
Research Article
Screening Marine Microbial Metabolites as Promising
Inhibitors of Borrelia garinii: A Structural Docking Approach
towards Developing Novel Lyme Disease Treatment

Zarrin Basharat ,1 Sadia Sattar ,2 Ammar Abdulraheem Bahauddin ,3

Abdulaziz K. Al Mouslem ,4 and Ghallab Alotaibi 5

1Alpha Genomics (Private) Limited, Islamabad 45710, Pakistan
2Molecular Virology Labs, Department of Biosciences, COMSATS University Islamabad, Islamabad Campus,
Islamabad 45550, Pakistan
3Department of Pharmacology and Toxicology, Taibah University, Madinah Al-Munawarah, Saudi Arabia
4Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
5Department of Pharmacology, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia

Correspondence should be addressed to Zarrin Basharat; zarrin.iiui@gmail.com and Ghallab Alotaibi; ghalotaibi@su.edu.sa

Received 23 September 2023; Revised 26 January 2024; Accepted 13 February 2024; Published 29 February 2024

Academic Editor: Abdulaziz Alouffi

Copyright © 2024 Zarrin Basharat et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease
may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme
disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify
potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37
strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI)
protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium.
The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then
evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from
molecular dynamics simulation (100ns) and other scoring parameters suggest that the compound CMNPD18759 (common name:
aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as
a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are
needed to validate the efficacy and safety of this compound in vivo.

1. Introduction

Borrelia garinii belongs to the genus Borrelia and is respon-
sible for causing Lyme disease [1, 2]. It is the most common
tick-borne disease in the Northern Hemisphere, with over
300,000 new cases reported each year in the United States
alone [3]. It is also the common Borrelia sp. found in Europe
and Asia, where it is transmitted to humans through the bite
of infected ticks [4]. This bacterium has a complex life cycle
and can survive and persist in different hosts, including the

vector tick and humans [5, 6]. After infection, B. garinii
can cause a range of symptoms associated with Lyme dis-
ease, including fever, fatigue, headache, and a characteristic
bull’s-eye rash [7, 8]. If left untreated, it can spread to other
parts of the body and cause symptoms like joint pain,
meningitis, and cardiac issues [9, 10]. The diagnosis of Lyme
disease entails a comprehensive approach, integrating
clinical symptom presentation with confirmation through
blood tests and PCR assays [11, 12]. The standard treatment
protocol typically includes a course of antibiotics, such as

Hindawi
BioMed Research International
Volume 2024, Article ID 9997082, 19 pages
https://doi.org/10.1155/2024/9997082

https://orcid.org/0000-0003-1785-3803
https://orcid.org/0000-0003-4521-016X
https://orcid.org/0000-0002-5335-1037
https://orcid.org/0000-0002-3868-2057
https://orcid.org/0000-0003-4780-7082
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9997082


doxycycline or amoxicillin. The prognosis for patients is
generally favorable, particularly when the disease is diag-
nosed early and treated promptly [13]. There is a need for
newer drug leads targeting this bacterium, given the limita-
tions associated with the antibiotics currently in use. They
may effectively kill the bacterium during the early stages of
infection but are often less effective in the later stages of
the disease when the bacteria is disseminated to various
organs and tissues [14]. In addition, the emergence of
antibiotic-resistant strains of B. garinii is a growing concern,
as this limits the effectiveness of existing antibiotics and
poses a significant threat to public health [15, 16].

The discovery of new drugs and targets is critical to
overcome this challenge and improve the efficacy and safety
of Lyme disease treatment. B. garinii has several enzymes
that allow it to evade the host immune system and establish
persistent infection [17]. These enzymes could be targeted
by small molecule inhibitors to prevent survival in the host.
Targeting essential genes and proteins that are required for its
survival and replication through subtractive proteomics is one
strategy. Complementary methods like pan-proteomics are a
powerful approach for the narrowing down of new therapeutic
targets from the core region of the genome [18]. In silico
methods, which rely on computational modeling and simula-
tion, have tremendous potential for swift therapeutic target
screening and inhibitor design [19, 20]. This approach can
be used to screen a large number of potential drug candidates
in a relatively short period, in contrast to slow and expensive
traditional drug discovery methods. Current methods enable
researchers to analyze vast amounts of genomic and structural
data rapidly and efficiently. They can be used to identify
potential therapeutic targets based on their essentiality,
conservation, and druggability. Moreover, computational
methods can be used for the design and optimization of small
molecule inhibitors capable of selectively and effectively
targeting these specific molecular targets [21]. Focusing on
conserved proteins across various strains can enhance the effi-
cacy of inhibition and decrease the probability of antibiotic
resistance. This approach may involve utilizing natural prod-
ucts or similar drug-like compounds. The application of the
pan-proteome concept and combination of these in silico tech-
niques to select therapeutic protein targets from B. garinii have
the potential to identify new targets and improve current ther-
apies for Lyme disease treatment. Furthermore, this approach
can contribute to the development of new therapies against the
resistant varieties of B. garinii strains.

In this study, we selected marine-derived microbial
metabolites for screening as they are a rich source of bioac-
tive compounds with potential therapeutic applications,
including the development of novel antibiotics [22]. Numer-
ous marine bacterial and fungal species have developed dis-
tinctive metabolic pathways, yielding natural products that
confer adaptive advantages for their survival in the challeng-
ing marine environment [23]. Their metabolites often pos-
sess antimicrobial activity against a range of pathogenic
bacteria, including antibiotic-resistant strains [24]. One
example of a marine organism-sourced bacterial inhibitor
is salinosporamide A, which is produced by the bacterium
Salinispora tropica [25]. This compound is a potent inhibitor

of the proteasome, essential for the survival of many patho-
genic bacteria, including Mycobacterium tuberculosis and
Staphylococcus aureus [26]. Salinosporamide A has shown
promise in preclinical studies as a potential treatment for
multiple myelomas as well [27]. Another example of a
marine actinomycete-derived MRSA inhibitor is marinopyr-
role A [28, 29]. Quorum-sensing inhibitors from marine
Oceanobacillus sp. [30] and Staphylococcus hominis [31]
have also been reported in the literature. By disrupting quo-
rum sensing, bacterial colonization and biofilm formation
may be prevented in the pathogens. In addition, the efficacy
of traditional antibiotics may also be enhanced. Therefore,
inhibitors based on marine-derived natural products hold
significant promise as novel antibiotics. These have the
potential to address antibiotic-resistant infections, thereby
enhancing the efficacy and safety of existing treatments. In
this study, a marine microbe-derived metabolite library
containing lead-like compounds was screened against the
arginine deiminase (ADI) enzyme of B. garinii. The ADI
enzyme plays a critical role in the urea cycle by catalyzing
the conversion of arginine to citrulline and ammonia. Given
that arginine is necessary for protein synthesis in bacteria,
ADI inhibition presents a promising drug target to curtail
bacterial growth. The utilization of a docking-based screen-
ing approach enabled the rapid screening of marine micro-
bial inhibitors, as it is a streamlined method for identifying
potential inhibitors for therapeutic applications.

2. Material and Methods

2.1. Pan-Proteomics. The proteome sequences of B. garinii
(n = 37) were retrieved in FASTA format from the BV-BRC
database (https://www.bv-brc.org/; accessed 30 March 2023)
and subjected to pan-proteome analysis using BPGA software
[32]. BPGA performs sequence data preprocessing and clus-
tering using USEARCH [33] to generate a pan, unique, and
core-genome file. It also performs functional annotation and
classification of genes. It uses MUSCLE [34] and rsvg-
convert dependencies to align sequences and generate trees
based on pan and core genes. Plots were visualized with the
aid of gnuplot libraries [35].

2.2. Therapeutic Target Mapping. To identify paralogous
sequences, the core proteome of B. garinii was subjected to
the CD-HIT suite [36], with default parameters except for
a threshold value of 60%. The CD-HIT suite is a popularly
employed software for comparing and clustering protein
and genomic sequences to eliminate redundant proteins.
To identify essential proteins, BLAST was used against the
Database of Essential Genes (DEG) [37] and Database of
Essential Gene Clusters (CEG) [38]. Next, the obtained pro-
teins were subjected to a BLAST search against the human pro-
teome (https://www.uniprot.org/uniprotkb?query=reviewed%
3Atrue+AND+proteome%3Aup000005640; accessed 4 April
2023) to obtain a dataset of nonhomologous proteins that
could be targeted without impacting the human host. For this
purpose, the E-value criterion was set at 5 ∗ 10−3. The resulting
dataset was further evaluated against human gut flora, and an
E-value greater than 10-4 was considered [39]. The final dataset
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was subjected to a BLAST search against DrugBank [40], with
an E-value of <10-3. Hits obtained were classified as drug tar-
gets. ADI (Accession: WP_031505634.1) was retained for
downstream analysis due to its attributes of druggability,
uniqueness, and significance in bacterial survival. To assess its
similarity to pathogenically important Borrelia spp., its
sequence was aligned using the multialign server (URL: http://
multalin.toulouse.inra.fr/multalin/cgi-bin/multalin.pl; accessed
3 September 2023) with the ADI of the B. afzelii and B.
burgdorferi.

2.3. Structural Modeling. The protein 3D model was built
with iterative threading assembly refinement (I-TASSER)
and AlphaFold [41]. The I-TASSER (https://zhanggroup
.org/I-TASSER/; retrieved 8 April 2023) algorithm utilizes
the identified templates to build a preliminary model,
followed by iterative rounds of refinement that optimize
the model structure by minimizing energy and improving
stereochemistry [42]. During refinement, the algorithm also
generates multiple models, which are ranked based on their
quality scores. The top modeled structure was superimposed
onto its templates through the use of the FATCAT algorithm
within the RCSB pairwise structural alignment server
module (https://www.rcsb.org/alignment; accessed 3 August
2023). This was to see the common folds and structural
regions of similarity. Another tool, the AlphaFold, deploys
deep learning and neural networks to predict the 3D
arrangement of a protein, providing valuable insights into
its folding and overall structural characteristics. UniRef90
was used for generating multiple sequence alignments. The
predicted LDDT (pLDDT) was used for intradomain confi-
dence, whereas Predicted Aligned Error (PAE) was used
for determining “between domain” or “between chain”
structural confidence. The 3D structure validation was
carried out using Ramachandran plot analysis [43, 44], and
the best predicted structure was retained for further analysis.
The active site was defined as having a residue − specific
ligand − binding probability > 0 75, estimated by SVM in
I-TASSER. The secondary structure was identified by the
ProMotif program [45].

2.4. Virtual Screening. The 3D protein structure was pre-
pared for docking as described previously [46, 47]. Seven
residues (GLY219, ARG236, HIS272, ASP274, GLY393,
ARG394, and CYS399) were defined as active site residues,
as predicted by the I-TASSER [42]. S-Nitroso-L-homocyste-
ine was taken as the control, as it is a potent active-site-
directed, irreversible inhibitor of ADI (EC number: 3.5.3.6)
[48]. It was taken as a control for docking validation, by
binding in the pocket and comparing its binding affinity
value with new leads. A marine microbial metabolite (lead-
like) set of compounds (n = 4730) was obtained from the
CMNPD website (https://cmnpd.org/; accessed 12 April
2023). It was filtered based on drug-likeliness and lead-like cri-
teria. Drug-like criteria comprised of the “Lipinski Rule of Five”
[49], fulfilling the criteria of “molecular weight < 500Daltons,
octanol-water partition coefficient logP < 5, hydrogen bond
donors < 5, and hydrogen bond acceptors < 10.” A compound
that violated more than one of these criteria may have lower

oral bioavailability and may face challenges in becoming an
effective drug. Hence, the compounds fulfilling at least three
of these parameters were selected. In addition, Oprea et al.’s
lead-like criteria [50] were checked, and apart from molecular
weight and hydrogen bond donors (n ≤ 8)/acceptors (n ≤ 5),
key descriptors included rotatable bonds, rigid bonds, ring
count, and logP (-3.5 to 4.5). The rules are aimed at maintain-
ing focus towards effective and orally absorbable compounds.
Only molecules fulfilling Lipinski’s drug-like and Oprea’s
lead-like criteria were taken for docking. The docking was
performed using AutoDock Vina software, according to the
previously described parameters [51]. The affinity value was
obtained for best binding pose, the top-ranking compounds
were visually inspected, and 2D interactions were mapped to
identify the interacting residues. Furthermore, Molecular
Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA)
values were computed for these complexes, according to
Basharat et al. [52]. MM/PBSA is a computational approach
used in molecular dynamics simulations to estimate the free
energy of binding for protein-ligand complexes. The MM/
PBSA method combines molecular mechanics (MM) calcula-
tions, which describe the energy associated with the molecular
structure, with solvation free energy computations based on the
Poisson-Boltzmann equation and the solvent-accessible surface
area (PBSA). The relevance of MM/PBSA values lies in their
ability to offer insights into the strength of interactions between
a ligand and its target protein, helping in the identification and
ranking of potential drug candidates.

2.5. Pharmacokinetic Profiling. ADMET (Absorption, Distri-
bution,Metabolism, Excretion, and Toxicity) was studied using
the pKCSM server (https://biosig.lab.uq.edu.au/pkcsm/theory;
accessed 25 April 2023) and SWISS-ADME [53] (http://www
.swissadme.ch/index.php; accessed 28 April 2023). Multiple
models have been implemented in these tools, including
models for predicting human ether-a-go-go-related gene
(hERG) inhibition to assess cardiac arrhythmia, cytochrome
P450 (CYP) inhibition (leading to possible adverse reactions
or therapeutic failures), mutagenicity (Ames test), blood-
brain barrier penetration, cytotoxicity, and Caco2 permeability
(measure intestinal absorption).

2.6. Molecular Dynamics (MD) Simulation. The top-scoring
compound along with the control (S-nitroso-L-homocyste-
ine) was subjected to MD simulation to further evaluate sta-
bility of the binding interactions with the ADI protein.
Docked complexes were prepared using the preparation
wizard of Desmond (Schrodinger, LLC, NY, USA) according
to previously described parameters [54]. Het states were
generated using the Epik module, and heavy atoms were
converged to energy minimization till a value of 0.30Å was
attained. The OPLS3e force field and TIP3P water model
were selected. The complexes were simulated for 100 ns,
and then, the simulation results were analyzed using built-
in tools for obtaining RMSD, etc. This allowed insights into
the structural and dynamic properties of the complexes.
Snapshots at 0, 50, and 100ns were extracted, and MM/
PBSA values were calculated [52].
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3. Results

3.1. Pan-Proteome Analysis. The expected size of the pan-
proteome was 3556, while the estimated size was 3622.33.
The actual nonredundant proteins in the accessory fraction
were 2396. The expected and estimated sizes of the pan-
proteome were relatively close, but the actual number of
nonredundant proteins in the accessory fraction was lower
than expected. This could be due to the reason that some
of the proteins in the accessory fraction may be redundant
or may not have been detected in the study. The power
law model provides a mathematical framework for under-
standing the open nature of the pan-genome or proteome.
It allows the prediction of the pan-proteome size for a given
species, even if the genomes of all of the organisms in that spe-
cies have not yet been sequenced. The equation f x = a · xb is
used for this purpose, where a and b are constants that deter-
mine the shape of the curve. The value of the exponent b in the
power law model determines whether the pan-proteome is
open or closed. BPGA determined the value of b for B. garinii
strains as 0.33, indicating that the pan-proteome is open
(Figure 1). It signifies that the entirety of proteins within B.
garinii is not final and that the ongoing advancements in sci-
entific techniques may lead to the continual discovery of new
proteins, rendering the catalog of proteins dynamic [55].
Additionally, horizontal gene transfer, etc., could also add to
the existing gene pool [56]. The concept of an open proteome
becomes particularly pertinent in the contemporary era of
high-throughput sequencing and advanced proteomic meth-
odologies, which help identify and elucidate novel proteins,
as well as explore various isoforms, thereby contributing to
the evolving understanding of the intricate protein landscape
within living organisms. Most microorganisms have an open
proteome to some extent, as technological advancements

and ongoing research efforts continually reveal new protein-
coding genes, splice variants, and posttranslational modifica-
tions [57]. The number of accessory proteins varied across
proteomes, ranging from 444 in IPT107 to 1210 in IPT134
(Table 1). The expected size of the core genome was 0, while
the estimated size was 0.18, which suggests significant variabil-
ity in the genes considered to be part of the core genome.
However, the real set of conserved proteins across all strains
included in the study was 37, which were expected to be essen-
tial for the survival and function of the species.

The number of unique proteins also varied across pro-
teomes, ranging from one in the strain SZ to 69 in IPT128.
The total number of unique proteins was 1123. The highest
number of unique genes was 69 in IPT128, suggesting that
this strain has undergone significant genomic changes com-
pared to other strains. The lowest number, i.e., just one
unique protein, was in the strain IPT133, IPT136, IPT140,
and SZ (Table 1). Findings indicate that each strain had a
unique set of proteins that distinguished it from the other
strains. The highest number of exclusively absent genes
was 43 for IPT107, suggesting that this strain has lost a sig-
nificant number of genes compared to other strains. This
could be due to factors such as gene deletion or mutation.

3.2. Therapeutic Target Mapping. The core proteins were
taken and subjected to a subtractive proteomic approach.
Among these, no paralogs were present, showing there are
no duplicated genes within the core proteome of this bacte-
rium. A total of 25 essential proteins were identified after
conducting BLAST searches with CEG and 27 after BLAST
against DEG. Altogether, 25 proteins common to both data-
bases were retained (Table 2). Subtraction from the human
proteome left only eight sequences, while subtraction from
the gut bacterial proteome left only a single protein, i.e.,

5
–500

0

500

1000

1500

2000

2500

3000

3500

4000

10 15 20 25
Number of genomes

N
um

be
r o

f g
en

e f
am

ili
es

30 35 40 45

Power-ft curve equation: f (x) = 1099.80.x0.33

Exponential curve equation: f1 (x) = 1296.63.e–0.24.x

Total gene families
Core gene families

Figure 1: Pan-proteome power curve graph of the studied B. garinii strains.
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ADI (accession no.: WP_031505634.1) for further analysis.
This protein was also identified as a drug target after BLAST
with the DrugBank. Its alignment with pathogenically
important B. afzelii and B. burgdorferi species revealed that
17.8% of residues in the consensus sequence had a similarity
lower than 50% (Figure 2). Nonetheless, on the whole, the
sequence remained conserved.

3.3. Structure Modeling of ADI. With regard to the total
number of residues in the selected target, the ADI sequence
was 414. Out of these, 20 were glycine and 14 were proline
residues. These amino acids have been reported distinctly
as they play a specific role in protein structure and function,

transforming it into fibril or elastomer [58]. Small size and
flexibility of glycine make it suitable for regions requiring
structural adaptability and attain conformational flexibility.
The cyclic structure of proline introduces constraints and
rigidity, influencing protein folding and stability. It acts as
a “helix breaker” and disrupts regular alpha-helix forma-
tions. This disruption is essential to prevent overly rigid
structures and to facilitate proper protein folding [59].

The top threading templates by I-TASSER included ADI
from group A Streptococcus (PDB ID: 4BOF), enolase from
Mycoplasma pneumoniae (PDB ID: 7E2Q), ADI from
Mycoplasmopsis arginini (PDB ID: 1S9R; 1LXY), and the
structural protein VP3 from Bombyx mori cypovirus 1

Table 1: Pan-proteome statistics for 37 B. garinii strains studied.

Genome no. Organism name No. of core genes No. of accessory genes No. of unique genes No. of exclusively absent genes

1 IPT105 37 1169 14 0

2 IPT107 37 444 30 43

3 IPT108 37 1138 22 0

4 IPT113 37 1046 43 0

5 IPT114 37 1051 26 1

6 IPT115 37 1043 41 2

7 IPT117 37 774 34 14

8 IPT120 37 1148 14 0

9 IPT124 37 1181 22 0

10 IPT126 37 926 44 6

11 IPT128 37 1086 69 1

12 IPT129 37 984 46 2

13 IPT130 37 1067 25 0

14 IPT131 37 1139 36 0

15 BgVir 37 765 4 0

16 IPT74 37 1156 55 0

17 IPT75 37 1145 27 0

18 IPT76 37 1168 24 0

19 IPT86 37 1001 52 1

20 IPT88 37 1179 32 1

21 IPT89 37 1171 36 0

22 IPT90 37 1014 48 1

23 IPT91 37 1079 32 3

24 IPT94 37 1142 34 0

25 IPT96 37 1186 7 0

26 IPT98 37 947 49 3

27 IPT99 37 1131 17 3

28 IPT101 37 872 42 15

29 IPT104 37 1160 21 0

30 IPT133 37 1112 20 0

31 IPT134 37 1210 17 0

32 IPT136 37 1053 44 1

33 IPT139 37 1089 26 0

34 IPT140 37 1084 42 1

35 PBi 37 857 19 0

36 PBr 37 1114 8 0

37 SZ 37 769 1 0
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(PDB ID: 7WHP). The top five predicted structures had
confidence scores ranging from -3 to 0.97. The top-scoring
structure (Figure 3(a)) with a confidence score of 0.97 had
an estimated TM score of 0 85 ± 0 08 and RMSD of 4 8 ±
3 2Å. This structure was also overlaid on the top threading
templates used for building its coordinates and showed a

48% identity with ADI of group A Streptococcus, 37%
identity with ADI of Mycoplasmopsis arginini, just 8% with
cypovirus 1, and 4% with the enolase of Mycoplasma pneu-
moniae. The predicted secondary structure and solvent
accessibility of the sequence suggests that it is a globular pro-
tein with a predominantly helical and coil structure. The 3D

Table 2: Overview of the essential proteins, including their length and associated KEGG pathway ID.

Serial no. Length (amino acids) KEGG pathway ID Definition

1. 1155 K03043 rpoB; DNA-directed RNA polymerase subunit beta [EC:2.7.7.6]

2. 1124 K03723 mfd; transcription-repair coupling factor (superfamily II helicase) [EC:5.6.2.4]

3. 899 K03070 secA; preprotein translocase subunit SecA [EC:7.4.2.8]

4. 849 K03168 topA; DNA topoisomerase I [EC:5.6.2.1]

5. 810 K02469 gyrA; DNA gyrase subunit A [EC:5.6.2.2]

6. 806 K01338 lon; ATP-dependent Lon protease [EC:3.4.21.53]

7. 791 K03217 Membrane protein insertase YidC

8. 669 K02355 fusA, GFM, EFG; elongation factor G

9. 631 K03086 rpoD; RNA polymerase primary sigma factor

10. 594 K01872 AARS, alaS; alanyl-tRNA synthetase [EC:6.1.1.7]

11. 593 K02316 dnaG; DNA primase [EC:2.7.7.101]

12. 536 K23537 nupA; general nucleoside transport system ATP-binding protein

13. 488 K01881 PARS, proS; prolyl-tRNA synthetase [EC:6.1.1.15]

14. 455 K03106 SRP54, ffh; signal recognition particle subunit SRP54 [EC:3.6.5.4]

15. 452 K02481 rrp-2; response regulatory protein

16. 414 K01478 arcA; arginine deiminase [EC:3.5.3.6]

17. 389 K03438 mraW, rsmH; 16S rRNA (cytosine1402-N4)-methyltransferase [EC:2.1.1.199]

18. 362 K01000 mraY; phospho-N-acetylmuramoyl-pentapeptide-transferase [EC:2.7.8.13]

19. 352 K03588 ftsW, spoVE; cell division protein FtsW

20. 350 K02836 prfB; peptide chain release factor 2

21. 349 K15582 oppC; oligopeptide transport system permease protein

22. 327 K00611 OTC, argF, argI; ornithine carbamoyltransferase [EC:2.1.3.3]

23. 279 K02357 tsf, TSFM; elongation factor Ts

24. 215 K02890 RP-L22, MRPL22, rplV; large subunit ribosomal protein L22

25. 197 K01358 clpP, CLPP; ATP-dependent Clp protease, protease subunit [EC:3.4.21.92]
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Figure 2: Multiple sequence alignments of the drug target in B. garinii and pathogenically important Borrelia spp. Bg: B. garinii; Ba: B.
afzelii; Bb: B. burgdorferi.
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structure had six sheets, four beta-alpha-beta units, six beta-
hairpins, seven beta-bulges, 18 strands, 19 helices, 17 helix-
helix interactions, 45 beta-turns, and 16 gamma-turns. The
predicted solvent accessibility advocates that the ADI com-
prises regions partially exposed to the solvent, potentially
indicating the presence of binding or interaction sites. The
structure predicted by AlphaFold (Figure 3(b)) comprised
of 6 sheets, 4 beta-alpha-beta units, 6 beta-hairpins, 6 beta-
bulges, 19 strands, 21 helices, 25 helix-helix interactions,
36 beta-turns, and 4 gamma-turns.

The Ramachandran plot statistics by I-TASSER depicted
77.0% residues in the most favored regions, 19.6% in
additional allowed regions, 1.1% in the generously allowed
regions, and 2.4% in disallowed regions (Figure 3(c)). The
model had a reasonable stereochemical quality, with most res-
idues falling in the most favored regions of the Ramachandran

plot. However, some dihedral angles in the model were
unusual, particularly Omega. The model by AlphaFold had
92.3% residues in the most favored regions, 7.4% in additional
allowed regions, 0.3% in generously allowed regions, while
none in the disallowed region (Figure 3(d)). pLDDT showed
a very high confidence score of >90 and low predicted aligned
error for most of the structure. Hence, this structure was used
for molecular docking and further analysis.

3.4. Docking. Several inhibitors were prioritized after molecu-
lar docking (Table 3) with ADI, having better binding scores
than control (S-nitroso-L-homocysteine). Ten residues of
ADI interacted with the control (Figures 4(a)–4(c)), 12 with
CMNPD18759 (Figures 4(d)–4(f)), 12 with CMNPD24419
(Figures 4(g)–4(i)), nine with CMNPD24876 (Figures 4(j)–
4(l)), 11 with CMNPD8737 (Figures 4(m)–4(o)), and ten with
CMNPD23643 (Figures 4(p)–4(r)).
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Figure 3: (a) 3D visual representation of the ADI by I-TASSER, showing helices, sheets, and loops. The active site is shown in violet, with
dotted residues. The N-terminus is shown with blue N, the -C terminus with brown C. (b) 3D visual representation of the ADI by
AlphaFold, showing helices, sheets, and loops. The active site is shown in violet, with dotted residues. The N-terminus is shown with
blue N, the -C terminus with brown C. (c) Ramachandran plot of ADI by I-TASSER, depicting backbone dihedral angles of amino acid
residues. (d) Ramachandran plot of ADI by AlphaFold, depicting backbone dihedral angles of amino acid residues.
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Figure 4: (a) 2D depiction of control (S-nitroso-L-homocysteine). (b) 3D interaction of ADI-control. (c) 2D interaction of ADI-control
complex. (d) 2D depiction of CMNPD18759. (e) 3D interaction of ADI-CMNPD18759. (f) 2D interaction of ADI-CMNPD18759
complex. (g) 2D depiction of CMNPD24419. (h) 3D interaction of ADI-CMNPD24419. (i) 2D interaction of ADI-CMNPD24419
complex. (j) 2D depiction of CMNPD24876. (k) 3D interaction of ADI-CMNPD24876. (l) 2D interaction of ADI-CMNPD24876
complex. (m) 2D depiction of CMNPD8737. (n) 3D interaction of ADI-CMNPD8737. (o) 2D interaction of ADI-CMNPD8737 complex.
(p) 2D depiction of CMNPD23643. (q) 3D interaction of ADI-CMNPD23643. (r) 2D interaction of ADI-CMNPD23643 complex.
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The control made four, CMNPD18759 made three,
CMNPD24876 made three, CMNPD8737 made four, and
CMNPD23643 made five hydrogen bonds. CMNPD24876
also made two arene-hydrogen and one arene-cation bond.
Five residues (ASP43, ASP44, ASN349, ARG367, and
ARG394) made interactions with all ligands, including the
control. MM/PBSA values were computed for protein-
ligand complexes, representing the estimated free energy of
binding for each compound with ADI. Negative MM/PBSA
values generally indicate favorable binding interactions, with
an increasing negative value suggesting a stronger binding
affinity between the ligand and the protein. The ranking of
screened compounds based on the free energy of binding
mirrored their order from the docking scores. This consis-
tency is promising and indicates the reliability of both
approaches in predicting the binding affinity of the com-
pounds. Control compound was an exception, where a pos-
itive value was obtained in contrast to its lower docking
score. This discrepancy in docking and MM/PBSA score
might be attributed to the different aspects captured by each
method and emphasizes the importance of considering
multiple computational approaches in drug discovery.

The top-scoring compound aureobasidin (Table 3) is an
antibiotic and has previously been implicated as an inhibitor
of the inositolphosphorylceramide synthase AUR1 of fungus
[60]. It has been isolated from Aureobasidium pullulans
R106, a black yeast-like fungus [61]. This fungus has
previously been isolated from marine sources as well [62].
Korormicin is a metabolite of Pseudoalteromonas sp. [63]
and has also been known to produce reactive oxygen species
to kill bacterial species like Vibrio cholerae and Pseudomonas
aeruginosa [64]. 6′-Hydroxypestalotiopsone C is derived
from the mangrove-derived endophytic fungus Acremonium
strictum [65], while Pestalotiopsone E is derived from
Pestalotiopsis sp. [66]. Pestalotiopsone has previously shown

influenza virus neuraminidase inhibition activity [67]. These
compounds depicted good binding efficacy against ADI of B.
garinii and suggest that these marine-derived compounds
could potentially be developed into new therapeutics against
Lyme infection.

3.5. ADMET. Absorption results by pKCSM showed that the
five prioritized marine microbial metabolites had low water
solubility but relatively high Caco2 permeability and intesti-
nal absorption (human), suggesting that they may be able to
pass through the intestinal lining and enter the bloodstream.
This was also confirmed by SWISS-ADME results (Figure 5).
The skin permeability values suggest that these compounds
may have difficulty penetrating the skin. They were also
classified as P-glycoprotein substrates, indicating that they
may be transported out of cells by this protein. Additionally,
two of these compounds were also predicted as P-glycoprotein
inhibitors (Table 4). The steady-state volume of distribution
(VDss) values for all five metabolites were negative, indicating
that they do not tend to concentrate in tissues, but rather in
plasma. The fraction-unbound values were generally low, sug-
gesting that these metabolites tend not to diffuse or traverse
cellular membranes. Blood-brain barrier (BBB) permeability
values suggest that the metabolites had poor ability to cross
the blood-brain barrier, while CNS permeability values suggest
that the compounds would have difficulty penetrating the
central nervous system. This was again confirmed by SWISS-
ADME results (Figure 5). The compounds were not a
substrate for cytochrome P (CYP) enzymes, except for
CMNPD8737, which had the tendency to be metabolized by
CYP3A4. The clearance values for all five metabolites indicate
that biliary and hepatic clearance mechanisms may be
involved, but there does not seem to be any involvement of
the renal OCT2 transporter clearance mechanism in excre-
tion. Regarding toxicity, none of the metabolites were found
to be toxic or inhibit potassium channels encoded by hERG
(Table 4). Hence, they would not lead to long QT syndrome
or subsequent ventricular arrhythmia. However, one of the
metabolites, CMNPD8737, was found to be hepatotoxic. The
values representing the dose indicate that CMNPD8737 and
CMNPD23643 are relatively more toxic for humans, com-
pared to other metabolites having positive values on a log
scale. However, for rats, this was not the same, and acute tox-
icity values were relatively similar for most of the compounds.
Only CMNPD18759 had a lower toxicity and a high LD50.
The chronic toxicity pattern of the compounds varied from
acute toxicity, and CMNPD8737 showed the highest chronic
toxicity potential. Studying the toxicity of drug compounds
in the ciliated model organism T. pyriformis and minnows is
essential to assess their environmental impact, ensure regula-
tory compliance, and better understand their pharmacological
and toxicological properties. The control, CMNPD18759, and
CMNPD23643 showed higher toxicity in T. pyriformis, while
CMNPD8737 and CMNPD18759 showed higher toxicity
in minnow.

3.6. MD Simulation.The top-scoring compoundCMNPD18759
was simulated alongside the control, for 100ns, to determine
its binding stability. The default ensemble used for protein-
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Figure 5: Boiled egg plot showing various ADMET properties of
prioritized compounds. BBB: blood-brain barrier; HIA: human
intestinal absorption; PGP: P-glycoprotein.
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Table 4: ADMET properties of prioritized marine bacterial metabolites.

Property Model name Control CMNPD18759 CMNPD24419 CMNPD24876 CMNPD8737 CMNPD23643 Unit

Absorption

Water solubility -0.5 -3.032 -3.644 -3.644 -3.8 -3.156
Numeric

(log mol/L)

Caco2
permeability

-0.316 0.666 0.537 0.537 0.723 0.429
Numeric

(log Papp in
10-6 cm/s)

Intestinal
absorption
(human)

51.503 52.118 55.147 55.147 92.291 35.358
Numeric

(%
absorbed)

Skin permeability -2.735 -2.729 -2.699 -2.699 -2.748 -2.735
Numeric
(log Kp)

P-Glycoprotein
substrate

No Yes Yes Yes Yes Yes
Categorical
(yes/no)

P-Glycoprotein I
inhibitor

No Yes No No Yes No
Categorical
(yes/no)

P-Glycoprotein II
inhibitor

No No No No Yes Yes
Categorical
(yes/no)

Distribution

VDss (human) -0.656 0.129 -0.064 -0.064 -0.496 -1.218
Numeric
(log L/kg)

Fraction unbound
(human)

0.782 0.345 0.146 0.146 0.093 0.285
Numeric
(Fu)

BBB permeability -0.661 -1.721 -1.099 -1.099 -0.419 -1.426
Numeric
(log BB)

CNS permeability -3.519 -3.74 -2.881 -2.881 -3.032 -3.387
Numeric
(log PS)

Metabolism

CYP2D6 substrate Yes No No No No No
Categorical
(yes/no)

CYP3A4 substrate No No No No Yes No
Categorical
(yes/no)

CYP1A2 inhibitor No No No No No No
Categorical
(yes/no)

CYP2C19
inhibitor

No No No No No No
Categorical
(yes/no)

CYP2C9 inhibitor No No No No No No
Categorical
(yes/no)

CYP2D6 inhibitor No No No No No No
Categorical
(yes/no)

CYP3A4 inhibitor No No No No No No
Categorical
(yes/no)

Excretion
Total clearance 0.097 1.813 0.944 0.944 1.451 2.16

Numeric
(log mL/
min/kg)

Renal OCT2
substrate

No No No No No No
Categorical
(yes/no)
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ligand simulations in Desmond was adopted, i.e., the NPT
(constant Number of particles, Pressure, and Temperature)
ensemble. Thus, the temperature was maintained constant
(300K) throughout the simulation, allowing the system to
exchange energy with a heat bath while keeping the particle
number fixed. This is suitable for simulating biological macro-
molecules like proteins and bound ligands because the
conditions encountered in experimental settings are mim-
icked, where the system is maintained at a constant tempera-
ture. Counterions like Na+ and Cl- were introduced to
neutralize the net charge of the system. The simulation results
suggest significant differences in the binding behavior between
the control and CMNPD18759, where the control remained
bound stably to the ADI throughout the simulation
(Figure 6(a)), while CMNPD18759 underwent a conforma-
tional change after 60ns (Figure 6(b)), which implies for larger
scale simulations to attain equilibrium. Side chains showed
maximum deviation, followed by heavy atoms and then
backbone residues. For investigating conformational changes
of CMNPD18759, snapshots of ligand-bound ADI were
extracted from the trajectory at the first frame (corresponding
to 0ns), 1000th frame (corresponding to 16ns), 3000th frame
(corresponding to 48ns), 4000th frame (corresponding to
64ns), and 5000th frame (corresponding to 80ns). These were
then visualized in comparison to the first frame (reference).
The ligand position was altered in due course of time
(Supplementary Figure 1). RMSF plot of the control showed
flexibility around residue 130 and 260 (reaching up to 5Å)
(Supplementary Figure 2A), while the B-factor remained less
than 100 throughout the simulation. The N-terminal and
C-terminal regions usually exhibit higher levels of fluctuation
compared to other segments of the protein. In contrast,

secondary structural elements like alpha-helices and beta-
strands tend to display greater rigidity in comparison to the
unstructured regions of the protein, resulting in relatively
lower fluctuations when considering the loop regions.
TRP348, ASN349, ASP350, ARG367, SER391, and GLY393
interacted with the control for more than 30% of the
simulation time (Supplementary Figure 2B). ARG367 retained
hydrogen bonding for the maximum time, amongst other
binding residues (Supplementary Figure 2C). Hydrogen-
bonding characteristics are of paramount significance in drug
design due to their potent impact on drug specificity,
metabolism, and absorption. RMSF of CMNPD18759 binding
with ADI was more flexible (Supplementary Figure 3A).
There were 24.62% helices and 18.87% strands (overall
43.49% secondary structure elements) in the control trajectory
over 100ns, while CMNPD18759 showed 25.29% helices,
18.31% strands, and 43.60% overall secondary structure
elements in the simulation trajectory. No residue retained
contact for more than 30% of the simulation time with
CMNPD18759. It also formed more hydrophobic interactions
than the control (Supplementary Figure 3B). The simulations
were replicated, and similar results were observed for both
complexes (Supplementary Figure 4).

The MM/PBSA values of the simulated complexes were
recorded at different time points (0ns, 50ns, and 100ns). In
the case of the control-ADI complex, the values were found
to be -30.48kcal/mol at 0ns, -32.13kcal/mol at 50ns, and
-31.85kcal/mol at 100ns. For the CMNPD18759-ADI com-
plex, the corresponding MM/PBSA values were -30.44kcal/
mol, -33.38kcal/mol, and -33.38kcal/mol at 0 ns, 50ns, and
100ns, respectively. These values represent the calculated
binding-free energies for each complex at the specified time

Table 4: Continued.

Property Model name Control CMNPD18759 CMNPD24419 CMNPD24876 CMNPD8737 CMNPD23643 Unit

Toxicity

AMES toxicity No No No No No No
Categorical
(yes/no)

Max. tolerated
dose (human)

1.362 0.332 0.367 0.367 -1.485 -1.343
Numeric
(log mg/
kg/day)

hERG I inhibitor No No No No No No
Categorical
(yes/no)

hERG II inhibitor No No No No No No
Categorical
(yes/no)

Oral rat acute
toxicity (LD50)

1.726 4.178 2.124 2.124 2.377 2.738
Numeric
(mol/kg)

Oral rat chronic
toxicity (LOAEL)

1.929 1.983 1.204 1.204 0.747 1.13
Numeric

(log mg/kg_
bw/day)

Hepatotoxicity No No No No Yes No
Categorical
(yes/no)

Skin sensitisation No No No No No No
Categorical
(yes/no)

T. pyriformis
toxicity

0.284 0.285 0.537 0.537 0.542 0.288
Numeric
(log μg/L)

Minnow toxicity 2.278 0.357 0.873 0.873 0.237 1.044
Numeric
(log mM)
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intervals during the MD simulation. The negative values indi-
cate a favorable interaction, with lower energies as the simula-
tion time proceeds, suggesting stronger binding affinity
between the ligand and ADI. The consistency in these values
for the CMNPD18759-ADI complex over time suggests a sta-
ble and strong protein-ligand affinity.

4. Discussion

The field of drug design has been revolutionized by the
advent of pan-proteomics, which revolves around the entire
coding DNA sequence repertoire of a given microbial species
to gain a comprehensive understanding of genetic diversity
[68]. This approach enables the identification of core and
accessory protein fractions, which can inform the design of

drugs that target specific pathways and virulence factors in
the select fraction. This approach has previously been imple-
mented for the identification of highly specific and effective
therapeutic targets using computational approaches [69,
70]. Using this approach, a single drug target was predicted
from the core proteome of 61 strains in the case of
Helicobacter pylori, a gastric cancer-causing bacterium [71].
Fereshteh et al. used this approach to determine common
drug targets in four gram-negative superbugs [72] while
Uddin and Jamil used a similar approach to find drug targets
in P. aeruginosa [73]. Basharat et al. used a similar strategy
to mine targets in Yersinia pseudotuberculosis [39] and
Shigella sp. [52, 74]. Here, we used this approach coupled
with subtractive proteomics for B. garinii, to help prioritize
candidate therapeutic targets. This bacterium is responsible
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Figure 6: (a) RMSD plot of control compound complexed with ADI. (b) RMSD plot of ADI complexed with CMNPD18759.
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for Lyme disease, a tick-borne infectious disease. The
primary treatment for Lyme disease is antibiotics, such as
doxycycline, amoxicillin, and cefuroxime [75]. However,
the emergence of antibiotic-resistant strains is a growing
concern, as it limits the effectiveness of existing antibiotics
and poses a significant threat to public health [15, 76, 77].
To treat such resistant infection and replenish the drying
antibiotic pipeline, we need to identify new therapeutic tar-
gets and antibiotics.

Marine-derived metabolites are produced by marine
organisms such as algae, microbes, sponges, and corals and
have shown promising therapeutic potential in the treatment
of various diseases, including infectious diseases [78].
Researchers can more efficiently identify and validate new
therapeutic targets and design or optimize novel antibiotics
from marine sources, for the treatment of infectious diseases
(like Lyme disease). This can be done using molecular
docking-aided virtual screening. Herein, we scanned more
than 4500 lead-like compounds from marine microbes by
leveraging the power of in silico methods. This procedure
was used to identify lead compounds that can bind and
inhibit the function of the selected ADI target. Richards
et al. have previously identified its role in Borrelia sp.
growth, where it boosts intracellular L-arginine crucial for
growth [79]. Inhibiting ADI has several advantages as a ther-
apeutic strategy. First, ADI is essential for bacterial growth,
so inhibiting ADI can be expected to be effective against a
wide range of bacteria. Second, ADI is not present in
humans, so inhibiting ADI is unlikely to have any harmful
side effects.

In silicomethods have played a crucial role in identifying
and optimizing potential small molecule inhibitors from var-

ious sources, including marine-derived products, offering a
rapid and cost-effective approach to drug development
[80–82]. Marine natural products have garnered significant
attention in drug discovery due to their structural diversity
and bioactive properties. The number of marine natural
products identified to date is >40,000 (https://marinlit.rsc
.org/; retrieved 30 April 2023). These compounds come from
a diverse range of marine sources, including microorganisms,
phytoplankton, various types of algae, sponges, cnidarians,
bryozoans, molluscs, tunicates, echinoderms, mangroves,
and other intertidal plants and microorganisms. Only 15
marine-derived natural compounds have been approved by
FDA, till 2022 [83]. We need to identify and study more of
these useful natural product scaffolds to fight off the menace
of antibiotic resistance and replenish drying antibiotic pipe-
lines. Five such compounds are shortlisted in this study
(Figure 7). The prioritized inhibitors of ADI had relatively
high Caco2 permeability and intestinal absorption which sug-
gest that they may be able to pass through the intestinal lining
and enter the bloodstream. The skin permeability values indi-
cate that these metabolites may have difficulty penetrating the
skin, which limits their potential use in topical applications.
The negative VDss values indicate that these metabolites do
not tend to cause QT syndrome. They also tend to accumulate
in plasma rather than tissue, and this can affect their distribu-
tion and elimination, as metabolites that accumulate in tissues
can lead to toxic effects. Although drugs are specifically
designed to produce therapeutic effects in humans, they may
also inadvertently result in unintended side effects in other
organisms. This can occur when pharmaceuticals enter water
bodies through wastewater or when animals are exposed to
pharmaceutical residues in the environment [84]. Hence,
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values for toxicity were calculated for model organisms like T.
pyriformis and minnow, to help identify potential ecological
risks. Compounds showing adverse effects depict a warning
sign for potential environmental issues. Accumulation of even
mildly toxic compounds over time in the environment can
cause detrimental issues like biomagnification. Hence, this
aspect needs to be considered, and such pharmaceutical com-
pounds should be appropriately treated from key outlets like
hospital wastewater before being released into the environ-
ment [85].

In silico methods can help researchers identify and
optimize small molecule inhibitors with high binding affin-
ity, selectivity, and pharmacokinetic properties [86]. This
approach accelerates the drug discovery process, reduces
the cost and time required for traditional drug development,
and improves the likelihood of success in clinical trials.
However, the limitation of this approach is that molecules
may behave differently in the cellular environment, and
computational simulations cannot fully capture that. There-
fore, compounds identified by this method should be vali-
dated through in vitro or in vivo experiments. Moreover,
our study only focused on marine-derived microbial com-
pounds, and future research could investigate other natural
sources, such as terrestrial plants or fungi, for identifying
potential therapeutic compounds. Furthermore, this study
only examined a relatively small subset of marine microbes,
and a more extensive exploration of marine microbial diver-
sity could yield additional promising compounds.

5. Conclusion

There is a critical need for the development of novel antibi-
otics that are effective against the causative agents of Lyme
disease, for instance, B. garinii, B. burgdorferi, and B. afzelii.
Achieving this necessitates the identification of new thera-
peutic targets and the development of inhibitors that can
selectively and effectively inhibit these specific targets. In this
study, we focused on one bacterium, i.e., B. garinii, and used
a virtual screening approach to identify marine compounds
having inhibitory potential against B. garinii. We screened
a library of over 4000 marine compounds against the ADI
enzyme and identified several compounds with good bind-
ing and possible inhibition activity. We conclude that
marine compounds are a rich source of novel leads for drug
development against B. garinii. These compounds may be
further evaluated in vitro and in vivo, but our findings pro-
vide a promising starting point for the development of new
antibiotics that are urgently needed to combat Lyme disease.
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Supplementary Figure 1: protein ligand complex position at
various time stages. Water molecules and ions have not been
shown to visualize clear placement of the ligand. (A) First
frame at 0 ns, showing the ligand in CPK representation.
The protein is shown in the ribbon (colored by the second-
ary structure). (B) 1000th frame at 16 ns, showing the ligand
in CPK representation. The protein is shown in the ribbon
(purple colored). (C) 3000th frame at 48 ns, showing the
ligand in CPK representation. The protein is shown in the
ribbon (gray colored). (D) 4000th frame at 64 ns, showing
the ligand in CPK representation. The protein is shown in
the ribbon (wheat colored). (E) 5000th frame at 80 ns, show-
ing the ligand in CPK representation. The protein is shown
in the ribbon (orange colored). Supplementary Figure 2:
(A) RMSF of control compound. (B) Residue interaction of
control compound, retained for more than 30% of simula-
tion time. (C) Interaction fraction of residues during simula-
tion. Hydrogen bonds are shown in green, hydrophobic in
mauve, ionic in pink, and water bridges in blue. Supplemen-
tary Figure 3: (A) RMSF of CMNPD18759. (B) Interaction
fraction of residues during simulation. Hydrogen bonds are
shown in green, hydrophobic in mauve, ionic in pink, and
water bridges in blue. Supplementary Figure 4: (A) RMSD
plot of control and protein. R1 denotes the first replicate,
and R2 denotes the second replicate. (B) RMSD plot of
CMNPD18759 and the protein. R1 denotes the first repli-
cate, and R2 denotes the second replicate. (C) RMSF of the
control-protein complex. (D) RMSF of the CMNPD18759-
protein complex. (Supplementary Materials)
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