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Introduction. Alzheimer’s disease (AD) is a neurodegenerative disorder with no conclusive remedy. Yohimbine, found in
Rauwolfia vomitoria, may reduce brain inflammation by targeting tumour necrosis factor-alpha (TNFα), implicated in AD
pathogenesis. Metoserpate, a synthetic compound, may inhibit TNFα. The study is aimed at assessing the potential utility of
repurposing metoserpate for TNFα inhibition to reduce neuronal damage and inflammation in AD. The development of safe
and effective treatments for AD is crucial to address the growing burden of the disease, which is projected to double over the
next two decades. Methods. Our study repurposed an FDA-approved drug as TNFα inhibitor for AD management using
structural similarity studies, molecular docking, and molecular dynamics simulations. Yohimbine was used as a reference
compound. Molecular docking used SeeSAR, and molecular dynamics simulation used GROMACS. Results. Metoserpate was
selected from 10 compounds similar to yohimbine based on pharmacokinetic properties and FDA approval status. Molecular
docking and simulation studies showed a stable interaction between metoserpate and TNFα over 100 ns (100000 ps). This
suggests a reliable and robust interaction between the protein and ligand, supporting the potential utility of repurposing
metoserpate for TNFα inhibition in AD treatment. Conclusion. Our study has identified metoserpate, a previously FDA-
approved antihypertensive agent, as a promising candidate for inhibiting TNFα in the management of AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that is prevalent among the elderly population and
is the leading cause of dementia [1, 2]. The prevalence of AD
is increasing steadily and is predicted to double in the next
20 years [3]. Its pathogenesis encompasses the accumulation
of beta-amyloid plaques, neurofibrillary tangles, and neuro-
nal loss in the brain. It results in memory and cognitive
function deterioration, which affects the daily activities of
the patients [4, 5]. Despite the significant progress made in
understanding the mechanism and therapeutic targets of
AD, there is a lack of a definitive cure or effective treatment
[6]. Consequently, AD represents a growing societal chal-
lenge and an unmet medical need [1].

Several hypotheses have been proposed over the years to
explain AD’s pathogenesis, with the amyloid hypothesis
being the prevailing paradigm [7, 8]. However, recent studies
have questioned the validity of this hypothesis and suggested
alternative explanations, including the tau hypothesis,
chronic inflammation, and gut microbiota theories [9, 10].
Inflammation hypothesis, in particular, postulates that
proinflammatory cytokine, tumour necrosis factor-alpha
(TNFα), plays a crucial role in AD pathogenesis. TNFα is
upregulated in the brains of individuals with AD and
impairs cognitive function [11, 12]. Additionally, studies
have shown that the modulation of TNFα leads to variations
in amyloid plaque deposition, neuronal death, and cognitive
deficits, which are hallmarks of AD [13, 14]. In general, there
is compelling evidence to suggest that TNFα plays a signifi-
cant role in the pathogenesis of AD [15]. However, TNF
inhibitors such as infliximab and etanercept do not cross
the blood-brain barrier (BBB), which is a physical barrier
that separates the brain from the peripheral circulation,
limiting their efficacy in treating brain inflammation [16].
Emerging evidence suggests that the plant Rauwolfia vomi-
toria (RV) possesses compounds capable of preventing
neuronal damage and reducing inflammation in the brain
with minimal side effects [17–20]. This plant has exhibited
promising therapeutic effects on cognitive deficit, among
other plants that may have a beneficial effect on cognitive
function [20–22]. Rauwolfia vomitoria is an ethnomedicinal
plant commonly used in traditional African medicine for
various ailments, including inflammation [23–25].

Plant-derived compounds have been a focal point in
drug discovery for centuries, and recent advances in compu-
tational chemistry and molecular modelling have expedited
the process of identifying promising drug candidates from
natural sources [26, 27]. In silico methods have been used
to predict the biological activities of plant-derived com-
pounds, thereby speeding up the process of identifying
promising drug candidates at a reduced cost [28–30]. This
is particularly important for developing countries, where
plant diversity is high and access to modern drug discovery
technologies is limited.

Drug repurposing is the process of identifying new
therapeutic uses for existing drugs. One approach to drug
repurposing is based on the similarity of chemical structures
between drugs.

Furthermore, drug repurposing, particularly based on
structural similarity, can potentially lead to the identification
of new therapeutic uses for existing drugs. Based on the idea
that if two molecules share similar structures, then they may
have similar bioactivities [31–34]. This approach is com-
monly used and aimed at identifying an analogue of an
existing drug molecule that shares mechanisms of action
with the original drug or compound [31, 35, 36]. Therefore,
in this study, we explored the potential of yohimbine, the
most dominant compound in the stem bark of RV, as a
TNFα binder and potential drug candidate. Additionally,
we identified an existing drug metoserpate for TNFα inhibi-
tion based on structural similarities.

2. Methods

2.1. Study Workflow. The study started with a systematic
evaluation of the pharmacokinetic properties of yohimbine,
the primary compound found in RV stem bark. In silico
analysis using SwissADME was employed to comprehen-
sively understand yohimbine’s absorption, distribution,
metabolism, and excretion (ADME) profile. Subsequently,
molecular docking of yohimbine and the TNFα receptor
was performed using SeeSAR software to determine their
binding affinity. A structure similarity search for yohimbine
was conducted to identify compounds with a similarity of
at least 75%. The pharmacokinetic profile of the selected
compound was evaluated using SwissADME. The most
promising FDA-approved drug was chosen based on its
pharmacokinetic properties and its ability to bind to the
TNFα receptor. The selected drug underwent docking and
molecular dynamics simulations using GROMACS software
to assess its stability and potential in vivo performance.

2.2. Retrieval and Preparation of 3D Protein Structure. The
three-dimensional (3D) conformation of TNFα (PDB ID:
2AZ5; X-ray diffraction resolution: 2.10Å), as previously
reported by He et al. [37], was obtained from the Research
Collaboratory for Structural Bioinformatics Protein Data Bank
(RCSB PDB) [38] (https://www.rcsb.org). The retrieved pro-
tein structure was subjected to preparation using the Biovia
Discovery Studio Visualizer v2021 [39]. During protein prep-
aration, all multiple chains were eliminated from the structure,
resulting in the retention of chain “A” for subsequent molecu-
lar docking. Additionally, the water molecules and hetero-
atoms that were irrelevant to the investigation were removed
during the protein preparation process.

2.3. Retrieval and Preparation of 3D Conformer Compounds.
The dominant compound, specifically yohimbine, in the
stem bark of RV, was analysed in terms of their 3D con-
former structure, as obtained from the PubChem database
[40] (https://pubchem.ncbi.nlm.nih.gov/). The structure of
yohimbine was processed using Avogadro v1.2.0 [41]
(https://avogadro.cc) with the MMFF96 force field applied
for the minimisation of the ligand after the addition of
hydrogen atoms and the refinement of the geometry.

2.4. Pharmacokinetic Assessment of Yohimbine. In this study,
a comprehensive analysis of the ADME (absorption,

2 BioMed Research International

https://www.rcsb.org
https://pubchem.ncbi.nlm.nih.gov/
https://avogadro.cc


distribution, metabolism, and excretion) profile of the com-
pounds was performed. Compliance with the Lipinski rule of
5 [42], which includes the parameters of molecular weight
(MW), lipophilicity (log P), hydrogen bond acceptor
(HBA), and hydrogen bond donor (HBD), was evaluated.
Additionally, the GI absorption and penetration of the
BBB of the compounds were examined using various
models, Ghose’s rule [43], Egan’s rule [44], Muegge’s rule
[45], and Veber’s rule [46]. The Ghose rule defines accept-
able compounds as having a molecular weight between 160
and 480 g/mol, a log P value between -0.4 and 5.6, the
number of hydrogen bond donors less than or equal to 5,
and the number of hydrogen bond acceptors less than or
equal to 10. Egan’s rule considers molecular weight, log P,
the number of hydrogen bond donors, the number of
hydrogen bond acceptors, and the number of rotatable
bonds, while Veber’s rule takes into account the number of
rotatable bonds, the number of hydrogen bond donors, the
number of hydrogen bond acceptors, and molecular weight.
Muegge’s rule assesses the acceptability of compounds based
on their molecular weight, the number of hydrogen bond
donors, the number of hydrogen bond acceptors, and the
topological polar surface area (TPSA). The SwissADME
open-access online tool was employed to evaluate the
ADME profile of the compounds assessed in this study
[47] (http://www.swissadme.ch).

2.5. Molecular Docking of TNF-Alpha, Yohimbine, and
Metoserpate Using SeeSAR. Molecular docking simulations
were carried out using the SeeSAR module in BioSolveIT,
following the default parameters. To generate the receptor
grid, the AutoGrid tool in SeeSAR was used and placed at
the active site of the receptor protein (Cys69, Lys98, Ser99,
Pro100, Cys101, Gln102, Arg103, Glu104, Thr105, Trp114,
Tyr115, Glu116, and Pro117). The ligand was then docked
into the receptor utilizing SeeSAR’s standard precision (SP)
mode. Finally, the top-ranking poses were analysed using
the Pose Viewer tool integrated within SeeSAR [48]
(https://www.biosolveit.de).

2.6. Structural Similarity Search of DrugBank Compounds. In
this study, we used the DrugBank and SwissSimilarity tool
[49] to investigate drug structural similarity using yohimbine
structure as a query. Specifically, we used SwissSimilarity,
which is an open-access web-based tool that allows molecu-
lar structure comparisons of drugs based on their chemical
properties. The similarity search was performed against the
DrugBank database [50], which provides comprehensive
data on the chemical structure, pharmacology, and clinical
applications of drugs. Notably, we opted for the 2D and
3D combined DrugBank option of the SwissSimilarity web
platform for the search of structurally similar drugs, employ-
ing a similarity threshold of 75% and above. Equally, the
chemical structure search feature was used for the yohim-
bine-centered approach to investigate drugs similar to
yohimbine.

2.7. Pharmacokinetic Assessment of Identified DrugBank
Compounds. Pharmacokinetic assessment was carried out

for identified drugs with structural similarity equal to or
greater than 75% by evaluating the gastrointestinal (GI)
absorption and BBB penetration for the selected drugs using
the SwissADME web tool [47] (http://www.swissadme.ch)
with focus on two important aspects (GI and BBB) of drug
distribution in the body.

2.8. Molecular Dynamics Simulation of the TNFα-Ligand
Complex. Molecular dynamics (MD) simulations were
undertaken using the GROMACS package [51, 52] (https://
www.gromacs.org) within the myPresto portal v5 software,
using default force field settings (AMBER ff99SB, TIP3P,
and GAFF ver2.1) [53, 54]. The entire MD process was
carried out using the autodynamics options for 100 nanosec-
onds (100 ns (1000 ps)) [55, 56]. The MD simulation was
performed on TNFα-metoserpate and TNFα-cocrystallized
ligand (small molecule (C32 H32 F3 N3 O2)) complexes.

3. Results and Discussion

3.1. Pharmacokinetics of Yohimbine. The study of the
pharmacokinetics of potentially therapeutic compounds is
of clinical importance in the drug development process.
Elsewhere, about 40% of drug candidates do not pass the
clinical trial stages [57] due to undesired absorption, distri-
bution, metabolism, and excretion (ADME) profiles of the
drug candidates. For a compound to be considered a good
candidate depends on its exposure to the molecular target,
which is determined by absorption and metabolism and
particularly for central nervous system (CNS) drugs, an
ability to cross the BBB [58]. From Table 1, it can be inferred
that yohimbine demonstrated high GI absorption and
lipophilicity making it easier to cross the blood-brain barrier.
A few pharmacokinetic principles pioneered by Lipinski,
Ghose, Veber, Egan, and Muegge were applied to assess the
drug-likeness of the plant compound yohimbine. Yohimbine
was subjected to Lipinski’s rule of 5, per the rule; orally active
drugs should not violate any of these four criteria: molecular
weight ≤ 500, log P lipophilicity ≤ 5, number of hydrogen
bond donors ≤ 5, and number of hydrogen bond acceptors
≤ 10 [42]. Based on the physicochemical properties of
yohimbine, none of the rules were violated (Table 1); this
confers its use as an oral pharmaceutical drug. The total polar
surface area (TPSA) for yohimbine was 65.56Å2 which is less
than 140Å2 indicating good permeability in cellular lipid
membranes according to Veber’s rule [46]. It is evident in
literature that there is a strong correlation between high TPSA
and low blood-brain penetration [59–61]. The Ghose filter
was applied to evaluate the drug-likeness of yohimbine; again,
no rule was violated. Egan andMuegge’s filters were employed
to assess the oral bioavailability based on the physicochemical
properties; once more, yohimbine was compliant with all the
rules [62].

3.2. Molecular Docking of TNFα-Yohimbine. The molecular
docking result obtained between TNFα and yohimbine
showed that there was a binding affinity Hyde score of
-1.0 kJ/mol between the nitrogen atom at position 5 of the
ligand and the amino acid residue Gln102 of TNFα
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(Figure 1(a) and Table 2). Additionally, there was another
bond interaction (Hyde: 0.2 kJ/mol) between the oxygen
atom at position 3 of the ligand and the amino acid residue
Gln102. The observation of a binding affinity Hyde score of
-1.0 kJ/mol between the nitrogen atom at position 5 of
yohimbine and the amino acid residue Gln102 of TNFα
suggests that yohimbine may bind to TNFα’s active site
and inhibit its proinflammatory effects. Additionally, the
bond interaction between the oxygen atom at position 3 of
yohimbine and Gln102 may contribute to the overall stability
of the yohimbine-TNFα complex. Upon analysing the dock-
ing pose using Biovia Discovery Studio Visualizer, it was
observed that the ligand formed two conventional hydrogen
bond networks with the amino acid residue Gln102 of TNFα
(Figure 1(b)). In addition to the conventional hydrogen
bond networks, a nonconventional hydrogen bond network
was also detected between the ligand and the amino acid
residue Cys101 of TNFα. Furthermore, two pi-alkyl bond
network interactions were observed between the ligand and
the amino acid residue Arg103 of TNFα (Figure 1(b)).
Hydrophobic interaction was also observed between yohim-

bine and the TNFα residues Arg103 and Gln102. These
results suggest that yohimbine has potential to bind to TNFα
at its binding site and inhibit its proinflammatory effects.

From our study, yohimbine, an alkaloid with purported
aphrodisiac properties and used for treating erectile dysfunc-
tion [63, 64], has been identified as a potential inhibitor of
TNFα, a cytokine that mediates inflammation in the central
nervous system (CNS) and causes oxidative stress, apoptosis,
and synaptic dysfunction in neurons [65]. Neuroinflamma-
tion and resultant neurodegeneration can be precipitated
by activated microglia, the resident immune cells of the
CNS [66, 67]. Therefore, identifying small molecules capable
of inhibiting TNFα could be therapeutically beneficial in
treating neurodegenerative disorders associated with chronic
inflammation. Here, we utilized SeeSAR, a structure-based
drug design software tool, to study the interaction between
yohimbine and TNFα [68, 69]. Our analysis has demon-
strated that yohimbine exhibits a stable interaction with
TNFα, as indicated by a Hyde score of -1.0 kJ/mol, suggest-
ing favourable binding. Further examination of the molecu-
lar interactions has revealed key findings. Notably, a pi-alkyl

Table 1: Pharmacokinetic properties of yohimbine.

GI absorption BBB permeant Lipinski Ghose Veber Egan Muegge

High Permeant Yes Yes Yes Yes Yes

Permeant = blood-brain barrier permeant; Yes = no violation; BBB = blood-brain barrier.

N5, 8969_5_006
Hyde: –1.0 kJ/mol
 Lig Rec
Desolvation 7.2 10.6
Interaction –8.4 –10.4

O3, 8969_5_006
Hyde: 0.2 kJ/mol
 Lig Rec
Desolvation 10.6 5.7
Interaction –8.9 –7.2

(a)

PRO
A: 100

SER
A: 99

CYS
A: 101

GLN
A: 102

ARG
A: 103

(b)

Figure 1: (a) A 3D representation of the complex formed between TNFα and yohimbine using SeeSAR software. The Hyde score indicates
the binding affinity of the ligand to the protein. The ligand’s N5 and O3 atoms form hydrogen bonds with the protein’s Gln102 residue,
contributing to the stability of the complex. (b) Molecular docking of yohimbine with TNFα protein. 3D structure of the protein-ligand
complex visualized using Biovia Discovery Studio. The ligand (in grey, red, and purple) forms a hydrogen bond network with Gln102 (in
green dashed lines) through its N5 and O3 atoms and a nonconventional hydrogen bond network between the O3 atom of yohimbine
and Cys101 (in light green dashed lines). The ligand also interacts with Arg103 through a pi-alkyl interaction (mauve dashed line). The
ligand is surrounded by a hydrophobic contact area (in light blue shade) involving Gln102 and Arg103.
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bond network is formed between yohimbine and the amino
acid residue arginine at position 103 (Arg103) of TNFα.
Additionally, a conventional hydrogen bond is observed
between the hydrogen of the imine functional group of
yohimbine and the amino acid residue glutamine at position
102 (Glu102) of TNFα. Furthermore, a nonconventional
hydrogen bond network interaction between yohimbine
and TNFα is observed at the amino acid residue position
Cys101, which contributes significantly to the binding
process. These molecular interactions, as illustrated in
Figures 1(a) and 1(b), play a prominent role in driving the
binding between yohimbine and TNFα.

These findings provide valuable insights into the specific
mechanisms underlying the interaction between yohimbine
and TNFα, shedding light on the potential efficacy of yohim-
bine in modulating TNFα and its implications for addressing
the pathogenesis of AD. Therefore, we posit that yohimbine
may act as an inhibitor of TNFα and reduce its proinflam-
matory and neurotoxic effects in the CNS, which could
explain the benefit reported for cognitive impairment and
motor dysfunction [70, 71].

Compared to other TNFα inhibitors like etanercept and
infliximab, which are large molecules and have difficulty
penetrating the blood-brain barrier and pose systemic safety
concerns [72–74], yohimbine is a small molecule that can
easily cross the blood-brain barrier and has a relatively good
safety profile when used at low doses [75]. Therefore, we
propose yohimbine as a model molecule for the repurposing
of an old FDA-approved drug (that may have superior
bioavailability and safety profiles) for a new drug target
(TNFα) inhibition, based on structure similarity search.

3.3. Identified Structurally Similar DrugBank Compounds.
The primary objective of this study is to explore structure-
based drug design strategies in order to identify and
repurpose known compounds, like yohimbine, for potential
therapeutic use for the management of AD. To this end,
we conducted a search of the DrugBank database for FDA-
approved compounds that exhibited a high percentage
structural similarity to yohimbine. From our analysis, a total
of 10 compounds with a structural similarity of at least 75%
to yohimbine were retrieved (Table 3). These compounds
include metoserpate, deserpidine, 18-methoxycoronaridine,
CP-320626, rescinnamine, reserpine, raubasine, methoser-
pidine, (7as,12ar,12bs)-1,2,3,4,7a,12,12a,12b-Octahydroin-
dolo[2,3-a]Quinolizin-7(6h)-One, and vinburnine. After
assessing the retrieved compounds for their current FDA
approval status, four of the entries were found to have
FDA approval.

Metoserpate (DB11530) demonstrated the highest per-
centage structure similarity (0.992%) to yohimbine, ability

to traverse the BBB, high GI absorption, and preexisting
approval for clinical use, thus making it an ideal candidate
for further investigation (Tables 3 and 4). The observed high
degree of similarity between metoserpate and yohimbine can
be attributed to the presence of a pentacyclic yohimban
skeleton, involving the formation of a carbocyclic ring from
the C-17 to C-18 bond in a corynantheine precursor, as
previously reported [63].

3.4. Pharmacokinetics of the Identified Structurally Similar
DrugBank Compounds. We assessed the GI absorption and
the capacity to cross the BBB of the 10 compounds retrieved
from the DrugBank database. Our findings showed that all
10 compounds had high GI absorption, indicating that they
are likely to be well absorbed in the gastrointestinal tract
(Table 4). However, only five of the compounds had the
capacity to cross the BBB (Table 4), indicating that they
may have potential therapeutic applications for the treat-
ment of CNS disorders. These five compounds may be able
to penetrate the BBB due to their physicochemical proper-
ties, such as their lipophilicity and molecular weight.

Further analysis revealed that out of the five compounds
that are able to cross the BBB, only one (metoserpate) had
FDA approval. Thus, metoserpate (DB11530) was the ideal
candidate not only because it is the only FDA-approved
drug, but also it exhibited high gastrointestinal absorption
and a propensity to cross or permeate the blood-brain
barrier. Metoserpate has a total polar surface area (TPSA)
of 73.02Å2 contributing to its ability to permeate cellular
membranes. It is evident in literature that TPSA values less
than 73.02Å2 are indicative of good permeability and satisfy
Veber’s rule [46]. Metoserpate was thus selected for further
analysis.

3.5. Molecular Docking of TNF-Alpha and Metoserpate. The
binding affinity of TNFα and metoserpate was assessed using
Hyde’s score method. This method seeks to address weak or
questionable hydrogen bonds as well as indifferent scaffolds
not contributing to the free energy in the protein-ligand
complex [76, 77]. From Figure 2(a), it can be observed that
the Hyde score was -1.1 kg/mol which confers a favourable
interaction [77]. The docking analysis revealed one hydro-
gen bond between the nitrogen atom at position 8 of meto-
serpate and the amino acid residue Gln102 of TNFα. These
results suggest that the interaction between metoserpate
and TNFα at this site may have potential therapeutic
implications for the treatment of TNFα-related diseases
(Figure 2(a) and Table 2).

When the docking simulation result was visualized using
Biovia Discovery Studio Visualizer, one pi-alkyl bond net-
work between metoserpate and TNFα binding site amino

Table 2: Hyde’s score estimates and TNFα binding site amino acid residues.

Compound Hyde score (kJ/mol) Bond interaction (ligand ➔ protein) Binding site amino acid residues

Yohimbine
-1.0
0.2

N5 ➔ Gln102
O3 ➔ Gln102 Cys69, Lys98, Ser99, Pro100, Cys101, Gln102, Arg103,

Glu104, Thr105, Trp114, Tyr115, Glu116, and Pro117
Metoserpate -1.1 N8 ➔ Gln102

Gln102 = the key amino acid residue involved in the hydrogen bond formation.
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acid (AA) residue Arg103 and two salt bridge interactions
between metoserpate and the binding site AA residue
Glu104 of TNFα were observed. In addition, one conven-
tional hydrogen bond network was observed between meto-
serpate and TNFα binding site residue Gln102 (Figure 2(b)).
It is documented that conventional hydrogen bonds aid in
the stability of complexes, hence conferring a good binding
affinity [78, 79]. Consequently, the glutamic acid (Glu104)
of the protein participated in two cation-pi interactions
between the imine functional group and the benzene ring
of metoserpate is shown in yellow. Cation-pi interactions
play an important role in determining protein structure as
well as contributing significantly to the binding energy of
the complex formation [80]. Arginine (Arg103) of the pro-
tein residue participated in a pi-alkyl interaction with the
benzene ring of our target drug metoserpate. According to
literature, pi-alkyl interactions have a greater propensity
for stability when compared to alkyls bound to nonaromatic
moieties in a ligand [81–83].

3.6. Molecular Dynamics Simulations

3.6.1. TNFα-Small Molecule and TNFα-Metoserpate. Numer-
ous significant pharmaceuticals and hundreds of natural

products with promising bioactivities contain indole alka-
loids or have structures that are like indole alkaloids. Despite
not always adhering to Lipinski’s rules, such compounds
frequently exhibit favourable pharmacokinetic profiles with
respect to cyclic molecules. The values of the root mean
square deviation (RMSD) affirm whether a close-match
docked pose was predicted between the crystal and the pre-
dicted structures. It is evident in literature that an RMSD
value ≤ 0 2nm is fairly good [84–86]. Figures 3(a) and 3(b)
highlight the results of TNFα and the cocrystallized small
molecule and TNFα and the target drug metoserpate both
having their RMSD value ≤ 2Å (0.2 nm) which confers a
latent stable protein-ligand complex.

The RMSD between the TNFα-small molecule complex
and the TNFα-metoserpate complex remained consistent
throughout a 100ns simulation. However, when comparing
the TNFα-small molecule complex (Figure 3(a)) to the
TNFα-metoserpate complex (Figure 3(b)), a more stable
trajectory was observed in the TNFα-metoserpate complex.
In the case of the TNFα-small molecule complex, it dis-
played stability from 20ns to approximately 30 ns, followed
by a deviation. It then regained stability until around 55ns
but experienced another deviation until 60 ns. From this
point, it became stable again until approximately 75 ns, with

Table 4: Pharmacokinetic properties of the 10 DrugBank compounds.

Drug BBB permeant GI absorption

Metoserpate (DB11530) Yes High

Deserpidine (DB01089) No High

18-Methoxycoronaridine (DB15096) Yes High

CP-320626 (DB03383) No High

Rescinnamine (DB01180) No High

Reserpine (DB00206) No High

Raubasine (DB15949) Yes High

Methoserpidine (DB13631) No High

(7as,12ar,12bs)-1,2,3,4,7a,12,12a,12b-Octahydroindolo[2,3-a]Quinolizin-
7(6h)-One (DB02191)

Yes High

Vinburnine (DB13793) Yes High

BBB = blood brain-barrier; GI = gastrointestinal.

Table 3: Drugs that are 75% or more structurally similar to yohimbine.

Drug (ID) Status % similarity Chemical formula

Metoserpate (DB11530) Vet approved 0.992 C24H32N2O5

Deserpidine (DB01089) Approved 0.960 C32H38N2O8

18-Methoxycoronaridine (DB15096) Investigational 0.942 C22H28N2O3

CP-320626 (DB03383) Experimental 0.764 C23H23ClFN3O3

Rescinnamine (DB01180) Approved 0.823 C35H42N2O9

Reserpine (DB00206) Approved, investigational, withdrawn 0.809 C33H40N2O9

Raubasine (DB15949) Experimental 0.873 C21H24N2O3

Methoserpidine (DB13631) Experimental 0.812 C33H40N2O9

(7as,12ar,12bs)-1,2,3,4,7a,12,12a,12b-Octahydroindolo[2,3-a]
Quinolizin-7(6h)-One (DB02191)

Experimental 0.767 C15H16N2O

Vinburnine (DB13793) Experimental 0.751 C19H22N2O

Status = FDA approval status; Drug ID = DrugBank ID.
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another observed deviation until around 82ns. Finally, it
regained stability and remained stable until the end of the
simulation at 100ns. On the other hand, the trajectory of
the TNFα-metoserpate complex showed stability from
around 15ns to approximately 70ns, with a slight deviation
occurring until 80 ns. After this point, it regained stability
and remained stable until the end of the simulation at
100ns. Both complexes exhibited deviations within a range
of 0.05 nm.

The observation of stable RMSD values throughout a
100ns simulation suggests that the overall conformation of
the TNFα-small molecule complex and TNFα-metoserpate

complex remained relatively consistent during the simula-
tion period [87]. This stability is an important characteristic
as it indicates that the complexes maintained their structural
integrity and did not undergo significant conformational
changes. TNFα-metoserpate complex exhibited a more sta-
ble trajectory compared to the TNFα-small molecule com-
plex suggesting that the binding of metoserpate, a small
compound, may have induced more favourable interactions
and a more stable complex formation. This could be attrib-
uted to specific molecular interactions, such as hydrogen
bonding, electrostatic interactions, or hydrophobic interac-
tions between metoserpate and TNFα. These interactions

N8, 66252_7_007
Hyde: –1.1 kJ/mol
 Lig Rec
Desolvation 7.2 10.6
Interaction –8.4 –10.4

(a)

CYS
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A: 99
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Figure 2: (a) A 3D representation of the complex formed between TNFα and metoserpate using SeeSAR software. The Hyde score indicates
the binding affinity of the ligand to the protein. The ligand’s N8 atom form hydrogen bonds with the protein’s Gln102 residue, contributing
to the stability of the complex. (b) Molecular interactions of TNFα-metoserpate complex. 3D visualization of the complex using Biovia
Discovery Studio. The ligand (in grey, red, and purple) forms a hydrogen bond network with Gln102 through its N8 atom (in green
dashed lines). The ligand also interacts with Arg103 through a pi-alkyl interaction (in mauve dashed line). A hydrophobic contact area
(in light blue shade) is observed between the ligand and residues Gln102 and Glu104 (in light blue shade). Cation-pi interactions (in
golden yellow) are formed between metoserpate and Glu104.
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Figure 3: Trajectories of the overall RMSD: (a) TNFα-small molecule complex; (b) TNFα-metoserpate complex. RMSD of the various
complexes with respect to the starting structure over 100 ns MD simulation. The x-axis represents the simulation time in nanoseconds.
The y-axis represents RMSD in nanometers.
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may contribute to a stronger binding affinity and a more sta-
ble conformation for the TNFα-metoserpate complex [88].

To describe the local conformational change in the
TNFα and metoserpate and TNFα-small molecule com-
plexes, the root mean square fluctuation (RMSF) was
required. Figures 4(a) and 4(b) highlight the RMSF profile
of the TNFα-small molecule and TNFα-metoserpate com-
plexes, respectively. From the graph, stable fluctuations were
observed with RMSF ≤ 0 2nm in both instances [89]. The
TNFα-small molecule complex (Figure 4(a)) and TNFα-
metoserpate complex (Figure 4(b)) both displayed reason-
ably low RMSF. However, the TNFα-metoserpate complex
exhibited slightly higher fluctuations compared to the
TNFα-small molecule complex. It is important to note that
all the observed fluctuations in the TNFα-metoserpate com-
plex were generally around 0.2 nm. On the other hand, in the
TNFα-small molecule complex, fluctuations around atom
positions 180 and 1520 were observed to be around 0.3 nm.

These fluctuations, measured in nanometers, indicate the
degree of movement or flexibility of specific atoms within
the complexes. The relatively low RMSF values suggest that
overall, the complexes remained relatively stable during the
simulation [90]. However, the slightly higher fluctuations
in the TNFα-metoserpate complex could imply that the
binding of metoserpate induced some additional dynamics
or flexibility in certain regions of the complex compared to
the TNFα-small molecule complex [90]. The specific atom
positions 180 and 1520 in the TNFα-small molecule
complex experienced slightly higher fluctuations around
0.3 nm. These positions could correspond to specific residues
or functional regions within the complex. The increased
fluctuation at these positions may indicate potential confor-
mational changes or greater flexibility in those regions, pos-
sibly influenced by the presence of the small compound or
specific interactions between the compound and TNFα [90].

The radius of gyration (Rg) monitors the compactness of
the protein structure coupled with the binding patterns of
the drug and protein in direct relation to the folding rate
[91]. A conformational change occurs when a ligand or lead
molecule attaches to the protein, changing the radius of

gyration [92]. The TNFα-small molecule complex
(Figure 5(a)) and TNFα-metoserpate complex (Figure 5(b))
exhibited similar total radius of gyration values, both mea-
suring approximately 1.52 nm. A smaller radius of gyration
indicates a more compact and tightly packed structure, while
a larger radius of gyration suggests a more extended or
flexible conformation [90]. The fact that both the TNFα-
small molecule complex and TNFα-metoserpate complex
demonstrated a total radius of gyration around 1.52 nm
suggests that they possess comparable overall compactness,
indicating a compact and stable conformation [93]. This
similarity in size could indicate that the binding of both
the small molecule and metoserpate did not significantly
alter the overall conformation or compactness of the
TNFα complex.

3.6.2. Bond Network Evaluation of Metoserpate and TNF-
Alpha Complex following Molecular Dynamics Simulation.
The post-MD simulation analysis revealed significant
changes in the metoserpate-TNFα complex compared to
the pre-MD simulation complex. Our findings demonstrated
that metoserpate established multiple bond network interac-
tions with the AAs in the binding site of TNFα. Specifically,
a conventional hydrogen bond (cH-bond) was formed
between the oxygen of the carboxylic acid methyl ester of
metoserpate and the amino acid residue Lys98 of TNFα.
Conventional hydrogen bonds are known for their strength
and contribute to strong binding affinity. Additionally, sev-
eral nonconventional hydrogen bonds (ncH-bonds) were
observed between metoserpate and the AAs Ser99, Glu104,
Pro113, Tyr115, and Glu116. Metoserpate also engaged in
a pi-alkyl interaction with Tyr115 and Pro117, as well as
two cation-pi interactions with Glu104 and Glu116. These
interactions played a crucial role in the stability and specific-
ity of the complex (Figure 6). Hydrophobic contact area was
also established between metoserpate and the binding site
AA residues Lys98 and Tyr115.

In contrast, the bond network analysis conducted prior
to the MD simulation revealed specific interactions between
metoserpate and TNFα, including a cH-bond network with
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Figure 4: Residue-wise RMSF profiles of the TNFα and various ligand complexes: (a) TNFα-small molecule complex; (b) TNFα-
metoserpate complex. The x-axis represents the atom number. The y-axis represents RMSF in nanometers.
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Gln102, a pi-alkyl interaction with Arg103, and cation-pi
interactions with Glu104. However, the subsequent MD
simulation analysis yielded intriguing findings, indicating
an enhanced binding affinity and selectivity of metoserpate
towards TNFα. This improvement in binding was accompa-
nied by the generation of more favourable and specific
interactions.

These results are further supported by the observed
flexibility in the root mean square fluctuation (RMSF) output
of the TNFα and metoserpate complex. The MD simulations
have provided valuable insights into the intricate molecular
interactions between the TNFα and metoserpate, unravelling
the complexities of protein-ligand complexes.

By elucidating the dynamic behaviour and uncovering
the structural changes that occur during the simulation,
the MD simulations offer a deeper understanding of the
binding mechanism and contribute to the overall compre-
hension of the interactions between TNFα and metoserpate.

3.6.3. Overall Bond Network Assessment. The Hyde scoring
method has proven to be a valuable computational tool in
drug discovery for estimating the binding affinity between
a protein and a ligand, utilizing their interaction energy
[94]. In the present study, we employed the Hyde score
assessment method to evaluate the binding affinity of two
ligands, metoserpate and yohimbine, with the protein TNFα,
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Figure 5: Radius of gyration profiles of the TNFα and various ligand complexes: (a) TNFα-small molecule complex; (b) TNFα-metoserpate
complex. The x-axis represents the time in picoseconds. The y-axis represents Rg in nanometers.
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with a specific focus on the amino acid residues within the
binding site (Table 2).

The study’s findings revealed that metoserpate exhibited
a slightly lower Hyde score (-1.1 kJ/mol) in comparison to
yohimbine (-1.0 kJ/mol and 0.2 kJ/mol) when interacting
with Gln102 (Table 2). This indicates that metoserpate pos-
sesses a marginally better binding affinity with TNFα when
compared to yohimbine, although the difference observed
is relatively small. These results shed light on the relative
strengths of the interactions between metoserpate and
TNFα, providing insights into the binding affinity. This
information contributes to the understanding of the poten-
tial efficacy of metoserpate as a potential therapeutic agent
targeting TNFα in the context of AD management.

The post-MD simulation analysis revealed the involve-
ment of amino acid Lys98 in the conventional hydrogen
bond formation, as well as the formation of a nonconven-
tional hydrogen bond network with Pro113, which was
originally not part of the binding site AA residues
(Figure 6). This post-MD simulation analysis generated more
bond diversity, and bond number compared to the TNFα-
yohimbine and TNFα-metoserpate complexes. This demon-
strates the importance of post-MD simulation analysis in
providing a more comprehensive understanding of protein-
ligand interactions beyond what can be predicted through
initial scoring methods alone.

The findings of this study also suggest that the binding
affinity of a ligand with a protein may be influenced by
amino acid residues outside of the initial binding site. This
is consistent with previous studies that have shown the
importance of protein flexibility and dynamics in ligand
binding [95]. It is possible that the nonconventional hydro-
gen bond network identified in the post-MD simulation
analysis plays a critical role in the binding affinity between
TNFα and metoserpate.

4. Conclusion

In summary, our study employed the Hyde score assessment
method to evaluate the binding affinity of metoserpate and
yohimbine with TNFα, with a specific focus on the binding
site amino acid residues. While metoserpate generated a
lower Hyde score than yohimbine with the key binding site
amino acid Gln102, further investigation using postmolecu-
lar dynamics (MD) simulation analysis demonstrated the
involvement of additional amino acid residues in the bind-
ing affinity. The results indicated that metoserpate has the
potential to inhibit TNFα and thus presents as a promising
candidate for further study as a therapeutic agent for
TNFα-related diseases. Additionally, our work showcases
the utility of yohimbine as a query compound to identify
structurally similar drugs from the DrugBank database in
the context of drug repurposing. Specifically, our study
identified metoserpate as a potential inhibitor of TNFα using
a computational approach that combined molecular docking
and MD simulation. This approach allowed for a more
comprehensive and nuanced understanding of the binding
affinity of metoserpate with TNFα and provided insights
into the potential mechanisms of inhibition. Furthermore,

our use of yohimbine as a query compound helped identify
metoserpate as a structurally similar compound with poten-
tial therapeutic properties. Overall, these findings represent a
significant step forward in the development of metoserpate
as a potential therapeutic agent for TNFα-related diseases.
However, further research is needed to validate these findings
through in vitro and in vivo (in a physiologically relevant cell
line, fly models, and/or animal models) studies and to opti-
mize the efficacy of metoserpate as a drug candidate.
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