatobiliary phase (HBP) and portal
venous phase (PVP) were utilized to construct deep learning
models. HBP-MRI scanning was performed using the fol-
lowing parameters: TR = 4 37ms; TE = 1 42ms; field of
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view, 328 × 350mm2; and flip angle, 13°. PVP-MRI scanning
was performed using the following parameters: TR = 3 92
ms, TE = 1 39ms, field of view = 328 × 350mm2, and flip
angle=9°. The reconstructed images had a matrix size of
512 × 512 and 320 × 320, respectively, and a slice thickness
of 5mm and 2mm, respectively.

2.2. Experimental Design. A flowchart of the proposed exper-
imental framework is shown in Figure 1. We performed two
experiments using our dataset (HBP-MRI and PVP-MRI
images of 51 patients).

In experiment 1, we evaluated the performance of the
proposed DCNN (Figure 2) trained using full-size single-
phase MRI and the deep fusion network (DFN, Figure 3)
with full-size dual-phase MRI. These were named DCNN-
F and DFN-F, respectively. The detailed architecture of the
DCNN and DFN can be found in Section 2.4. HBP-MRI
was chosen as the input sequence of DCNN-F because of
its excellence in differentiating HCC from its background.
Additionally, HBP-MRI and PVP-MRI were used as the
input for DFN-F. PVP-MRI may provide a unique charac-
terization of HCC, in contrast to HBP-MRI.

In experiment 2, to improve segmentation accuracy,
radiologist intervention was introduced by predefining
tumor lesion regions of interest (ROIs) in the MRI images
(details of the predefined procedure are illustrated below).
Additionally, the automatic segmentation was trained and
tested only on the ROI images using the same DFN as in
experiment 1 (for distinguishing from experiment 1, we
named it the DFN-R model). HBP-MRI and PVP-MRI were
also used as input images.

2.3. Manual Segmentation and Predefined ROI Drawing. The
ground truth (GT) of the tumor was contoured carefully by a
board-certified abdominal radiologist and reviewed by an
independent radiologist (both with >10 years of expertise
in abdominal imaging). Tumor lesion delineation was also
performed independently by a radiologist with an expertise
of five years (moderate experience) in abdominal imaging.
This was performed without an experienced radiologist’s
supervision and was used only for efficacy comparisons with
our proposed deep learning models.

For predefined ROIs of HCC, a radiologist with >10
years of experience was invited to review the MRI scans
and roughly locate the tumor. This was done by dragging
three rectangles on the x‐y, x‐z, and y‐z planes. A 3D tumor
ROI was then determined using these rectangles. All ROIs
were strictly examined to ensure that the target HCCs were
completely included.

GT contouring, segmentation by a radiologist with mod-
erate experience, and predefined ROI drawing were all per-
formed in HBP-MRI images using ITK-SNAP (http://www.
itksnap.org) [24].

2.4. Deep Learning-Based Segmentation

2.4.1. Network Architectures. Two DL models, DCNN and
DFN, were used in this study, for which the network archi-
tecture diagrams can be found in Figures 2 and 3.

Our proposed DCNN architecture was based on the fully
convolutional network [25] and U-Net [26]. These tools
have shown promising performance for medical image seg-
mentation problems. As shown in Figure 2, in our DCNN
architecture, we modified the number of pooling layers and
added a batch normalization layer before the rectified linear
unit layer to avoid an overfitting or vanishing gradient. Our
DCNN model uses a Dice loss function to measure the dif-
ference between true segmentation and its output.

We adapted a model-based fusion scheme to build the
DFN (Figure 3). With DFN, the images of both PVP-MRI
and HBP-MRI went through the DCNN pipelines, and the
initial segmentation score map of each phase was returned.
These initial segmentation score maps were then input into
the fusion block, where they were further integrated into
the final segmentation score map. The DFN architecture
can be described as follows:

H P,W = f 〠
N

i=1
o Pi ,Wi , 1

where Pi and o Pi represent the input and output of the i-th
sub-DCNN, respectively, Wi denotes the weights of the i-th
DCNN, and f is the mapping function of the DFN. Multiple
DCNN weights are fine-tuned in training. Therefore, the
actual loss function of the DFN is

L G, P ; α = 〠
N

i=1
Lsubneti G, Pi × αi + LDFN G, Pout , 2

where Lsubneti G, Pi is the loss of the i-th DCNN, αi repre-
sents the loss weights of the i -th sub-DCNN, Pout is the final
output of the DFN, and LDFN G, Pout is the measurement of
the loss between the outputs of the DFN and GT. N defines
the number of sub-DCNNs. We set N = 2 because two MRI
phases (HBP-MRI and PVP-MRI) were used as inputs in
our study.

2.4.2. Image Preprocessing. To better utilize the information
from both phases, each PVP-MRI image was registered to
the corresponding HBP-MRI image via a B-spline nonrigid
registration algorithm implemented using SimpleITK [27,
28]. A larger input matrix size requires more powerful
graphic processing units and training time. To reduce the
computation time and unify the inputs for the DCNN and
DFN, we used two-dimensional (2D) images as the input
of the networks and resampled them to 256 × 256.

2.4.3. Network Training and Testing. For network training,
image slices with tumors were selected, and we collected
417 pairs of images (each pair contained an HBP-MRI slice
and its coregistered PVP-MRI slice). DL requires a large
amount of data to complete the learning process. One solu-
tion to this problem is data augmentation. We augmented
the training dataset to nearly 52,000 samples (26,000 pairs
of images). Additionally, data augmentation methods
included image rotation in the range of −20° to 20°, image
scaling in the range of 0.9–1.1, contrast adjustment in the
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Data acquisition Manual segmentation Experiment and evaluation

Dataset
51 patients

total slices number:
417 pairs (a pair: a HBP-
MRI and a co-registered

PP-MRI)

Manual delineation by a
radiologist, under the

supervision of an adept
radiologist (both with an

expertise > 10 years in
abdominal imaging)

Ground truth

DCNN-F and DFN-F trained
and tested using full-size

images. The GT is the
manual segmentation by
experienced radiologist

Experiment 1

Accordance between
radiologist’s segmentation
and results of experiment 1
(using full-size images) and

experiment 2 (using ROI
images)

Segmentation comparison

Manual segmentation by
a radiologist with an
expertise of 5 years,
without supervision

Radiologist with
moderate experience

HCC ROI dragged by an
experienced radiologist

(with expertise > 10
years)

Region of interest

DFN-R trained and tested
using ROI images. The GT
is the manual segmentation
by experienced radiologist

Experiment 2

Figure 1: Flowchart of the proposed experimental framework.
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Figure 2: Architecture of the proposed deep convolutional neural networks (DCNNs). The proposed network includes two phases,
contracting path (the upper and middle part of the network) and the expansive path (the lower part of the network). The contracting
path is composed of six convolutional (conv) blocks (a block consists of the repeated application of a 3 × 3 conv, batch normalization,
and ReLU), three max pooling layers, and two 1 × 1 conv layers. Every two conv blocks are followed by a 2 × 2 max pooling layer with
stride two. The expansive path is composed of three upsampling blocks (deconv block). Each Deconv Block consists of an upsampling of
the feature map followed by a 2 × 2 deconv, a concatenation with the correspondingly cropped feature map from the contracting path,
and two 3 × 3 convs.
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range of -5 to 5, and adding noise and horizontal mirroring.
All data augmentations were implemented by using Pillow
(https://pypi.org/project/Pillow/).

The training of the DCNN contained three main steps.
Firstly, the feature extraction pathway of the DCNN, which
was integral for extracting key features from the input data
(the contracting path in Figure 2), was trained using non-
augmented training data. Subsequently, the same nonaug-
mented data was employed to train the entire network, a
process aimed at refining the network’s parameters and
ensuring its effective learning from the original data. The
final step involved utilizing data augmentation techniques
to create new training samples, thereby bolstering the
model’s generalization capability and enhancing its perfor-
mance in practical scenarios. Fine-tuning the DCNN with
these augmented data samples was crucial for adapting the
model to novel, unseen data, consequently elevating its
robustness and accuracy in real-world applications. The
training set contained 50 patients using the leave-one-out
cross-validation (LOOCV) strategy. GT was contoured by
an experienced radiologist and reviewed by an independent
experienced radiologist.

When the DFN integrates multiple DCNN results, the
optimal weights for these sub-DCNNs may not be optimal
for the entire DFN. Therefore, the training dataset is ran-
domly split into two equal subsets. The two sub-DCNNs
were first trained with one subset using the same training
strategy as above. Another subset was used to train the
entire DFN after the weights of the two sub-DCNNs were
established. Fine-tuning the fusion block after setting the
initial weights of the sub-DCNNs may refine the results.
The following parameters were used for training: Adam
optimizer and stochastic gradient descent for DCNN and
DFN, respectively. The base learning rate for DCNN and

DFN was 1 × 10−4 and 1 × 10−7, respectively. The batch size
was eight.

A leave-one-out cross-validation strategy was applied
from the beginning. Using this strategy, we randomly
selected one patient as the testing set each time and trained
the network using the remaining patients. For testing,
images of the patient used as the testing dataset were input
into the trained model to perform the segmentation task.
To evaluate the performance of the models, we adopted the
DSC score, recall, and precision as the performance metrics.
True positive (TP) signifies a correctly identified tumor area,
false positive (FP) denotes an area where normal tissue is
wrongly identified as a tumor, and false negative (FN)
denotes a tumor area that is incorrectly identified as normal
tissue. The DSC score, precision, and recall are defined as
follows:

DSC =
2TP

FP + 2TP + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN

3

Training and testing were performed on a workstation
with a Linux system (Ubuntu 14.04; Canonnical, London,
England). The workstation used a Processor E5-2650 v3
CPU and NVIDIA GeForce 1080TI GPU. The DL frame-
work Keras [29] and TensorFlow [30] back-end were used
for implementing our network architectures.

2.5. Statistical Analysis. Statistical comparisons between the
DSC scores of our models and the segmentation by a

DCNN #1

DCNN

Fusion

Conv × 2

Concatenate

DCNN #2

Sequence #1

Sequence #2

Figure 3: Architecture of the proposed deep fusion network (DFN). DFN includes 2 components: subdeep convolutional neural networks
(DCNN) and fusion blocks. The input data initially go through different sub-DCNNs, and a fusion block gathers their segmentation score
maps and integrates them to reconstruct the final delineation outcome.
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radiologist with moderate experience were performed using
a paired t-test. p < 0 05 indicates that there was a statistically
significant difference in the DSC score between the segmen-
tation results of our models and that of the radiologist (mod-
erate experience). All statistical analyses were performed
using SPSS (version 20.0; SPSS Inc., Chicago, ILL, USA).

3. Results

A summary of the segmentation results by our proposed
methods and by a radiologist with moderate experience is
presented in Table 1.

With respect to DCNN-F and DFN-F in experiment 1,
the mean DSC of 51 patients was 0.69 (0.01–0.90; median,
0.72) and 0.74 (0.08–0.96; median, 0.77), respectively. The
mean precision was 0.70 (0.01–0.91; median, 0.78) and
0.70 (0.01–0.96; median, 0.72), respectively. The mean recall
was 0.72 (0.01–0.89; median, 0.75) and 0.78 (0.01–0.98;
median, 0.91), respectively. For DFN-R in experiment 2,
the mean DSC was 0.83 (0.42–0.96; median, 0.88), the mean
precision was 0.81 (0.21–0.99; median, 0.87), and the mean
recall was 0.88 (0.48–0.99; median, 0.91). An example of
DFN-F segmentation with high accuracy is presented in
Figure 4, in which the DSC of DFN-F and DFN-R was
0.86 and 0.92, respectively.

(a) (b)

(c) (d)

Figure 4: A typical example of hepatocellular carcinoma (HCC) segmentation with high accuracy. The Dice similarity coefficient (DSC) was
0.86 and 0.92 for deep fusion network- (DFN-) F and DFN-R, respectively. All contouring results are presented on hepatobiliary phase-
(HBP-) magnetic resonance imaging (MRI). (a) Ground truth (GT). (b) Segmentation result of deep convolutional neural network-
(DCNN-) F. (c) Segmentation result of DFN-F. (d) Segmentation result of DFN-R.

Table 1: Results of DCNN-F, DFN-F, DFN-R, and the segmentation by the radiologist with moderate experience. Comparisons of
performance were performed by using paired t-test.

Model
DSC Precision Recall p

value∗Mean ± std Median Range Mean ± std Median Range Mean ± std Median Range

DCNN-F 0 69 ± 0 20 0.72 0.01~0.90 0 70 ± 0 24 0.78 0.01~0.91 0 72 ± 0 19 0.75 0.01~0.89 0.03

DFN-F 0 74 ± 0 21 0.77 0.08~0.96 0 70 ± 0 22 0.72 0.01~0.96 0 78 ± 0 29 0.91 0.01~0.98 0.26

DFN-R 0 83 ± 0 13 0.88 0.42~0.96 0 81 ± 0 16 0.87 0.21~0.99 0 88 ± 0 11 0.91 0.48~0.99 0.69

Radiologist with moderate
experience

0 79 ± 0 11 0.83 0.45~0.96 0 86 ± 0 16 0.94 0.34~0.99 0 79 ± 0 12 0.75 0.47~0.99 —

∗A p value < 0.05 indicates that DSC results of one model are significantly different from those by the radiologist with moderate experience. Notes: DCNN:
deep convolutional neural networks; DFN: deep fusion network; DSC: Dice similarity coefficient; std: standard deviation.
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The average DSC of the segmentation results by the radi-
ologist with moderate experience was 0.79 (0.45–0.96;
median, 0.83), as compared to the GT contoured by the
two radiologists with >10 years of experience. The results
obtained by the radiologist with moderate experience were
consistent with the GT of the tumor, with a clear border

and homogeneous intensity. However, some segmentation
results may differ from those of GT, especially when the
tumor lesion is small or heterogeneous (Figure 5).

Compared to segmentation by the radiologist with mod-
erate experience, themeanDSC byDCNN-Fwas significantly
lower (p = 0 03), while the results of DFN-F (p = 0 26) and

(a) (b)

(c)

Figure 5: An example of discrepancy between ground truth (GT) and segmentation by the radiologist with moderate experience. The
original hepatobiliary phase- (HBP-) magnetic resonance imaging (MRI) image was presented (a). (b) GT and (c) segmentation by the
radiologist with moderate experience were presented in indigo and blue, respectively. The radiologist with moderate experience tended to
contour a smaller border when the hepatocellular carcinoma (HCC) lesion had unclear margins.

Table 2: Comparisons of segmentation performance between DFN-R and previous studies.

Studies Algorithm Images Average DSC Patient number Journal

Linguraru [8] SVM CT 0.74 101 IEEE TMI, 2012

Foruzan [9] SVM CT 0.82 35 IJCARS, 2016

Li [12] CNN CT 0.80 30 JCC, 2017

Li [13] CNN CT 0.74 248 J PERS MED, 2022

Christ [15] CFCNs DW-MRI 0.69 31 MICCAI, 2016

Fabijańska [17] U-Net DCE-MRI 0.48 9 ICCVG, 2018

Khaled [18] DCNN T1-weighted MRI 0.68 174 ABDOM RADIOL, 2020

Zheng [19] CNN DCE-MRI 0.83 190 IEEE TMI, 2020

Current study DFN-R HBP-MRI and PVP-MRI 0.83 51 —

Notes: MRI: magnetic resonance imaging; DCNN: deep convolutional neural networks; DFN: deep fusion network; SVM: support vector machine; CNN:
convolutional neural networks; CFCNs: cascaded fully convolutional neural networks; DW-MRI: diffusion-weighted MRI; DCE-MRI: dynamic contrast-
enhanced MRI.
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DFN-R (p = 0 69) did not differ significantly. However, the
average DSC and median DSC of DFN-R were both higher
than those of the radiologist with moderate experience
(mean, 0.83 versus 0.79; median, 0.88 versus 0.83).

Approximately 1min was required to determine a 3D
tumor ROI rectangle, 10min to train the network for a fold
in LOOCV, and 1.2 s to segment a lesion using 50 slices of an
MRI image. Therefore, the total time required by the DFN-R
model was approximately 11min. For a radiologist with
moderate experience, approximately 15min was required
to delineate an HCC tumor using the HBP-MRI images.
Deep learning-based segmentation was faster than manual
contouring by radiologists.

To evaluate the performance of our models, we com-
pared our results to those of previous studies [8, 9, 12, 13,
15]. Reproducing their experimental results was challenging.
This may be due to the specific parameter settings and data-
base. Therefore, we directly compared our results with those
of these studies in terms of DSC. Although they may not be
reasonably comparable, these assessments provide insight
into how our method outperformed similar studies. The

results of the previous studies on HCC segmentation are
presented in Table 2. Among these methods, the proposed
DFN-R model (average DSC, 0.83) achieved the highest seg-
mentation accuracy.

4. Discussion

Our experimental results show that HCC can be efficiently
segmented using the proposed DFN model. Manual segmen-
tation by experienced radiologists is usually considered
accurate and stable. However, the mean DSC of segmenta-
tion by the radiologist with moderate experience in this
study was 0.79 (Table 1), and the proposed DFN-R model
achieved slightly improved performance compared to that
radiologist.

Our DCNN architecture was able to detect tumors by
extracting deep representations of HCC, as shown in the
heatmaps (Figure 6) of convolutional layers at different
stages of the DCNN. However, it has disadvantages, as
shown in Figures 7(a)–7(d). Only part of the tumor region
was recognized by the sub-DCNN with HBP-MRI, while

(a) (b)

(c) (d)

Figure 6: The heatmaps of convolutional layers at different stages of (b–d) deep convolutional neural networks (DCNNs) of an (a) input
image. The ground truth (GT) of hepatocellular carcinoma (HCC) margins was presented on the patient’s hepatobiliary phase- (HBP-)
magnetic resonance imaging (MRI) image. The border of the abdomen and other organs can be overserved at the shallow layer ((b)
conv2_1). As the network progressed deeper, less details were kept, but the border of the abdomen was discernible ((c) conv4_1). Finally,
the HCC retained a high response, while other regions were excluded ((d) deconv3_1).
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Continued.
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the unidentified part of the tumor was successfully seg-
mented by the other sub-DCNN with PVP-MRI. Indeed,
DCNN architecture attained a DSC of 0.69, comparable to
existing HCC segmentation methods utilizing deep learning
[15]. However, this level of accuracy, while in line with cur-
rent standards, remains suboptimal. This rather unsatisfac-

tory accuracy may be because DCNN only utilized one
sequence: this method cannot contour the tumor’s boundary
precisely or prevent wide-range false negative predictions
owing to insufficient information acquired from a single
sequence. In contrast, our DFN-F model, by harnessing data
from dual-phase MRI, demonstrated superior performance

(g) (h)

Figure 7: Two examples of the segmentation results by deep fusion network- (DFN-) F. (a, e) Ground truth (GT) (first column), (b, f)
segmentation results by DFN-F (second column), (c, g) subdeep convolutional neural networks (DCNNs) (in hepatobiliary phase- (HBP-
) magnetic resonance imaging (MRI), third column), and (d, h) sub-DCNN (portal venous phase- (PVP-) MRI, fourth column) are
presented in indigo, green, blue, and light red, respectively. In the (a–d) first example, two (c, d) sub-DCNNs successfully recognized
only part of the hepatocellular (HCC), while DFN-F successfully segmented the HCC lesions correctly. In the (e–h) second example, the
sub-DCNN in (g) HBP-MRI misclassified normal tissues as tumor lesions, while DFN-F avoided false segmentation by taking the
information of both (h) PVP-MRI and (g) HBP-MRI into consideration.

(a) (b)

(c) (d)

Figure 8: The example of segmentation by deep fusion network- (DFN-) F and DFN-R in which the Dice similarity coefficient (DSC) value
was 0.08 and 0.42, respectively. (a) Original image, (b) ground truth GT, (c) segmentation by DFN-F, and (d) segmentation by DFN-R.
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in HCC segmentation, as evidenced by the results with dual-
phase MRI images (Table 1).

DCNN cannot contour the tumor’s boundary precisely
or prevent wide-range false negative predictions owing to
insufficient information acquired from a single sequence.
Our DFN-F model successfully utilized information from
dual-phase MRI and showed promising results for HCC seg-
mentation with dual-phase MRI images (Table 1). HBP-MRI
and PVP-MRI provided complementary information, result-
ing in improved contouring accuracy and fewer false nega-
tive predictions. In HBP-MRI, certain organs can present a
low intensity similar to HCC, leading to the misclassification
of normal regions as cancerous. PVP-MRI helps eliminate
this error by providing normal intensity contrast
(Figures 7(e)–7(h)). This method considers both segmenta-
tion results and refines the final contouring outcome with
a more accurate border.

The lowest DSC values for DCNN-F and DFN-F were
equal to 0.01 and 0.08, respectively. This indicates a limita-

tion of DFN-F in the segmentation tasks of certain tumors.
After careful examination of these lesions (Figure 8), we
observed that they shared an unclear HCC boundary, which
may have been caused by complications such as cirrhosis.
These complications often affect the absorption of contrast
agents (Gd-EOB-DTPA) by normal cells around the lesion,
resulting in inconspicuous contrast between the lesion and
its surrounding normal tissue in Gd-EOB-DTPA-enhanced
scanning. In these situations, the DL model is likely to mis-
classify HCC tissues from normal tissues. A potential mitiga-
tion to this problem is radiologist-aided intervention, in
which a radiologist previews the patient’s image and draws
an ROI to define the tumor lesion region for DFN input.
Using this intervention, in the experiment with DFN-R, we
achieved a mean DSC of 0.83, which was significantly
improved compared to that of DFN-F (0.83 versus 0.74).
The performance of the DFN-R was comparable to the find-
ings (DSC = 0 83) reported by Zheng et al. [19], who
employed a completely automatic segmentation approach.

(a) (b)

(c)

Figure 9: An example showing how deep fusion network- (DFN-) R helps improve segmentation accuracy. (a) Ground tumor (GT) and
segmentation results by (b) DFN-F and (c) DFN-R on hepatobiliary phase- (HBP-) magnetic resonance imaging (MRI) are presented in
indigo, green, and light purple, respectively. The intervention by the radiologist (green rectangular) differentiated the hepatocellular
carcinoma (HCC) lesion from its surrounding tissue with similar intensity which may be misclassified as tumor lesions by DFN-F.
Therefore, by using DFN-R, the target area is strictly restricted, and the lesion can be correctly distinguished and segmented.
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Nonetheless, the DCE-MRI employed in their study demands
an intricate analysis of multiple image phases to derive seg-
mentation results, imposing stringent requirements on image
acquisition. In contrast, Gd-EOB-DTPA contrast-enhanced
MRI offers superior advantages over DCE-MRI in the diag-
nosis, treatment decision-making, efficacy assessment, and
prognosis prediction for focal liver lesions. In clinical prac-
tice, Gd-EOB-DTPA contrast-enhanced MRI is the preferred
choice. Intervention by the radiologist helped exclude irrele-
vant information and isolate the target region from the back-
ground (Figure 9). Moreover, the predefined ROI served as
prior knowledge of the lesion location for DFN.

Segmentation by a radiologist with moderate experience
showed good agreement with GT on lesions with clear bor-
ders and homogeneous density. However, segmentation by
a radiologist with moderate experience showed a discrepancy
with the GT when the tumor was small or had heterogeneous
intensity (Figure 5). Such variability in segmentation results
may indicate that manual contouring of the tumor is highly
affected by the radiologists’ experience. Therefore, a method
that can produce stable and accurate HCC segmentation out-
comes is desirable. In comparison with the segmentation
results by the radiologist with moderate experience, DFN-R
reached higher performance (mean DSC, 0 83 ± 0 13 versus
0 79 ± 0 11). In addition, the DFN-R provides a more stable
and faster method for HCC segmentation. Therefore, this
semiautomatic segmentation strategy may have potential
applications in future clinical practice.

The present study has several limitations. First, our pro-
posed DFN-R included an intervention from an experienced
radiologist, which made it a semiautomated method. More-
over, this approach was potentially influenced by the radiol-
ogist’s subjective judgment. A fully automated DL-based
method may be a more practical solution for clinical applica-
tion [18]. Second, a 2D network structure was used in this
study, and the 3D network structure may have a better per-
formance [31]. However, 3D neural networks require signif-
icant computational resources [32, 33]. Future studies
should focus on the utilization of 3D neural networks to
explore how spatial information helps improve segmenta-
tion accuracy. Finally, our proposed method requires valida-
tion in future research using a larger sample recruited across
different scanners or centers.

In summary, we proposed and verified a radiologist-aided
dual-phase MRI segmentation framework based on DL for
HCC delineation. Information from dual-phase MRI images
can assist in segmenting HCC lesions. Our DFN model with
radiologists’ intervention (semiautomated method) yielded
higher accuracy than a radiologist with moderate experience.
This radiologist-aided method can be utilized in clinical
practice. Finally, before clinical use, our proposed method
requires validation in future research using a larger sample
recruited across different scanners and centers.
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