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Brain iron load is one of the most important neuropathological hallmarks in movement disorders. Specifically, the iron provides
most of the paramagnetic metal signals in the brain and its accumulation seems to play a key role, although not completely
explained, in the degeneration of the basal ganglia, as well as other brain structures. Moreover, iron distribution patterns have
been implicated in depicting different movement disorders. This work reviewed current literature on Magnetic Resonance
Imaging for Brain Iron Detection and Quantification (MRI-BIDQ) in neurodegenerative processes underlying movement
disorders.

1. Introduction

In movement disorders, conventional magnetic resonance
imaging (cMRI) is the most common and least invasive tech-
nique of neuroimaging. However, cMRI often does not allow
for the detection pathological changes of disease [1, 2]. Several
MRI techniques are sensitive to magnetic susceptibility (an
intrinsic magnetic property of materials) variations induced
by paramagnetic materials, which are able to detect subtle
changes in several conditions [3]. Moreover, iron provides
most of the paramagnetic metal signals in the brain, and their
increases are observed in different neurodegenerative diseases,
not only in neurodegeneration with brain iron accumulation

(NBIA) syndrome, but also in other disorders including Hun-
tington’s disease (HD) [4] and Parkinson’s disease (PD) [5, 6].

The iron deposition in the corresponding area of neuronal
cell loss and astrocytic gliosis does not necessarily indicate that
it plays a causative role but however might consist in an epiphe-
nomenon of altered metal homeostasis [7]. On the other hand,
an increase in toxic’ iron may also enable the oxidative stress
that underlies progression of disease [8]—neurons are highly
susceptible to free radical-mediated injury due to their require-
ment for high levels of oxidative metabolism, and the fact that
neuronal membranes are rich in polyunsaturated fatty acids [9].

Current literature is incomplete regarding the role of
iron accumulation in the brain and its effects. This work
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reviewed current literature on Magnetic Resonance Imaging
for Brain Iron Detection and Quantification (MRI-BIDQ) in
neurodegenerative processes underlying movement
disorders.

2. MRI for Brain Iron Detection and
Quantification (MRI-BIDQ)

Different MRI techniques are currently available for investi-
gation and detection of brain iron patterns, of which, some
are intended to generate iron-weighted contrasts (qualitative
assessment), whereas others have been designed to quantify
iron concentrations and distributions [10].

The interaction between water molecules and paramag-
netic iron complexes, such as ferritin and hemosiderin, con-
tribute to the transversal magnetization dephasing [11].
Being so, T2-weighted spin-echo and gradient echo (GRE),
as well as T2∗-weighted GRE MRI techniques, have been
extensively used in the study of deep gray matter nuclei in
order to evaluate the presence of iron accumulation [12].
Consequently, the paramagnetic iron causes a progressive
signal reduction in T2 and T2∗-weighted MRI, proportion-
ally to its concentration [13] (Figure 1).

Additionally, other works have focused on assessing the
relaxation rates R2 (1/T2) and R2∗ (1/T2∗), which in many
cases seem to be linearly related to iron concentration [10]:
at the same time, relaxation rates, such as T2 and T2∗ relax-
ation times, are known to be influenced not only by iron
deposition but also by other diamagnetic and paramagnetic
deposits, as well as water changes across the tissues; since
water content in brain tissue interferes on the relationship
between iron and R2/R2∗ parameters [14].

Phase images are considered a direct measure of the var-
iations of magnetic susceptibility (Δχ), which can be defined
as the magnetic response of a substance when this response
is placed in an external magnetic field: a specific property of
each substance, which influences the local magnetic field
values, in accordance with the following relation:

ΔB = cVΔχB0, ð1Þ

where c is the concentration of the substance, V is the vol-
ume of the voxel, and B0 is the applied magnetic field [15].
Paramagnetic substances have a positive susceptibility χ
and strengthen the magnetic field, whereas diamagnetic sub-
stances, such as calcium phosphate, present a negative χ,
and weaken the local magnetic field. Phase information is
mathematically regulated by the relation:

Φ phaseð Þ = −ɣΔBt, ð2Þ

where ɣ is the gyromagnetic constant, which is equal to 2π
∙42.58MHz/T for protons, ΔB represents the induced mag-
netic field variation, and t is the time at which the signal is
measured (usually the echo time TE from a gradient echo
sequence) [6]. Thus, paramagnetic iron generates a negative
phase value (Φ). In particular, the more iron is present in a
tissue, the more phase values of that tissue decrease. The
high-pass (HP) filters can be applied to phase images to

remove low spatial-frequency artefacts (HP-filtered phase
images), principally related to the static magnetic field inho-
mogeneities [16].

Susceptibility-weighted imaging (SWI) provides an addi-
tional measure for detecting iron-related changes by com-
bining magnitude and phase T2∗-weighted data into a
single image [17]. The phase image is corrected by applying
a HP filter to remove undesirable artefacts. A phase mask is
created from the HP-filtered phase image to enhance the
contrast in the magnitude image by suppressing pixels with
definite phase values. To generate the final SWI image, the
phase mask is multiplied with the magnitude several times
until the desired contrast is obtained [16]. The SWI images
resulted to be extremely sensitive in the detection of diamag-
netic and paramagnetic substances [18, 19] (Figure 2).

A novel method to assess paramagnetic and diamagnetic
substances is represented by quantitative susceptibility map-
ping (QSM) [20], that is, an advanced MRI postprocessing
technique solving the inverse source-effect problem to quan-
tify local tissue magnetic susceptibility from the major mag-
netic field distribution (Figure 1). QSM extracts the spatial
distribution of magnetic susceptibility from T2∗-weighted
MRI phase or local field data, by removing the signal contri-
bution of the non-biological background field ,that is, an
advanced MRI postprocessing technique solving the inverse
source-effect problem to quantify local tissue magnetic sus-
ceptibility from the major magnetic field distribution
(Figure 1). QSM extracts the spatial distribution of magnetic
susceptibility from T2∗-weighted MRI phase or local field
data, by removing the signal contribution of the nonbiolog-
ical background field [21]. The QSM has proven to be an
accurate method for estimating iron levels in vivo, by show-
ing an increased susceptibility [22].

3. Materials and Methods

3.1. Search Strategy. A thorough literature search was con-
ducted using the online database PubMed, by entering the
key words “T2”, “T2∗”, “R2”, “R2∗”, “susceptibility
weighted imaging”, “SWI”, “SWAN”, “quantitative suscep-
tibility mapping”, and “QSM” from 1990 to 2020. We
linked “Parkinson”, “parkinsonisms”, “Huntington”, “cho-
rea”, “hemiballism”, “essential tremor”, “neurodegeneration
with brain iron accumulation”, “NBIA”, Hallervorden-
Spatz”, “tic”, “Gilles de la Tourette”, “dystonia”, “Wilson”,
and “aging”.

4. Results

4.1. MRI-BIDQ in Normal Aging. The brain iron accumula-
tion is not only a pathologic event but it also represents a
physiological process leading to a higher iron content in
some brain structures throughout life. In 1958, Hallgren
and Sourander characterized iron content in the deep grey
matter at different ages [23]. A correlation between age
and decreased signal intensity indicating a higher iron depo-
sition in the basal ganglia (BG) has been reported recently in
SWI. In fact, iron deposition increases in the putamen, white
frontal matter, and red nucleus (RN) significantly from 22 to
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70 years, differently from globus pallidum (GP), substantia
nigra (SN), and caudate nucleus (CN) that do not increase
strongly over the same period of life, suggesting that there
is a rapid iron increase in these structures over the first
two decades and a slower increase afterwards [24, 25]. MR
field-dependent relaxivity increase (FDRI) estimates the

transverse relaxation change across field strengths. FDRI
has been reported to be more specific than SWI in detecting
age-dependent accumulation of nonheme brain iron [13]
(Table 1).

4.2. MRI-BIDQ in Essential Tremor. Although the patho-
physiology of essential tremor (ET) remains poorly under-
stood [26], recent investigations have provided evidence of
increased iron accumulation in anatomical regions that are
critically associated with ET. Moreover, GP, SN, and right
dentate nucleus have revealed differences in T2∗ signals,
when compared to controls whereas R2∗ values of the GP
have further supported these findings [27]. Conversely, an
analysis of nigral R2∗ did not show significant different
values between controls and ET patients, suggesting a nor-
mal iron load [28] (Table 1).

The SWI, and in particular the detection of the
nigrosome-1 area, has proven to be of aid in the differentia-
tion between ET and PD patients, with high sensitivity and
specificity [29]. A visual analysis combining neuromelanin-
sensitive magnetic resonance imaging (NM-MRI) and
nigrosome-1 imaging using QSM in SN has also shown a
greater iron deposition in PD than ET [30].

Regarding surgical options for treating medication-
refractory symptoms, these include thalamotomy or deep
brain stimulation (DBS), which is able to improve symp-
tomatology from 50% to 90% [31]. Hence, the in vivo
visualization of the anatomical areas targeted by DBS has
been the focus of numerous studies. Although the subtha-
lamic nucleus (STN) is currently the preferred structure
for DBS, the placement of an electrode in the zona incerta
(ZI) offers greater therapeutic benefit in suppressing
tremor in both PD and ET patients. Specifically, in two
recent studies, the ZI was best visualized with T2∗-
FLASH2D sequences by 3.0T [32] and 7T MRI [33].
Additionally, the detection of neurovascular structures
with DBS planning in patients with different kinds of
movement disorders has had significantly higher sensitivity
on SWI when compared to T1-Gd enhanced MRI [34].

4.3. MRI-BIDQ in Choreic Disorders

4.3.1. Huntington’s Disease. HD is a genetic neuropsychiatric
disorder that causes behavioral, cognitive, and motor dys-
function [35]. The pathological cascade of events in HD is
complex and not fully understood. Transition metals, partic-
ularly iron, have been reported a role in its pathogenesis [4].

Positive magnetic susceptibility (X) Paramagnetic iron
substances

Relaxation rates increase ∝ to iron
concentration (i.e. relaxation times reduction)

QSM solves the inverse source-effect problem
to obtain the X spatial distribution by removing

the contribution of non-biological fields

High-pass filtering to remove
low spatial-frequency artifacts

(HP-filtered phase images)

SWI enhances contrast in
magnitude image by suppressing
pixels with definite phase values

Negative MRI phase changes ∝ to
iron concentration (phase images)

MRI signal reduction ∝ to iron
concentration (magnitude images)

e.g. ferritin and hemosiderin

Figure 1: Iron detection related to MRI techniques.

T2 R2

T2⁎

Ф

R2⁎

QSM

SWI

Figure 2: Rendering of axial sequence comparison in the same
patient; iron distribution is much more detected by T2∗, R2∗,
SWI, and QSM.
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Both in vivo and ex vivo findings support the hypothesis of
iron excess in the brain of HD patients, although there is
no current evidence implicating early increases in brain iron
as a trigger of the pathological process [36]. Histological
reports have described the profound cellular structure dete-
riorations of the putamen and CN [37], as well as iron accu-
mulation [38, 39].

Regarding the assessment of iron accumulation, various
different techniques are available including T2, R2, and
R2∗ relaxometry, magnetic field correlation (MFC), FDRI,
SWI, and QSM. Particularly, T2 hypointensities in the BG
have been associated with higher Unified Huntington’s Dis-
ease Rating Scale (UHDRS) values, higher CAG numbers,
and greater probabilities of developing symptoms within 5
years in gene carriers; suggesting that T2 hypointensities in
the BG might be a biomarker for HD [40]. Moreover,
increased brain iron in the GP (not in the putamen or CN)
of pre-manifest patients (pre-HD) has been reported, sug-
gesting that this iron accumulation might start long before
disease onset.

Using R2 relaxometry, an increased iron deposition in
the GP has been reported [41]. Moreover, in a multimodal
approach with T1/T2/R2 measurements, it has been
observed that increased iron in BG was independent of aging
and started before any clinical manifestation of HD [42]; all
the patients evidenced increased ferritin in their BGs, partic-
ularly in the GP during early disease stage. Moreover, an
increase in R2∗, as well as atrophy in both CN and putamen,
have been reported, suggesting that susceptibility values in
these structures are inversely correlated with structure vol-
ume and directly correlated with genetic testing [43].

Using MFC values, increased levels of iron deposition in
various brain structures have been observed [7, 44], without
any observed differences between pre-HD and controls. In
fact, iron accumulation has been revealed in both CN and
putamen of patients with early HD vs. both controls and
pre-HD. These findings are in contrast with those from
Vyzimal et al. [41] and Jurgens et al. [40], but in line with
those obtained by Bartzokis et al. [45]. The latter author
reported on an increase in the FDRI signals in the CN, puta-
men, and GP of HD patients. An extension of this study [46]
evidenced decreased signals in both the frontal white matter
and genu of the corpus callosum.

For SWI, pre-HD, and HD showed progressive increases
in the phase evolution of the GP, CN, and putamen, associ-
ated with increased disease severity, beginning in pre-HD
long before the presence of clinical symptoms and increasing
with proximity to the expected onset. Advanced HD patients
have even shown higher field mapping values in the cortex
[47]. Moreover, a hypointense signal of the GP bilaterally
together with a milder hypointensity at the borders of the
putamen and the CN in two cases of young onset HD has
been reported [48].

QSM evaluation has been used in a cross-sectional inves-
tigation, showing significantly increased iron deposition in
the GP and CN, both in pre-HD and HD, compared with
controls. Moreover, a significant positive correlation
between iron deposition increase in both putamen and CN,
and disease burden score has been found [49]. Furthermore,

van Bergen et al. demonstrated, by QSM, an increase of iron
levels in the CN, putamen, and GP of pre-HD subjects [43]
(Table 1).

In conclusion, whether or not, iron deposition is found
elevated in the BG the structures seem to be moderately
dependent on the technique used. Conceivably, the changing
form of iron present in the different structures might be
responsible for the variance in the reported results. Finally,
whether one considers iron to be elevated in pre-HD might
plausibly depend on an accurate interpretation of the clinical
cut-off points [36].

4.3.2. Chorea-Acanthocytosis. Chorea-acanthocytosis
(ChAc) is a rare hereditary disorder characterized by invol-
untary choreiform movements and erythrocytic acanthocy-
tosis [50]. The MRI in ChAc is typically reported as
resembling HD: marked atrophy of the CN and putamen,
a lesser extent of the cortex, an increased signal in the atro-
phic striatum on T2-weighted imaging, and rarely white
matter abnormalities in the periventricular area bilaterally
[51]. In a single case, an increased iron level by SWI has been
observed in the corresponding area of T2 hyperintensity [52]
(Table 1).

4.3.3. Hemichorea-Hemiballism. Hemichorea-hemiballism
(HCHB) is defined as a unilateral, involuntary, random
movement disorder and secondary to lesions in the contra-
lateral BG. Nonketotic hyperglycemia is a rarer cause for this
presentation [53], especially in elderly patients with poorly
controlled diabetes mellitus. The characteristic imaging sign
is the striatal hyperintensity on T1-weighted images with no
signal abnormality on T2, fluid attenuation inversion recov-
ery (FLAIR), GRE, or DWI [54].

The pathophysiological basis of T1 shortening remains
unclear. Puneet Mittal, describing SWI findings in a case of
HCHB, excluded hemorrhage as the etiology of HCHB syn-
drome, based on the disproportionate extensive hyperinten-
sity on the initial T1W sequence with comparatively little
SWI hypointensity. The presence of ipsilateral prominent
cortical veins supported the transient vascular insult on the
ipsilateral side [55]. Similarly, Dharsono et al., in a single
case observed over 5 months, an improvement of hyperin-
tensity on T1-MRI and a more extensive and increased
SWI hypointensity within the affected corpus striatum, sug-
gesting an ongoing process of deposition of paramagnetic
material. Iron-deposition-related neurotoxicity could
explain the progressive malacic change demonstrated on
follow-up imaging [56] (Table 1). Cherian et al. suggested
a paramagnetic mineral deposition in the affected putamen
caused by swollen gemistocytes that express metallothionein
and zinc secondary to ischemic insult [57]. A recent
accepted theory of HCHB is that of hypoperfusion due to
hyperviscosity of blood because of hyperglycemia, which
could enhance anaerobic metabolism leading to reduced
GABA levels and increased thalamocortical activity [58].
Ohara et al. described autopsy-proven lacunar infarcts asso-
ciated with reactive astrocytosis within the affected putamen
[59], while Neal et al. described the mineral deposition in
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hypertrophied astrocytes located within the ischemic
brain [60].

4.4. MRI-BIDQ in Degenerative Parkinsonisms

4.4.1. Parkinson’s Disease. In PD, SN is one of the main
brain regions which is early on affected by the neurodegen-
erative process. The anatomical alterations of SN can be
detected using T2∗-weighted GE sequences on 7T MRI,
which can show changes in the boundaries between SN
and the crus cerebri, including a loss of the SN’s smooth sur-
face with its lateral and anterior profiles, replaced by an
undulated aspect predominating in the more severely
affected side, located in the rostral region [61]. In fact, Cho
et al. have suggested that the loss of these smooth and clear
arch-like boundaries might serve as a diagnostic marker
[62]. Utilizing 7T MRI, T2∗ nigrosomal hyperintensity is
not always visible in PD patients [61, 63]. Furthermore,
T2∗-weighted and neuromelanin sensitive sequences have
detected a hypointense signal in the pars compacta of the
substantia nigra (SNc) [64], and studies localizing SNpc with
neuromelanin-sensitive contrast have evidenced PD related
iron changes, particularly in its lateral-ventral part [65].
Finally, the overlap between the iron content, determined
by R2∗ mapping, and neuromelanin in the SNpc, has been
proposed as a neuroimaging biomarker for diagnosing PD
[66]. By means of T2 and T2∗-MRI, increased iron contents
in the GP, CN and slightly more so, in the SNc have been
reported [67]. The association between SN iron load and
clinical features has been recently explored: SN iron load
has been correlated positively with disease duration and
UPDRS-III off score; Montreal Cognitive Assessment, Spa-
tial Span, and Graded Naming Test scores have all been
reported to be inversely associated with SN iron accumula-
tion, whereas, Wechsler Adult Intelligence Scale-IV Similar-
ities score has been reported to have an inverse relationship
with iron load in the putamen, GP, CN, RN, SN, dentate
nucleus, and frontal white matter [68]. A correlation with
the severity of PD motor impairment has also been observed
by quantitative R2∗ in SN and GP [69].

Regarding SWI Signal Intensity (SWI-SI), PD patients
had significant differences in SN compared to controls.
The absence of the lateral “bright spot” in the SN has also
been reported [70]. Specifically, the “swallow tail” appear-
ance, characterized by hyperintensity in the dorsolateral
SN on axial SWI, is characterized as a unilateral or bilateral
loss [71, 72]. Instead, the absence of “swallow tail” sign in
PD patients more the often corresponds to a reduction of
nigrosome-1 and a loss of its signal intensity [71]; despite
any increase iron deposition, probably caused by different
tissue alterations, including neuromelanin loss, changes in
iron oxidation state, or dopaminergic cell degeneration
[66], confirmed on (123) I-FP-CIT SPECT [73]. With dis-
ease progression, the loss of hyperintensity also tends to
extend to the nigrosome-4 [74]. On SWI, the absence of
nigrosome-1’s typical droplet-like high signal may serve as
a marker for PD given its high sensitivity and specificity
[75]. Likewise, the absence of dorsolateral nigral hyperinten-
sity (DNH) on SWI-like images can reach up to 97% [76]. In

fact, several SWI studies have produced conflicting results
concerning disease progression: the loss of DNH on 3T
SWI in patients at H&Y stages I–II and III–IV [72]. Addi-
tionally, DNH loss is missing in at least two-thirds of the
subjects presenting iRBD, it might be a predictor of prodro-
mal PD [77], given that it is known that iRBD patients com-
monly have ipsilateral deficiency of the dopamine
transporter [78]. Nevertheless, whenever the swallow-tail
sign has marginal diagnostic accuracy in discriminating PD
from atypical parkinsonism on 3T SWI sequences [79], the
detection of nigrosome-1 could be a marker for differentiat-
ing idiopathic PD and atypical progressive parkinsonism
from controls [80].

Additionally, a loss of the trilaminar organization (a cen-
tral hyperintense layer between two hypointense laminae)
has been reported in SN in PD patients utilizing 7.0 GRE
3D SWI, due to its high sensitivity, specificity, positive pre-
dictive value, and negative predictive value [70].

Regarding the pathological undulated aspect of the SN
lateral and anterior profile, detected by T2∗-weighted MRI,
it cannot be confirmed by SWI and, according to Cosottini
et al., it is not suitable for diagnosing PD, since SN changes
in PD do not involve the reticular component. Moreover, the
anterior border of the pars reticulata belonging to the sub-
stantia nigra (SNr) cannot be precisely identified, as extends
beyond its anterior anatomic landmark [70, 81]. Finally, in
the medial SNc, SWI has been reported to have a lower sig-
nal intensity compared to controls [69], even at 2-year
follow-up [67].

Using SWI, the corrected phase (CP) values of the SN
are generally significantly low in PD patients [82]. With
regard to phase shift values, which correlate positively with
iron concentration, these are significantly higher in the SN of
PD patients, compared to controls [83], therein suggesting a
significant increase in the most affected side [84]. In fact, the
SNc in PD patients has been reported to have lower phase
radian values, compared with controls [85]. These values have
been found to have a positive correlation with disease severity,
applying the UPDRS motor score as along with the
bradykinesia-rigidity subscore [84]. Furthermore, the average
phase values for bilateral SN can have a strong inverse correla-
tion with the UPDRSmotor score in those patients having aki-
netic/rigidity-predominant symptoms [86].

CN and RN have also been correlated with low SWI
phase radian values when compared with healthy controls
[85]. Moreover, differences in the anterior GP have been
reported in patients with postural instability [69]. Moreover,
the corrected phase values of RN and putamen also have
been reported to be significantly decreased in PD patients,
showing bilateral symmetry in iron deposition [82].
Whereas, Liu et al., using corrected phase values, did not
observe in CN and GP significant differences between PD
patients and controls [87]. Likewise, a 3T SWI study
reported no significant relationship between the UPDRS
motor score and overall signal intensities of RN, putamen,
GP, head of the CN, and thalamus. While in the same study,
SWI hypointensity in the putamen was significantly corre-
lated with the obtained Tinetti total score [88].
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A significant increase in SN susceptibility on 3.0T
enhanced T2∗-weighted angiography scanning (ESWAN)
has been reported in PD patients, both in tremor dominant
and akinetic/rigid variants [89]. In fact, the ESWAN is a 3D
multi-echo gradient-echo pulse sequence with partial flow
compensation, using multiple magnitude or phase images
with different echo times for image generation: the first echo
applies the arterial inflow effect, whereas longer echoes are
responsible for susceptibility effects. Comparing 3.0 T and
7.0T acquisitions on high-resolution 3D-SWAN, it has been
reported that the typical alterations of the SN in PD patients
are evident at 7.0T [90], which was probably due to an
increase in the magnetic susceptibility effects of paramag-
netic substances caused by a higher magnetic field [18].
Moreover, using ESWAN sequences, a potential association
between the severity of PD motor symptoms and iron con-
centration in the regions of interest has been suggested [91].

QSM can reveal an increased susceptibility in the SN of PD
patients when compared to controls [24]. When adopting 3D
texture analysis, the QSM significantly outperformed R2∗ in
this task [89]. In fact, the iron distribution patterns varied
between PD patients and healthy controls, and the rates of
abnormal deposition started diverging as early as the age 43
[92]. In PD, iron deposition has been reported to be high in
the inferior part of the SN compared to both the middle and
the superior parts. In healthy individuals, the middle and infe-
rior part is similarly affected, being the superior part of the SN
the least affected by iron accumulation. Regarding the SNc, iron
distribution increases from the superior to the inferior part,
both in PD and controls [93]. Moreover, SNc is predominantly
altered in the early stages of disease, while SNr is involved the
later stages [92]. Thomas et al. reported on QSM increases
covarying with lower MoCA scores in the hippocampus and
thalamus, poorer visual function, higher dementia risk scores
in the parietal-frontal-medial occipital cortices, as well as
higher UPDRS-III scores in the putamen [94]. Finally, a posi-
tive correlation between iron accumulation in the inferior parts
of the SN and disease severity, as measured by PDQ-39, has
been reported [93]. The QSM contrast images, when compared
to T2∗-weighted sequences, offer an improved visualization of
STN, both in PD and controls [95], assuring an accurate defini-
tion of the borders. STN connectivity has also been strongly
negatively associated with a strong negative correlation with
the QSM intensity of the thalamus, premotor, motor, and sen-
sory regions, and a strong positive correlation for frontal, puta-
men, and brain stem areas [96] (Table 1).

All the reported findings suggest that iron-sensitive
sequences a reliable tool for differentiating PD from controls
(T2, T2∗, R2∗, SWI, ESWAN, and QSM), even at early stages
(SWI and QSM). In addition, associations between BG iron
load and overall motor features (T2∗, R2∗, ESWAN, and
QSM), cognitive impairment (T2∗and QSM), and quality
of life (QSM) have been reported, suggesting that iron-
sensitive sequences can be effectively utilized for monitoring
disease progression.

4.4.2. Atypical Parkinsonism: Progressive Supranuclear Palsy
and Multiple System Atrophy. Although conventional MRI
provides signs considered as neuroradiological hallmarks of

atypical parkinsonism, such as the “hummingbird” sign for
PSP and the “hot cross bun” sign for MSA-c, none of these
signs can be considered specific of any parkinsonian syn-
drome [97–100]. GRE and FLAIR sequences have been used
in differentiating MSA from PD: the mean result on T2∗ GE
sequences is a signal loss of the dorsolateral putamen in
MSA patients, with a reported specificity of 91%, and the
additional presence of a hyperintense lateral rim on FLAIR
sequences has been shown to enhance the specificity up to
97% [101]. Additionally, SWI is able to improve the diagnos-
tic accuracy of conventional 3.0T MRI sequences in the
work-up of parkinsonian syndromes. Particularly, SWI
increases the diagnostic accuracy in MSA, with an increase
of sensitivity up to 50% (and a preservation of high specific-
ity) [102]. The support vector machine (SVM), an auto-
mated analysis of SWI, has been reported to improve
diagnostic performance in the discrimination between PD
and atypical parkinsonisms with an accuracy of around
90% [103]. On 3.0T SWI, unilateral absence of DNH has
revealed a high sensitivity and specificity for PD, MSA, and
PSP; when bilateral, it achieved a high sensitivity and speci-
ficity of 100% [72]. Consequently, the loss of DNH is pres-
ently considered a neuroradiological marker not only for
PD but also for MSA and PSP as well. Recent studies have
reported the absence of the “swallow tail” sign even in
dementia with Lewy bodies (DLB) [104]. That is, “swallow-
tail” sign scores, obtained by SWI, appeared to be lower in
idiopathic PD than in MSA [105]. However, the absence of
DNH evaluated by SWI seemed to be unable to distinguish
among the different neurodegenerative parkinsonisms [72].

Other than SN, utilizing SWI, different BG has been
investigated, mostly using the hypointensity score as the pri-
mary measure. Specifically, a voxel-based analysis was car-
ried out on iron-related SWI signals, where the detected
hypointense signal was able to differentiate not only between
PD and atypical parkinsonism but also between different
types of atypical parkinsonism. Its presence, however, in
the anterior putamen was able to differentiate the following:
PSP from PD in the anterior and medial GP, PSP from
MSA-p in the anterior and medial thalamus, and PSP from
MSA-p along with PD and controls [106]. Moreover, in
PSP, the hypointensity score of the RN on SWI has been
observed to be significantly higher, when compared to
MSA-p, PD, and controls; a score ≥ 2 is able to distinguish
PSP from MSA-p and PD [107]. Several studies have con-
firmed the importance of the SWI-SI of the RN in discrimi-
nating PSP from other parkinsonian disorders [102, 106].
SWI-SI of the putamen seems to be the most reliable tool
for discriminating MSA-p from other parkinsonian syn-
dromes. Compared to PD patients and healthy subjects,
patients with MSA-p have been reported to have a marked
signal hypointensity and higher phase-shift values in the
putamen, especially on the contralateral side of the most
symptomatic side [108]. A lateral to medial gradient of the
SWI-SI, resulting in putaminal hypointensity with a postero-
lateral hyperintense rim is suggestive of a very specific sign
of MSA-p [109]. Given the importance of the SWI-SI of
the putamen in recognizing MSA-p, different putaminal
subregions have been investigated. When the putamen has
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been divided into 4 regions (upper outer, upper inner, lower
outer, and lower inner), the lower inner region resulted
being the most promising area for differentiating MSA-p
from PD, using high iron percentage and total iron deposi-
tion as parameters [83]. Moreover, when ROIs were placed
in the anterior and posterior regions of the putamen, respec-
tively, the posterior region resulted being the most sensitive
area for discriminating MSA-p from PD [110]. Furthermore,
in MSA-p patients, hypointense SWI-SI, prevalent in the
posterolateral putamen, has been able to differentiate
MSA-p from PSP; even in the posterolateral area of GP,
hypointense SWI-SI was higher in MSA-p. Patterns of iron
deposition are different between MSA-p and PSP: in MSA-
p, hypointensity is prevalent in the posterolateral regions
of the putamen and GP, while in PSP, it is prevalent in the
anteromedial areas of the same nuclei [106]. Signal intensity
ratio (SIR) could help differentiate atypical parkinsonism
from healthy controls and PD in the putamen. When con-
sidering RN, SIR appears lower in PSP than in MSA-p,
PD, and healthy controls [111]. The putaminal hypointen-
sity in MSA-p has been seen to be even present in those
patients with a disease duration of <1 year, but, to date, no
SWI studies have reported a significant relationship between
neuroradiological parameters and demographic or clinical
features, such as patient age, disease duration, or severity
of disease, expressed by UPDRS-III and H&Y [109].

Finally, utilizing QSM, different topographical patterns
of brain iron accumulation have been reported. An increase
in susceptibility values in the RN and GP resulted higher in
PSP when compared to PD, MSA, and controls. Differently,
putaminal susceptibility values have appeared to be higher in
MSA than in both PD and controls [24] (Table 1).

4.5. MRI-BIDQ in Idiopathic Adult-Onset Focal Dystonias.
Idiopathic adult-onset focal dystonias are rare disorders,
where one region of the body is affected by involuntary, sus-
tained muscle contractions that cause twisting movements
and abnormal postures. To date, only two studies have
investigated iron content in these patients and their results
were conflicting: both examining patients with idiopathic
cervical dystonia. Aschermann et al. reported an increased
R2∗ relaxation rate in the GP, suggesting an increased iron
content [112], whereas a more recent multimodal quantita-
tive MRI study (T1, T2, T2∗, and proton density) comparing
patients with idiopathic cervical dystonia and healthy con-
trols did not reveal significant group differences [113]
(Table 1). Currently, available results support a common
view that idiopathic cervical dystonia might resemble a func-
tional network disease.

4.6. MRI-BIDQ in Wilson’s Disease. Wilson’s disease (WD)
is an autosomal recessive inherited disorder characterized
by low ceruloplasmin serum levels and copper accumula-
tion, particularly in the liver and brain. Moreover, high iron
deposition levels play an important role in this neurodegen-
erative process [114]. The accumulation of both copper and
iron, two paramagnetic elements that shorten T2 relaxation
time [115, 116], determines a hypointense signal in the BG,
particularly in the GP, detectable on T2 and T2∗-weighted

imaging, as well as on SWI [117]. On T2-weighted imaging,
a high signal of the deep grey nuclei, due to pathological
alterations, such as edema, gliosis, and neuron depletion,
can mask the hypointense signal, due to the accumulation
of paramagnetic iron and copper. Thus, SWI is regarded as
outperforming traditional MRI sequences considering its
ability to quantify the neurodegenerative process related to
iron accumulation in WD [118–120]. Several brain regions,
such as the putamen, have been found to have low signal
intensities on SWI, whereas they present high-signal intensi-
ties on T2-weighted imaging in the same patients with WD.
SWI hypointensity signal appears to be most prominent in
the anterior lentiform nucleus, with the aspect of multiple
concentric dark foci [121]. Moreover, SWI hypointensity
has been observed even in the superficial layers of the cere-
bral cortex, especially in precentral, postcentral, and
occipito-temporal gyri [122]. On SWI, patients with WD
have had significantly lower phase values in the bilateral
putamen (the most strongly affected area), bilateral head of
the CN, thalamus, RN, SN, and GP when compared to con-
trols [123]. CP values in the right CN and left putamen are
lower in cerebral type compared to hepatic type WD patients
[124]. Overall, this finding seems to be in line with the tem-
poral course of the pathological process, which affects the
early liver and subsequently the brain. Whenever neurologic
disorders occur in patients, copper and iron contents are
higher than those in patients with only hepatic symptoms
[118]. No correlation has been reported between the asym-
metry of CP values in the subcortical nuclei and the motor
asymmetry [125]. Furthermore, a negative correlation has
been reported between SWI phase values of GP and the
severity of dysarthria, while a negative correlation has been
detected between SWI phase values of CN and the extent
of tremor [120] (Table 1).

4.7. MRI-BIDQ in Neurodegeneration with Brain Iron
Accumulation. Many neurodegenerative disorders, sharing
a common profile of iron accumulation in the BG and asso-
ciated with cognitive and movement dysfunction, as well as
causative genetic mutations, are referred to as NBIA disor-
ders, also known as Hallervorden-Spatz syndrome (HSS)
[126]. Two of these nine different NBIA genetic mutations
involve iron metabolism, while the remaining involve fatty
acid metabolism or lysosomal activity [127].

4.7.1. Pantothenate Kinase-Associated Neurodegeneration.
The more relevant form of NBIA is pantothenate kinase-
associated neurodegeneration (PKAN), caused by PANK2
gene mutations [128], resulting in dystonia, dementia, dys-
phagia, spasticity, rigidity, and tremor: typically, with onset
during childhood. The MRI detection of iron deposition
seems to precede the development of clinical symptoms
[129]. Initially, GPs are symmetrically T2-hyperintense, a
nonspecific finding related to edema and tissue damage
secondary to an accumulation of cysteine-containing neu-
rotoxic compounds [130]. This leads to an increased iron
load in physiologically iron-rich brain structures such as
the GP. T2-weighted imaging can evidence a central
region of hyperintensity in the GP, due to gliosis, with
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surrounding hypointensity, due to iron deposition, called
eye-of-the-tiger sign, which is not a specific sign of
PANK2 [131].

The SWI technique may identify iron accumulation ear-
lier than conventional MRI [132]. Moreover, SWI sequence
could be able to discriminate the different profiles of iron
deposition in PKAN (iron deposition only in nigropallidal
pathway from SN to GP) from other forms of NBIA (iron
accumulation also observed in the RN, dentate nucleus,
putamen, or CN in other forms of NBIA) [127], aiding in
the most appropriate choice for molecular genetic testing
[133]. Moreover, FDRI technique is more sensitive than
SWI in the detection of brain iron accumulation of PKAN
[134]. In 10 patients, with childhood onset, the magnetic
susceptibility effect of iron has been reported to enhance in
the form of a lower signal intensity on T2∗W gradient echo
imaging (fast low-angle shot), when compared to conven-
tional imaging. Likewise, the abnormal bilateral deposition
of a paramagnetic substance in the striatonigral tract was
observed in two patients who undergone BOLD-SWI, sug-
gesting that the striatonigral pathways may have been
involved earlier during the disease [135].

QSM has been used to quantify iron deposition in sev-
eral different BG ROIs in order to differentiate between
homozygous and heterozygous PANK2 mutations: heterozy-
gous and asymptomatic PANK2 mutation carriers did not
present higher brain iron concentrations than controls,
while iron deposition 3 times higher in the GP, SN, and
internal capsule of PKAN patients [136].

4.7.2. Mitochondrial Membrane Protein-Associated
Neurodegeneration and Beta-Propeller Protein-Associated
Neurodegeneration. Only case reports have been described
with SWI findings in patients with mitochondrial membrane
protein-associated neurodegeneration (MPAN): a hypoin-
tensity in bilateral GP and SN has been found, suggesting
increased mineral deposition [137, 138]. The same radiolog-
ical alterations have been confirmed in 15 Turkish patients
with adult-onset disease [139] and in a 3-year-old girl with
beta-propeller protein-associated neurodegeneration
(BPAN) [140].

5. Conclusion

The brain iron levels in movement disorder patients are cur-
rently assessed using iron-sensitive MRI sequences along
with data processing techniques. Up until the 1990s, T2
and R2 sequences were mainly employed for this task; since
then, other methods including the well-regarded SWI and
even more so QSM are predominantly used by researchers.
Elevated iron levels are more often recorded when investi-
gating by specific MRI techniques. Moreover, the changing
form of iron present in the different structures might be
responsible for the variances in reported results to date. Iron
accumulation seems to play a key role, although not thor-
oughly understood, in the degeneration of the BG, as well
as other brain structures implicated in movement disorders.
Overall, specific iron distribution patterns seem to depict
movement disorders, encouraging the use of MRI-BIDQ,

whenever possible, in their diagnostic assessment. Finally,
increased iron load does not seem to reflect motor disability
but does appear to correlate with nonmotor symptoms, such
as cognitive abilities, as observed in Parkinson’s disease,
expanding the prospective purpose of MRI-BIDQ studies.
Further studies are needed to support these aspects.
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