
Behavioural Neurology 27 (2013) 155–167 155
DOI 10.3233/BEN-2012-120263
IOS Press

New perspectives in transcranial magnetic
stimulation: Epilepsy, consciousness and the
perturbational approach
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Abstract. Transcranial magnetic stimulation (TMS) evolved from a simple method to stimulate the motor cortex to an invaluable
tool for multiple diagnostic, research, and therapeutic applications. A further development of this noninvasive brain stimulation
technique is concomitant electroencephalographic (EEG) recording during TMS. The theoretical underpinnings and the tech-
nological innovation of TMS-EEG co-registration have opened new ways to study brain excitability in neurological conditions
previously investigated with conventional EEG alone.
A further advance in TMS research applications is the perturbational approach: magnetic pulses can interfere not only with
dynamic, often pathological rhythms in epilepsy or altered consciousness states, but also modulate physiological states such
as sleep and sleep deprivation. So applied, TMS-EEG co-registration can reveal different neurophysiological and behavioral
patterns in the awake state, sleep or sleep deprivation.
In this review, we discuss the use of TMS and TMS-EEG co-registration in epilepsy, a still rather limited although promising area
of study.
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1. Standard TMS parameters and the novelty of
TMS-EEG co-registration in epilepsy

Transcranial magnetic stimulation (TMS) is an in-
triguing tool for studying epilepsy. Simple to perform
and relatively inexpensive, it relies on several nonin-
vasive parameters for measuring brain excitability in
seizures disorders [1]. Electroencephalography(EEG),
which has traditionally been considered as the stan-
dard clinical neurophysiological method to investigate
and define epileptic disorders, measures the extracel-
lular current flow of excitatory postsynaptic potential
(EPSP). With TMS several indexes of measurement
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of brain excitability can be obtained. TMS parame-
ters of cortical excitability depend on the stimulation
paradigm (single pulse or paired pulse). Single-pulse
TMS paradigm evaluates the motor threshold (MT),
the motor evoked response amplitude and the corti-
cal silent period (CSP), whereas short intracortical in-
hibition (SICI), short intracortical facilitation (SICF)
and long intracortical inhibition (LICI) are investigated
with paired-pulse TMS.

The motor threshold is the minimal threshold inten-
sity needed to obtain a motor response. Given a sta-
ble spinal motor excitability, MT is thought to rep-
resent a measure of pyramidal neuron membrane ex-
citability [2]. Progressive increments in pulse intensity
generate a recruitment curve: the resulting modulation
of motor evoked potential (MEP) amplitude to an in-
creasing intensity of TMS pulses provides a measure
of excitatory feedback to corticospinal output, chiefly
mediated by glutamate [3,4].
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The cortical silent period (CSP) is the lapse of the
electromyogram(EMG)when single-pulseTMS is giv-
en during a tonic voluntary contraction and it represents
GABAergic inhibition at different levels of the motor
pathways [5]. The first is the spinal level, with a reduc-
tion in muscle fiber spindles discharge and a concomi-
tant activation of inhibitory Renshaw’s cells [6]; the
second is the supraspinal level that constitutes the sec-
ond part of the silent period and reflects the activation
of inhibitory GABAB interneurons [7,8].

Different paired-pulse protocols yield different pa-
rameters such as SICI, SICF and LICI.

Short intracortical inhibition (SICI) consists of a first
conditioning subthreshold stimulus applied 2 to 5 msec
before the suprathreshold second test stimulus [9]. The
first subthreshold stimulus is believed to activate low-
threshold cortical inhibitory circuits which inhibit the
action potential generated by excitatory postsynaptic
potentials (EPSP) induced by the suprathreshold sec-
ond pulse. Attention should be paid when applying this
protocol, since with an interval of 2–3 msec and the
first stimulus at 95% of active MT a consistent contam-
ination by SICF is apparently recorded [10]. Nonethe-
less, this parameter likely reflects GABAA receptor-
mediated inhibition, as demonstrated in pharmacolog-
ical studies by Di Lazzaro et al. [11,12], Ziemann et
al. [13], and Florian et al. [14].

Interestingly, a decrease in SICI has been demon-
strated after sleep deprivation [15] but not during sleep
itself [16,17] presumably because of the GABA im-
balance known to occur in a sleep-deprived condition,
while an age-dependent relationship has recently been
demonstratedwith a SICI and LICI increase in older in-
dividuals owing to a GABA imbalance [18]. Moreover,
increasing test TMS intensities resulted in a progressive
reduction in the estimate of SICI, so that estimates of
SICI are systematically affected by the intensity of the
test TMS pulse, regardless of the excitability state [19].

Intracortical facilitation (ICF) paradigms have a
paradigm similar to SICI but with slightly longer (6–
20 ms) interstimulus intervals. Its physiology is not en-
tirely clear, and it is thought to excite excitatory neurons
of the motor cortex, with a net facilitatory effect de-
rived from a balance between strong NMDA-mediated
facilitation [20,21] and weaker GABAA-mediated in-
hibition [22,23].

Short intracortical facilitation (SICF) differs from
both SICI and ICF: the first stimulus is a suprathreshold
and the second is a subthreshold [24], or both pulses are
approximately of threshold intensity [25]. The obser-
vation that SICF occurs at intervals of about 1.5 msec

led to the hypothesis of a common generator of SICF
and I-waves: the second pulse would excite the axons
of the excitatory interneurons depolarised by the first
EPSP but that did not yet fire [26]. GABAA agonists
reduce SICF [24].

Still longer interstimulus (50–300 ms) interval pai-
red-pulse TMS-EMG protocolsmeasure GABAB rece-
ptor-mediated long-interval intracortical inhibition (LI-
CI) [27], reducing the MEP amplitude by 50% of the
stimulus applied alone [28], which is enhanced by the
GABAB receptor agonists [29,30] and baclofen [29,
31].

Furthermore, adjunctive collision techniques applied
to study the integration of different systems, such as
sensorymotor integration [32–35], employ a peripheral
sensory stimulus preceding the TMS pulse at various
intervals. Used primarily as experimental procedures,
these paradigms have furthered our understanding of
learning and plasticity.

Another paradigm to deliver TMS pulses is repeti-
tive TMS (rTMS) in which trains of multiple pulses are
applied at particular frequencies. This kind of stim-
ulation has more prolonged effects on brain circuits,
and the aftereffects depend on the intensity, frequency,
number of stimulations, and the state of contraction/
relaxation. The two major effects are a facilitatory one,
with frequencies > 1 Hz [36] and inhibitory effects
with frequencies < 1 Hz [37,38]. The duration of such
effects dependsmainly on the number of stimuli admin-
istered. In addition, a newly introduced paradigm, the
so-called theta-burst stimulation (TBS) [39], uses short
bursts of low intensity (80% of MT), high-frequency
(50Hz) pulses repeated at 5 Hz frequency, analogous to
the EEG theta rhythm, which is thought to exert an ef-
fect on the synapses between interneurons responsible
for the indirect spinal I1 wave and corticospinal neu-
rons [40]. Different theta-burst patterns, i.e., intermit-
tent vs. continuous, yield opposite effects on the stimu-
lated cortex [39,41,42]. A recent study byMcAllister et
al. [43] selectively targeted intracortical inhibitory net-
works for modulation by low-intensity TBS, but the re-
sponses appear to depend upon the particular paradigm
chosen [43].

Safety issues have been raised regarding the use of
rTMS in both healthy individuals and epileptic patients.
These concerns have been addressed in recent guide-
lines by Rossi et al. [44]. In their review of all reported
cases of TMS seizure induction, they concluded that the
risk is certainly very low for both the rTMS paradigm
and the single-pulse paradigm (16 cases out of 143 stud-
ies) [44], although rTMS seems to harbor a potentially
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Table 1
Principal TMS parameters for monitoring antiepileptic drug-induced changes in cortical excitability

Parameter Protocol Neurophysiological mechanism Modulating AED

Motor threshold (MT) Single-pulse stimulation Corticomotor neuron
membrane
excitability

Increased by sodium channel
antagonists (e.g., PHT, CBZ)

Short-interval
intracortical
inhibition (SICI)

Paired-pulse stimulation: conditioning stim-
ulus precedes test stimulus by 1–5 ms

GABAA-mediated
inhibition

Increased by GABAA agonists

Intracortical
facilitation (ICF)

Paired-pulse stimulation: conditioning stim-
ulus precedes test stimulus by 6–20 ms

Glutamate-mediated
Excitation

Decreased byGABAA agonists

Long-interval
intracortical
inhibition (LICI)

Paired-pulse stimulation: conditioning stim-
ulus precedes test stimulus by 50–300 ms

GABAB-mediated
inhibition

Increased by GABAB agonists

Cortical silent period
(CSP)

Single-pulse stimulation: measures lapse in
voluntary EMG activity after TMS

GABAB-mediated
inhibition

Increased by GABAB agonists;
decreased by GABAA agonists

higher risk. A critical issue is the possible interaction
of hazardous drugs, i.e., drugs that lower the seizure
threshold, since the majority of r-TMS-induced seizure
events occurred in individuals under therapy with such
drugs.

Given the overall safety of TMS, its potential clin-
ical application to epilepsy has advanced translational
research into how to combine TMS with other tech-
niques in a multimodality approach or to study behav-
ioral manifestations.

Recent advances in TMS-EEG co-registration in hu-
mans and animals may enhance clinical and transla-
tional TMS/rTMS applications [45–59]. At the time of
this writing, TMS-EEG is still mostly used in human
nonclinical studies of cortical excitability and connec-
tivity, and has not been extensively applied in patient
populations or animal disease models.

Presently, TMS-EEG holds promise as an experi-
mental method to noninvasively test seizure detection
algorithms in combination with abortive stimulation
patterns, perhaps as a tool that will aid in designing
other forms of responsive cortical stimulation.

Although EEG-guided TMS has not yet been ap-
plied in clinical practice, the potential for using real-
time EEG to direct TMS/rTMS is suggested by several
reports which demonstrate that the EEG state predicts
the cortical response to TMS. For example, MEP am-
plitudes correlate with EEG power in the alpha and be-
ta frequency range recorded with electrodes positioned
over the motor cortex [60]. This preferential state-
dependent response to TMS in healthy volunteers sug-
gests that studies of EEG guidance in patient popula-
tions is warranted and perhaps well-suited for epilepsy,
where the ictal and interictal EEG states are often eas-
ily distinguished by visual inspection or an automated

EEG algorithm. On a finer temporal scale, TMS-EEG
may enable time-locking of TMS to a specific phase
of an underlying EEG signal while testing the time
course of EEG reactivity to the magnetic pulse [46,47,
61,62]. Recently, time-frequency analysis has led to a
better understanding of the effect of brain stimulation
on brain oscillatory rhythms, with a rapid desynchro-
nization of activity in the alpha and beta bands and a
rapid synchronization of delta and theta activity [63].

TMS-compatible scalp EEG electrodes and electron-
ic components designed to minimize TMS artifacts are
relatively inexpensive and can be adapted to most ex-
isting clinical and research EEG setups for real-time
EEG recording during TMS/rTMS [53]. The possi-
ble applications of TMS-EEG recording include diag-
nostic measurement of cortical excitability, real-time
monitoring for epileptiform EEG activity during rTMS
in vulnerable populations, and designing therapeutic
rTMS protocols.

2. TMS and antiepileptic drugs

Our understanding of the TMS mode of action de-
rives, beyond the basic neurophysiological principles
underpinning it, from the study of the interaction of
drugs with a known mechanism of action and TMS pa-
rameters. Well-defined TMS measures are helpful tools
to define the mode of action of a study drug. Applying
this knowledge to a pathologically excitable brain and
observing the drug-inducedmodulations could point to
an underlying dysfunction.

As far as this review is concerned, there is a wealth
of data on the effects of antiepileptic drugs (AEDs) on
TMS parameters.
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Motor threshold, depending on cortico-cortical axon
excitability [64], is largely influenced by voltage-gated
sodium channels blockers, such as carbamazepine
(CBZ), phenytoin (PHT), and lamotrigine (LTG), that
elevate the MT [13,65–69]. Recently, Solinas et al.
suggested that a modulatory effect on high-threshold
calcium currents and perhaps on potassium channels
could also affect the MT, after observing its increase
after acute levetiracetam (LEV) administration [70,71].
Sulthiame, a carbonic anhydrase inhibitor, similarly in-
creases the MT, plausibly operating on the same sodi-
um voltage-gated channels [72]. Conversely, NMDA
antagonists such as ketamine lower it by indirectly in-
creasing AMPA-mediated transmission [73].

Motor evoked potential amplitude, which at high
stimulus intensity appears to be generated through
a chain of cortical excitatory interneurons [74,75],
is mainly modulated by neurotransmitters (glutamate,
GABA) and neurotransmission modulators (DA, NE,
5-HT, Ach). Among the AEDs, benzodiazepines, as
GABAA receptor modulators, decrease the MEP am-
plitude [76,77], as does zonisamide [78].

The cortical silent period (CSP) is postulated to de-
pend on a long-lasting inhibition of the motor cor-
tex [79], and GABAB receptors [80,81] seem to modu-
late the last part of the CSP through supraspinal struc-
tures [82,83]. This mechanism was proposed based on
the observation that tiagabine [80] and pregabalin [84]
lengthen CSP. An indirect effect on the same recep-
tor is believed to explain the effect induced by levetri-
racetam [70].

Studies investigating the effect of GABAA have pro-
duced discordant results: Ziemann [13,85] described
an increase after the administration of lorazepam and
ethanol, probably due to induced attentional deficits,
while a decrease after diazepam administrationwas ob-
served by Inghilleri et al., Palmieri et al. and Ilic et
al. [76,77,86].

Paired-pulse stimulation parameters include SICI,
ICF and SICF.

SICI is thought to be modulated by GABAA agonists
such as valproate (VPA) [87] and lorazepam [13,65],
which enhance its effect presumably by potentiating
the inhibitory postsynaptic potential (IPSP) induced by
the first subthreshold stimulus [2,9,12,86,88]. In fact,
the observation by Werhahn et al. [80] that tiagabine
decreases SICI is in line with this finding on the ba-
sis of drug auto-inhibition of inhibitory neurons, and
an analogous mechanism has also been proposed for
pregabalin [84].

The physiology of ICF is unclear; it has been pos-
tulated that its effects on the motor cortex excitatory

circuits [2] are mediated by excitatory neurotransmit-
ters such as NMDA receptors [89] and a weak inhibi-
tion mediated by GABAA receptors [90]. Based on
these findings, ICF decreases with GABAA agonists
such as the benzodiazepines [2,76], and with NMDA
agonists [20,91].

Finally, SICF is thought to act on the excitatory
interneurons that are depolarized by the first pulse
but have not yet fired. Thus, GABAA drugs (BDZ)
or increased GABA amounts (gabapentin [GBP]) re-
duce SICF [86,88,92], given that the first pulse elicits
GABAA-dependent IPSPs.

Several studies focused on the interaction of AEDs
and repetitive TMS (rTMS) [93,94]. Given that high-
frequency rTMS (5Hz) progressively increases the size
of MEPs and the duration of the CSP, the observa-
tion that CBZ, GBP and topiramate (TPM) abolish the
rTMS facilitation of MEPs but do not act on the CSP
leads to postulate a selective effect of rTMS on exci-
tatory intracortical interneurons, probably by interfer-
ing with rTMS-induced synaptic potentiation. A study
by Palermo et al. [95] in migraine patients, evaluating
the phosphene threshold with 1 Hz rTMS, suggested
a GABAergic modulatory mechanism of VPA that re-
stored inhibitory intracortical circuits.

3. TMS and anesthetics

Numerous studies have investigated intraoperative
anesthetics and their effects on neurophysiological pa-
rameters monitored during surgery. These are mainly
MEPs and sensory evoked potentials (SEPs). In the
surgical setting, the former are evoked mostly by tran-
scranial electrical stimulation (TES) and not standard
TMS, given that the TES device is more manageable –
less bulky and with electrodes fixed on the head of the
patient. In such settings, MEP evaluation involves am-
plitude modifications of the potential; and the influ-
ence on these parameters of anesthetics is important for
correctly evaluating the observed response.

To our knowledge, only one experimental study by
Ferrarelli et al. [96] investigated the effect of TMS and
midazolam-induced anesthesia, describing a decrease
in cortical effective connectivity in comparison to the
wake state in healthy individuals. The decreased ef-
fective cortical connectivity was described by the au-
thors as a restriction of the cortical areas where the
TMS-induced waves were recorded, and a modulation
of its duration and intensity. Interestingly, another pa-
per by the same group [97] showed a similar pattern,
neurophysiologically bridging the two states.
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4. TMS in epilepsy: A rationale for
neuromodulation

An attractive role for TMS-EEG in epilepsy may be
that of a neurophysiological stressor to provoke epilep-
tiform activity in a vulnerable cortical region. Induc-
tion of epileptiform discharges by TMS in human sub-
jects has been demonstrated, although very early stud-
ies suggested that TMS was no more likely to activate
a seizure focus on EEG than was hyperventilation in
epileptic patients [98–100]. However, more recently,
Valentin et al. [101] applied single-pulse TMS-EEG to
patients with focal epilepsy and to a group of healthy
controls. They identified two broad categories of EEG
evoked response: an early (< 100 ms) slow-wave re-
sponse and a late (100–1000 ms) response which was
either epileptiform in morphology (resembling a sharp
wave or spike) or was characterized by rhythmic EEG
activity.

An extension of these data, showing epileptiform
activity provoked by TMS-EEG and localized to one
hemisphere, is toward a more detailed seizure focus
localization, as is necessary in cases where surgical
seizure focus resection is considered.

The rationale for TMS as a therapeutic tool is based
on the fact that repetitive TMS (rTMS) can produce
effects that outlast the application of a train of stim-
uli by minutes or hours. Low-frequency rTMS (<
1 Hz) reduces cortical excitability, as evidenced by a
longer duration of the cortical silent period [102] and
reduced motor-evoked potential amplitudes [103]. In
contrast, higher frequencies (> 5 Hz) enhance corti-
cal excitability. These effects resemble long-term de-
pression (LTD) and long-term potentiation (LTP), two
forms of synaptic plasticity elicited in animal models
by low- and high-frequency electrical stimulation of
cortical circuitry.

In epilepsy, it is the inhibitory effect of low (<
1 Hz) rTMS that is most widely used to suppress
seizures, with encouraging results in open-label tri-
als [104–106]. Yet, results from placebo-controlled tri-
als are mixed, with one trial demonstrating a reduction
in seizures and improvement of (off-line) EEG [107],
and two others showing insignificant clinical improve-
ment, or improvement of the EEG without a significant
reduction in seizures [108–110]. Finally, Brodbeck et
al. [111] found no decrease in seizure frequency after
rTMS [111]. Among the factors contributing to the
inconsistent findings in antiepileptic rTMS trials may
be the difficulty in selecting an appropriate intensity of
extramotor TMS, i.e., stimulation output intensity out-

side the motor cortex. Another limitation is the shallow
penetration effect of the induced electromagnetic field
that stimulates only the superficial cortical layers, but is
unable to affect the functioning and discharge of deep
subcortical studies. This consideration may explain the
better results observed in patients with neocortical fo-
ci [112], and the overall better results of other brain
stimulation techniques. A recently concluded multi-
center, double-blind, randomized trial [113] showed
over a 3-year follow-up a 56% reduction in seizures in
patients with medically refractory partial or secondary
generalized seizures implanted with electrodes stimu-
lationing the anterior nucleus of thalamus. Other deep
brain stimulation targets are: the centromedian thala-
mus, with outcomes depending on the seizure type in
a small series by Velasco et al. [114] or no effect at
all [115,116]; the subthalamic nucleus, with a signif-
icant reduction in seizure frequency, although results
are based on small samples [117–121]; the cerebel-
lum, with little [122] or no improvement [123,124]; the
posterior hypothalamus, usually stimulated in cluster
headache, but proved efficacious also in two epileptic
patients by Franzini et al. [125]; the head of the cau-
date [126–128]; and the hippocampus, which is mainly
stimulated in mesial temporal epilepsy refractory or not
amenable to surgery, or in cases of dual pathology, that
yielded discordant results [129–131]. Anecdotally, the
corpusm callosum [132] and the locus ceruleus [133]
have also been stimulated with little or no benefit. An-
other stimulation method is vagal nerve stimulation
(VNS) that showed an effect comparable to those seen
in trials of new antiepileptic drugs for patients with
refractory complex partial seizures, although selection
criteria seem to be fundamental in the outcome [134–
143].

The possibility to combine TMS and EEG could im-
prove not only the sensitivity of the TMS method but
also the efficacy of neurostimulation. In the clinical
setting, where the majority of TMS/rTMS work has fo-
cused on the interictal state, TMS-EEG can be applied
in the ictal state to identify real-time EEG changes in-
duced by rTMS. TMS-EEG also detects seizure im-
provement or exacerbation, making it a valuable clini-
cal tool for everyday practice. TMS-EEG was recent-
ly applied in a small series of epilepsia partialis con-
tinua (EPC) to detect seizure suppression and to ex-
clude seizure exacerbation during rTMS in animalmod-
els [144–146] and in humans [147–150]. Encourag-
ingly, rTMS did not induce seizures, while seizure sup-
pressionwas detected in some instances. Similar TMS-
EEG methods may be of use to monitor for evoked
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epileptiform activity when rTMS is administered to
treat non-epileptic symptoms such as mood disorder,
motor dysfunction or chronic pain in seizure-prone pa-
tients, such as those with recent stroke, neurodegener-
ative disease or underlying epilepsy, or in patients on
seizure threshold-lowering drugs.

A future field of application of TMS-EEG techniques
is related to the emerging concept of systemic epilepsy,
moving a step forward from the concept of an epilep-
togenic area to the idea of an overall pathological cir-
cuitry in the epileptic brain. This concept holds true
particularly for generalized epilepsies, based on obser-
vations by Manganotti et al. [33,34] and Del Felice et
al. [151] that an overall higher excitability is elicited
by TMS in juvenile myoclonic epilepsy (JME).

5. The study of consciousness: The perturbational
approach

In theoretical neuroscience, consciousness does not
correspond to activity level, access to sensory inputs
or neural synchronization per se, but rather consists
of the ability of different areas of the thalamocortical
system to interact causally with each other to form an
integrated whole. The information integration theory
of consciousness (IITC) argues that consciousness is an
integrated information state and that the brain should
be able to generate consciousness to the extent that it
has a large series of available states (information), yet it
cannot be decomposed into a collection of causally in-
dependent subsystems (integration) [152,153] To eval-
uate the brain’s ability to integrate information across
distributed cortical regions, it may not be sufficient to
observe the brain in action. Instead, it could be use-
ful to employ a perturbational approach and examine
to what extent different regions of the thalamocortical
system can interact causally (integration) and produce
specific responses (information). With TMS-EEG the
immediate reaction of the entire thalamocortical system
can be recorded to controlled perturbations of different
cortical areas. Most recent studies have used sleep as
a model of unconsciousness in which TMS-EEG is ap-
pliedto detect changes in the ability of the thalamocor-
tical system to integrate information when the level of
consciousness fluctuates across the sleep-wake cycle.

Massimini et al. [154] showed that in normal sub-
jects TMS triggering of slow waves reveals intrinsic
bistability in the thalamocortical networks during non-
rapid eye movement (NREM) sleep. Moreover, evoked
slow waves lead to a deepening of sleep and an in-

crease in EEG slow-wave activity (0.5–4.5 Hz), which
is thought to play a role in brain restoration and memo-
ry consolidation. It is well known that during much of
sleep cortical neurons undergo near-synchronous slow
oscillation cycles in membrane potential, which give
rise to the largest spontaneous waves observed on the
normal electroencephalogram [155]. Slow oscillations
underlie characteristic features of the sleep EEG, such
as slow waves and spindles.

When combined, TMS and EEG provide a means
to study the reactivity of cortical regions in the intact
brain; also the reactivity of non-motor cortical areas
related with higher-order functions is now apprecia-
ble. A recent epochal finding in cortical reactivity is
that neuronal activation is induced by remarkably low
stimulation intensities [155]. This knowledge is sig-
nificant when optimizing experimental setups for max-
imal patient safety. Stimulation of different cortical
areas evokes different patterns of remote EEG activity,
confirming the viability of TMS–EEG for the study of
cortico-cortical connections. In this review, we dis-
cuss these and other notable findings related to TMS–
EEG [156]. Under investigation are differentmodels of
loss of consciousness such as deep anesthesia in normal
subjects [157] and vegetative states [158,159].

6. Consciousness and epilepsy

Epilepsy can provide a study model for investigat-
ing the dynamic modifications of consciousness. In
epilepsy, brain-state changes that may occur long be-
fore seizure onset, and potentially triggering a seizure,
are not well understood. The estimation of dynamic
changes in brain state associated with disease or stim-
ulation is relevant for both diagnostic purposes and op-
timizing therapeutic stimulation.

In epilepsy, sleep and sleep deprivation are two con-
ditions that dynamically modulate brain activity, with
important clinical consequences. TMS has been used
to further our understanding of the effects of sleep and
sleep deprivation on cortical excitability in healthy and
epileptic patients. In healthy subjects, sleep depriva-
tion produces a mild decrease in cortical excitability
during nighttime that is probably related to drowsiness,
although no differences in TMS values have been ob-
served either before or after sleep deprivation [33]. It
has been reported that corticospinal fibers are normal-
ly activated by magnetic stimulation, while motor ex-
citability is decreased during different sleep stages [17,
33]. In contrast, other authors [160] have observed
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that in normal subjects, 24 hours of sleep deprivation
produce an increase in motor excitability as studied by
TMS in two sessions, namely, before and after sleep
deprivation. The different effects on motor excitabili-
ty of sleep deprivation could be due to the differences
in study methods and objectives. While earlier stud-
ies were performed using TMS alone, an important
advance has been made with the application of TMS-
EEG- co-registration to the effects of sleep and sleep
deprivation in healthy subjects [151]. The authors ob-
served a significant effect of sleep deprivation on cor-
tical excitability, defined as an amplitude increase of
TMS evoked potentials (TEPs). Nevertheless, the sen-
sitivity of TMS, and to a major extent of TMS-EEG co-
registration, to sleep deprivation has introduced a new
feature in clinical research as it allows the generation
of hypotheses to account for the changes in motor ex-
citability in epileptic patients after activation tests com-
monly used in clinical practice (i.e., sleep deprivation).
Following this line of research, the study of motor ex-
citability in epileptic patients after sleep deprivation
demonstrated a reduction in SICI in benign myoclonic
epilepsy patients compared to healthy subjects. The
paired-pulse method allows measurement of so-called
short latency intracortical inhibition (SICI) and short
latency intracortical facilitation (SICF) at short inter-
stimulus intervals (ISIs) (1–25 msec) [2]. Intracorti-
cal inhibition and facilitation are thought to reflect the
excitability of separate populations of interneurons in-
trinsic to the cortical motor area. In fact, a reduction in
cortical inhibition has been observed in different forms
of epilepsy, including progressive myoclonic epilep-
sy [34,35,161], juvenilemyoclonic epilepsy (JME) [33,
162], generalized epilepsy [163], and partial epilep-
sy [164,165]. All these studies have been performed in
epileptic patients when awake after normal sleep. A re-
cent TMS-EEG study in JME patients after partial sleep
deprivation described an impressive increase in cortical
excitability, as measured by amplitude augmentation of
TEP [151].

Information on sleep brain-states in epilepsy, based
on either motor excitability tested by TMS or EEG
reactivity to TMS perturbation is lacking. Salih et
al. [166] investigated motor cortical excitability with
paired TMSwithout a TMS-EEG systemduringNREM
sleep in epileptic patients and showed an increase in
intracortical excitability during sleep with a pattern op-
posite that observed in normal subjects. Del Felice
et al. [151] observed an increase in excitability during
NREM sleep (mainly S2) in JME patients but not in
healthy controls. Similarly, we have only few case re-

ports on the effect of TMS delivered inside a parox-
ysmal activity, with the stimulus evoked by either pe-
ripheral stimulation [32] or spontaneous [167]. Some
studies used a TMS-EEG system to avoid delivering
TMS during spike and wave activity and to test motor
excitability outside paroxysmal activity [168].

In generalized epilepsy with the typical burst of 3 Hz
spikes andwaves, there are usually transitory periods of
loss of consciousness without more complex epileptic
phenomena. In other forms of epilepsy, such as Janz
syndrome epilepsy or focal epilepsy, diverse and dis-
tinct episodes of loss of consciousness can occur. What
remains to be discovered is the possible causal rela-
tionship between different levels of cortical excitability
and its prevalent cortical localization, and the degree of
consciousness impairment.

7. Future directions

TMS-EEG allows the investigation of brain ex-
citability correlated to paroxysmal activity and to
episodes of loss of consciousness in epileptic patients.
The possibility to deliver a magnetic pulse before or
during symptomatic or asymptomatic discharges mon-
itored by TMS-EEG will be a further step toward un-
derstanding the level of integration of the thalamocor-
tical system. The study of sleep in epilepsy by brain
stimulation is an open field where the introduction of
the perturbation method during sleep could add im-
portant information on the integration and connectivity
of cerebral circuitry in epilepsy. The study of focal
seizures and focal paroxysms by means of TMS can
drive important advances in the clinical setting, where
translational methods are evolving.

8. Conclusions

At present, the clinical role of TMS-EEG in epilep-
sy is uncertain, and a discussion of its applications in
the clinical arena is necessarily speculative. However,
recent data suggest that exploration in patient popula-
tions is warranted, and the adaptation of TMS-EEG to
translational research may help to clarify its role as a
diagnostic or therapeutic tool. Especially attractive in
clinical epilepsy are the prospects for TMS-EEG as a
way to test regional cortical excitability, to more accu-
rately detect an activation thresholds for the extramotor
cortex and to determine an anticonvulsive effect or a
proconvulsive side effect of repetitive stimulation. As
the necessary technology for TMS-EEG is now widely
available, meaningful clinical and translational trials in
the near future seem likely.
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