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Autism spectrum disorders and epilepsies are heterogeneous human disorders that have miscellaneous etiologies and
pathophysiology. There is considerable risk of frequent epilepsy in autism that facilitates amplified morbidity and mortality.
Several biological pathways appear to be involved in disease progression, including gene transcription regulation, cellular
growth, synaptic channel function, and maintenance of synaptic structure. Here, abnormalities in excitatory/inhibitory (E/I)
balance ratio are reviewed along with part of an epileptiform activity that may drive both overconnectivity and genetic
disorders where autism spectrum disorders and epilepsy frequently co-occur. The most current ideas concerning common
etiological and molecular mechanisms for co-occurrence of both autism spectrum disorders and epilepsy are discussed along
with the powerful pharmacological therapies that protect the cognition and behavior of patients. Better understanding is
necessary to identify a biological mechanism that might lead to possible treatments for these neurological disorders.

1. Introduction

Autism spectrum disorders (ASD) and epilepsy are two con-
ditions with distinct pathophysiology [1]. ASD is a complex
developmental condition involving persistent challenges
with social communication, restricted interests, and repeti-
tive behavior [2]. Autistic patients have higher rates of co-
occurring learning disability, language deficit, and seizure
than the general population [3]. Severe epileptic encephalop-
athy abnormalities in early childhood appear to be associ-
ated with ASD [4]. Such individuals have many
uncontrollable seizures due to structural aberration that
may lead to ASD [5]. Additionally, epileptic symptoms sim-
ilar to those of ASD patients may comprise neurodevelop-
ment impairments, language disorders, cognitive
disabilities, excitatory and inhibitory (E/I) ratio imbalances,
altered circadian rhythms, and gastrointestinal pain [6].

The occurrence of seizures in children may lead to alter-
ation in various brain regions that adversely affect autism,
and related maladaptive behaviors [7] and seizures have
strong and variable effects on ASD patients. It is important
to determine the outcomes of seizures and understand how
they influence patients. Research into such topics can aid
in understanding the coexistence of ASD and epilepsy, as
well as in the diagnosis, measurement, and treatment of
patients. For instance, many researchers identify those spe-
cific symptoms or behaviors commonly exhibited by indi-
viduals with epilepsy, and ASD may indicate specific brain
regions damaged by seizures.

Genetic generalized epilepsies (GGE) comprise roughly
20% of epilepsy diagnoses and include absence seizures
(AS), myoclonic seizures (MS), and generalized tonic–clonic
seizures (GTCS) [8]. Quantitative MRI investigations have
found structural abnormalities in cortical and subcortical
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areas of the brain when comparing patients with healthy
controls [9]. The majority of investigations have found a
reduction in the volume of the thalamus in GGE [10]. Addi-
tionally, some studies show an increase in volume [11] or no
significant difference in volume of the thalamus in GGE
patients [12].

Besides the seizure prognosis, cognitive and behavioral
comorbidities are common and can have negative psychoso-
cial outcomes [13]. There is a correlation between more
severe symptoms and longer-lasting epilepsy and antiepilep-
tic medication treatment in children with AS, which is also
known as childhood absence epilepsy (CAE). Up to 37% of
children with CAE are diagnosed with attention deficit–
hyperactivity disorder (ADHD), with greater risk of longer
epileptic duration and higher seizure frequency [14]. MS
has been documented in Juvenile myoclonic epilepsy
(JME), has problems with word fluency and interruption,
poor planning, and task shifting capabilities, and deficits in
memory tests [15]. Anxiety and affective disorders are the
most common within GEE, followed by personality disor-
ders, and subsequently schizophrenia and other psychotic
diseases. Multiple factors, such as the underlying channelop-
athy, brain structural changes, and the impact of repetitive
epileptiform discharges, are major contributor to these
comorbidities.

Since epilepsy and autism are common comorbidities,
differential changes in IL-6 and IL-12p40 were found to be
associated with electroencephalogram (EEG) findings and
suggest that the downregulated expression of IL-6 in combi-
nation with the upregulated expression of IL-12p40 may be
an element related to the risk of epilepsy comorbidity in
children with autism [16]. Autistic behavior is mainly caused
by a lack of connection between the frontal and posterior
brain areas, which is predicted to have an influence on activ-
ities that require significant synchronization among frontal
and posterior processing centers [17]. Imaging studies of
individuals with ASD have found that numerous brain areas,
including the frontal cortex, striatum, hippocampus, amyg-
dala, and unusually tiny and densely packed neurons in the
thalamus and cerebellum, are affected [18]. Evidence sug-
gests that ASD and epilepsy may be implicated as a condi-
tion associated with synaptic plasticity as a result of an
imbalanced E/I ratio in the developing brain as shown in
Figure 1. In what manner does this outcome amplify any
correlation between ASD and epilepsy? In the developing
brain, this may occur due to genetic mutation causing an
imbalanced excitability ratio and impaired synaptic plastic-
ity [19]. Synaptic plasticity is altered due to changes in
receptors and signaling channels, including receptor mole-
cules and neurotrophins. Correspondingly, an early-life sei-
zure has several genetically altered mutations in many
molecules known to be related to ASD and epilepsy.

These processes are examined here by reviewing com-
mon features of ASDs and epilepsies, including gene tran-
scription control, cell proliferation, and development and
synaptic growth [20]. It is proposed here that if epilepsy
and autism are not considered a single condition due to their
various expressions, then none of the conditions should be
considered individually. These studies would contend that

both seizures and autism play a major role in the onset of
neurocognitive problems [21], whereas the existing data on
connectivity is predominantly from fMRI or structural
approaches by diffusion imaging, and complementary
methods have been increased [22]. EEG/MEG functional
connectivity will show qualitatively distinct findings that
are critical in understanding how autism affects brain wiring.
Here, evidence on the relationship between epilepsy or EEG
function and E/I balance in autism and coexisting genetic
disorders is comprehensively reviewed.

2. ASD and Epilepsy: General View (Prevalence
and Risk Factors)

The frequency of epilepsy associated with ASD is highly var-
iable. Studies indicate that about 50% of those with ASD
have epilepsy [23], and the Centers for Disease Control
and Disease Prevention report that between 1 in 88 and 1
in 100 people are affected [24]. Numerous clinical trials
demonstrate a maximum percentage since epileptic patients
are often overrepresented in certain cases [25]. Although
population analyses provide objective data and include the
most reliable estimates of the true prevalence of epilepsy
and autism, the reported rates remain inconsistent [26]. A
meta-study of data obtained between 1963 and 2006
revealed that individuals with ASD and intellectual impair-
ment (ID) shared a 21.5% prevalence of epilepsy; while com-
parably, epilepsy was prevalent in 8% of ASD lacking ID
[27]. In children with ASD, a group correlated with a higher
degree of cognitive dysfunction and brain epileptiform
development [28] indicates coexistence with epilepsy in
comparison to children with ASD alone. Thus, progressive
infantile spasms signify an elevated risk of the presence of
autism [29].

Additionally, an increased prevalence of interictal abnor-
malities in ASD was found in EEGs [30]. Numerous recent
studies have reported that offspring with ASD exhibit inter-
ictal spikes comprised up to 60% of EEG recordings [31].
Often children with inconsistent EEGs have no epilepsy
report [32]. Additionally, it has been reported that higher
ID correlates with an increased risk of epilepsy, and that
the relationship between autism and epilepsy is statistically
explained by moderate to severe ID [33]. In short, it has been
shown that neurodevelopmental disorders including epi-
lepsy are often associated with autism, with an increased risk
of disease and death in people with seizures [34].

According to the epileptic encephalopathy hypothesis,
seizures and epileptic function can potentially coexist in
the presence of neurological disorders. Epilepsy and its
activity have a greater impact on cognition and behavior
than underlying neurodevelopmental dysfunctions [35].
Additionally, mortality risk is greater in epileptic individuals
with treatment resistant epilepsy and is associated with
developmental deficits [36]. Numerous studies on the early
development of epilepsy have been conducted due to the
complex relationship involving seizures similar to convulsive
activity, autism, and ID. Evidence has shown that 14% of
children with early-onset epilepsy develop autism indicate
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that early seizures are more susceptible to the development
of autism and intellectual impairments [37].

Nonetheless, the coexistence of early-onset epilepsy,
autism, and ID remains unresolved as both epilepsy and
autism are indistinguishable in terms of their inherent
pathologies and the associated implications for cognitive
and social skills. Currently, it is hypothesized that epilepsy
and autism, as well as ID, often coexist. Additionally, it is
suspected that children with early-life seizures may exhibit
an elevated risk of developing autism, which often involves
cognitive deficiency.

3. Neural Coordinating Theory

3.1. Epileptiform Activity in ASD. The association between
ASD and epilepsy indicates the presence of an underlying
encephalopathy manifested by a variety of neurologic disor-
ders, including pathological epileptiform activity. Studies of
EEG abnormalities and seizures in autistic children provided
the first recorded evidence of autism’s neurological etiology.
Extensive research on 147 children with autism shows that
64% had irregular brain wave activity in EEGs. The repeated
observation of epileptiform activity in individuals with ASD,
often in the absence of clinical epilepsy, has raised the possi-
bility that this activity is etiologic, rather than comorbid.
Rett, Fragile X, Angleman, and Prader-Willi syndromes, as
well as other pediatric epileptic encephalopathies, frequently
have both epileptiform and ASD symptoms. It has been sug-
gested that irregular EEG patterns contribute to the behav-
ioral disruptions seen in ASD patients [38]. Interictal EEG
abnormalities are often thought to contribute significantly
to behavioral comorbidity. Data indicate that interictal
abnormalities may impair visual, cognitive, and higher brain
functions such as language abilities in both humans and ani-
mal models [39].

There is a paucity of data on the relationship between
interictal epileptiform discharges and ASD. The majority of
studies have suggested that there is a significant rate of
comorbidity with respect to interictal discharge and autism
[40]. One study noted that early epileptiform activity predis-
poses a patient to symptoms such as decreased plasticity and
insufficient neural networks, which result in impaired cogni-
tive, social, and stereotyped behaviors associated with autism
[41]. Its findings indicated that the incidence of autism
symptoms could be correlated with an increased risk of
developing epileptiform abnormalities, however, whether
therapy affects outcomes was uncertain.

The development of autism behavior was substantially
linked to frontal anomalies in EEGs primarily characterized as
bilateral and chronic hypsarrhythmia. The authors hypothe-
sized that paroxysmal discharges in rapidly maturing cortical
areas can contribute to the development of autistic characteris-
tics [42]. Correspondingly, it has been shown that the existence
of frontal paroxysm is substantially more indicative of future
epilepsy progression than centrotemporal paroxysms [43].

3.2. E/I Ratio in Epilepsy and Autism. Abnormal or insuffi-
cient inhibition results in hyper excitability of the nervous
system, a phenomenon that can lead to seizures. So far, this
idea has been crucial in helping investigators to understand
more about epigenetic changes, ictogenesis, and treatment
planning. In fact, seizures may be explained in many epi-
lepsy syndromes by either a loss of inhibition, as in
GABAergic receptor or interneuron dysfunction, or an
increase in excitatory pathways. According to the E-I bal-
ance theory, GABAergic agonists and sodium or calcium
channel blockers are highly effective therapies for seizures
[44]. The E-I balance notion is crucial since it provides a
functional paradigm with clearly established implications,
such as the suppression of seizures.

Inhibitory/excitatory
neurotransmitter

GABAergic innervation AMPA/NMDA receptor

E/I imbalance Impaired synaptic plasticity
or altered LTP

Abnormal 
organization/

altered homeostatic
plasticity

Fsx, Tcs1/2, McCP2,
Dyrkla

ELS ASD 30%
CA

40%
PFC

Figure 1: Genetic pathologies linked with epilepsy and ASD. Synaptic plasticity can be altered by epilepsy or seizures in an early phase of
infantile development leading to ASD. Anomalies in neural plasticity can be a result of malfunctioning neurotrophins, signaling molecules,
or receptors, resulting in a 30% reduction in dendritic spine density in hippocampus (Cornu Ammonis) CA3 neurons and a 40% reduction
in prefrontal cortex (PFC) neurons. Several genes involved in autism and epilepsy pathogenesis have been linked to this biochemical
pathway critical in brain development and function.
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Investigation of neonatal seizures (NS) suggests that an
altered E/I equilibrium leads to autism like behavior in
rodents [45]. It has recently been discovered that initially
seizures can modify the role of neurotransmitters and intrin-
sic neuronal properties that lead to cognitive impairment
and learning disabilities [46].

There are several potential effects of epilepsy and epilep-
togenesis on synaptic plasticity in the developing brain. LTP
and memory configuration are disrupted by the develop-
ment of GABA-A receptors acting with benzodiazepines
[47]. It is known that GABA-A receptor ɑ subunits are the
major modulator in a crucial phase of spatial learning [48]
and synaptic plasticity in the hippocampus [49]. When com-
pared to adult rats showing decreased α-subunit expression
following pilocarpine-induced seizures, the type I benzodi-
azepine receptor upregulation is either responsible for or
linked with these functional alterations [50]. Following the
preceding discussion, it is recommended that the excitation
of GABA-A receptor subunits depends upon age and is
affected by seizures, while increased inhibition can facilitate
cognitive impairments by the amplified GABA-A receptor
expression following NS [51].

Both excitatory synaptic density and activation occur
following NS, mediated by AMPA and NMDA receptors.
Dendrite spine density in CA3 neurons is reduced by
approximately 30% following tetanus toxin induced seizures
during the fetal period [52], and NMDA receptor subunit
proteins NR1, NR2A, and NR2B exhibit a 30-40% reduction
in the hippocampus [53]. Following prenatal lithium pilo-
carpine and hypoxia induced seizures, it was discovered that
the AMPA receptor GluR2 subunit expression was decreased
[54]. In the medial prefrontal cortex (mPFC), NS has been
shown to strengthen short-term plasticity, and alteration in
hippocampal-PFC synchrony is also correlated with modi-
fied short-term plasticity. This indicates that the mPFC
exhibits long-term amplification of the E/I ratio along with
NS [55]. Thus, rodent models exhibit irregular social ten-
dencies [56] and behavioral deficiencies [57] similar to those
seen in children with autism.

Similarly, the E/I imbalance ratio induces abnormal
microcolumn organization, alteration in metabolic pathways
[58], homeostatic plasticity or alterations of glial function,
and many other findings characteristic of ASD syndromes.
In syndromic families comprising SCN1A [59], GRIN2A
mutations [60], PTEN [61], and others, numerous genetic
conditions have been identified to amend the E/I balance.

Pleiotropy is frequently reported, with a single mutation
causing a range of symptoms (from moderate to severe, with
occasionally incomplete penetrance) [62]. Seizures are consid-
ered as an important factor for phenotype worsening in epi-
lepsy, particularly in epileptic encephalopathies, in which
epileptic activity is thought to strongly contribute to cognitive
and behavioral impairments [63]. SCN1A mutations are signif-
icant examples of these issues: they develop Dravet syndrome
(DRS), a severe form of epileptic encephalopathies, and genetic
epilepsy with febrile seizures plus (GEFS+), a milder form of
epileptic encephalopathies with a high degree of phenotypic
heterogeneity (e.g., around 3% of GEFS+ individuals develop
DRS) [64]. It has been suggested that the mutation-induced

sodium channel SCN1A (NaV1.1) dysfunctions may be the
direct source of behavioral and cognitive abnormalities in mice,
supporting the concept that DRS is a pure channelopathy and a
developmental encephalopathy (DE), instead of an epileptic
encephalopathies [65]. Another study compared the effects of
short seizures generated at the age of disease onset in SCN1A
models with hyperthermia in SCN1A RH/+ mice and with
the convulsant flurothyl in SCN1A RH/+ mice and WT litter-
mates [66]. These findings indicate that short recurring hyper-
thermic seizures can trigger neuronal excitability remodeling
in SCN1A RH/+ mice, altering their phenotype from mild/
asymptomatic to severe DRS-like. Furthermore, hyperexcitabil-
ity of excitatory neurons is detected solely in SCN1A mice
models that have undergone seizures, corresponding with
seizure-induced pathological alteration of specific age and neu-
ron subtypes. These results do not support the concept of DRS
as a pure channelopathy or DE, but they do suggest that seizures
are an important contributor to the development of severe phe-
notypes in carriers of SCN1A variants, and that mutations/var-
iants may increase the risk that seizures cause harmful effects on
the brain.

In the NS model, mPFC and hippocampus were moni-
tored using multisite local field potentials within and among
brain sites associated with cognition in an effort to under-
stand the effects of E/I imbalance in autism. Similarly, the
NS mouse model exhibits anxiety-like behavior and
impaired social tendencies as compared to control suggest-
ing inadequate synaptic plasticity [45]. Brain connectivity
and neural plasticity changes are proposed as mechanisms
that lead to autistic like symptoms manifesting as increased
coherence over a broad frequency range [67].

Recently, several studies have diverged from the current
paradigm of shared pathogenicity among epilepsy, autism
and ID [68]. The consistency of related genetic variants seen
in ID, autism, and epilepsy may help to explain the mutual
pathogenicity of these phenotypes. A recent trial found a
physiological connection between long-range frontal circuits
and genotypes of CNTNAP2, by using physiological neuro-
anatomy combined with gene expression [69]. The
CNTNAP2 influences autism by altering frontal lobe con-
nectivity. This model of using gene expression and physio-
logical neuroanatomy can widen understanding of genetic
influences on neural development and illuminate why differ-
ent neurodevelopmental pathologies like ID, epilepsy, and
autism share the same phenotypical characteristics.

4. ASD/Epilepsy Coexisting Genetic Syndromes

Synaptic plasticity is the mechanism by which synapses are
reinforced by an event or experience. Numerous proteins are
involved in synaptic plasticity in autism and epilepsy, and their
genes are disrupted as a result of genetic mutations [70].
Recently, it was discovered that some common genes associated
with autism, epilepsy, and ID share potential genetic mecha-
nisms underlying epileptic seizures and cognitive impairments
[71]. ASD and epilepsy have been linked to a range of disorders
caused by genomic copy number variation or single gene muta-
tions [72]. Numerous illustrations are given in Table 1 and dis-
cussed briefly in the following section.
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4.1. Tuberous Sclerosis Complex (TSC) (Single Gene
Mutation). In neurodevelopmental disorders, TSC suggests
a traditional approach for recognizing and initiating the
relationship between epilepsy and ASD. Severe symptoms
of TSC include neonatal spasms, repetitive seizures, cogni-
tive impairments ranging from mild learning disabilities,
and behavioral deficiencies to autistic spectrum disorder
and behavioral deficits [100]. Mutation in hamartin or
tuberin (programmed via TSC-1 and TSC-2 genes), which
mutually reduces the signaling pathway of phos-
phatidylinositol 3-kinase (PI3) as well as cell growth, prolif-
eration, and protein translation, is stimulated by mTOR,
translational elements, and many second messenger kinases
as shown in Figure 2. TSC-related lesions throughout the
body are mainly due to dysregulation in mTORC1. Particu-
lar pathways of autism and epilepsy in TSC are yet uniden-
tified. In mice, the E/I imbalance in TSC induces both
autistic like characteristics and epilepsy [101]. Applied
approaches and the overall prevalence of ASD in TSC lies
between 26-45% [102].

Numerous characteristics like early-onset seizures, cyst
like tubers, TSC2 mutation, brain lesion, the volume and size
of the tubers, prominent lesion type, and severe cognitive
impairment are related to ASD in TSC as shown in
Figure 3. An individual with no ASD has fewer recurrent sei-
zures as well as early age seizure onset, and their EEGs had a
decreased ratio of interictal epileptiform properties in the
left temporal lobe relative to ASD patients. It is reported
(n = 29 Japan) that everolimus therapy radically decreases
the rate of seizure frequency in TSC patients with the
increase in developing possibilities of ASD. Similarly,
another investigation evaluated that everolimus therapy in

TSC patients showed improvements in ASD symptoms such
as social skill, verbal communication, and recurring actions
[103]. It has also been proven that early-onset seizures have
a role in the development of ASD and TSC.

Another study conducted in the Netherlands on 32 chil-
dren with TSC found that everolimus did not affect either
cognitive or psychomotor functioning or autism characteris-
tics when compared to a placebo. Because the median age of
patients receiving placebo was 11.5 years and the median age
of patients receiving everolimus was 12.2 years in that study,
no solid conclusions were made [103]. There is a need for
formal research to establish whether this is the cause of
early-life seizures and brain development; nevertheless, early
therapy with everolimus may be needed for improvement in
characteristics such as social interaction, language, and
repetitive behavior.

To identify primitive biomarkers for epilepsy therapy,
organizations such as TACERN (Tuberous Sclerosis Com-
plex Autism Center of Excellence Network) and (epilepto-
genesis in a genetic model of epilepsy–tuberous sclerosis
complex) EPISTOP classified the predictive characteristics
of epilepsy and autism throughout the TSC [104]. As a
result, the increased risk of ASD associated with TSC can
be mitigated but not eliminated. While both epilepsy and
ASD are amenable to antiepileptic action, they share a sim-
ilar pathophysiological mechanism that contributes to an
infant’s vulnerability to either disorder.

4.2. Fragile X Syndrome (FXS) (Single Gene Mutation). FXS
is another paradigm of a genetic condition with an elevated
occurrence of ASD with epilepsy. This genetic syndrome is
mainly a recurrent type of inherited cognitive disability that

Table 1: Correlating genetic disorder in both epilepsy and ASD.

Genetic syndromes
Coexistence (p

value)
Proportion of epilepsy

% (n)
p value Proportion of ASD % (n) p value

Tuberous sclerosis
complex

10.8% (n = 103) [73]
70-80% (n = 138) [74]

(p < 0:05)
(p < 0:05) 25-50% (n = 32) [75] (p < 0:05)

Down syndrome
(n = 40), (p < 0:001

)

8% (n = 146)
1%–13% (n = 104)

[73]

(p < 0:05)
(p < 0:05)

5.8% [76]
3.1% (n = 36) [72]
18.2% (n = 123) [77]

(p < 0:05)
(p < 0:01)

Dravet syndrome
100%(n = 18)

100% (n = 20) [78]
(p < 0:01)
(p < 0:05)

61.5% (n = 18)
24.3% (n = 37) [79]

(p < 0:01)
(p < 0:01)

Fragile X syndrome
28.1% (n = 57)

(p < 0:05)
11.8%–18% (n = 41)

[80]
(p < 0:001) 30% [81]

21% (n = 75) (p < 0:001)

Rett syndrome 61% (n = 313) [82] (p < 0:05) Transitory autism features
(n = 12) [83] (p < 0:05)

Pitt–Hopkins syndrome 50%(n = 26) [84] (p < 0:05) 100% (n = 12) [85] (p < 0:05)

Hypomelanosis of Ito
syndrome

(n = 41) (p < 0:01)
[86]

37%–53% [87]
11.5%–50%(n = 41)
49% (n = 4) [88]

(p < 0:01)
(p < 0:05)

64% (n = 76) [89]
10% of patients with ID (n = 4)

[90]

(p < 0:05)
(p < 0:05)

Smith–Lemli–Opitz
syndrome

(n = 85) (p < 0:01) (n = 85) [91] (p < 0:01) 53% (n = 88) [92] (p < 0:05)

Sotos syndrome Rare (n = 61) [93] (p < 0:05) 41% (n = 7) [94] (p < 0:05)

Angelman syndrome
(n = 4) (p<0.05)

[95]

100% (n = 19)
[96]

85% (n = 18) [97]
(p < 0:01)
(p < 0:05)

42% (n = 19)
[98]

1.9% (n = 12) [99]
(p < 0:05)
(p < 0:001)
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frequently occurs in autistic and epileptic individuals. FXS is
primarily described by the existence of sufficiently long and
thin dendritic spines and immature neural architecture
[105]. FMRP, the mRNA binding proteins regulated by
FMR1 genes, are abundant in brain connective tissue and
modulate up to 4% of other RNAs, implying neural plastic-

ity. Each mutation in the FMR1 gene contributes to the
reduction of FMRP release [106]. FMRP also synchronizes
the transport of mRNA in dendrites [107]. FMRP deficiency
results in excessive and irregular mRNA translation,
decreased synaptic function, and a deficiency in synaptic
plasticity regulating proteins. FMRP is involved in the wiring

Uncontrolled
epilepsy

Tuber size,
location/type

Early onset
seizures

Developmental
delay/ID

Co-occurrence Autism
(ASD)

Figure 3: Significant characteristics in TSC. This demonstrates the correlation between phenotypic characteristics and predictive risk factors
in patients with TSC.
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of neuronal pathways, which is highly complex and depends
on a sequence of events during neuronal growth such as axo-
nal proliferation and neural configuration [108].

Interestingly, FMRP knockout mice display autistic-like
characteristics [109] such as decreased synaptic activity,
immature dendrite architecture, and impaired cognition,
suggesting that FMRP plays an important function in mod-
ulating and stabilizing synaptic plasticity [109]. Further-
more, in FXS, glutamatergic neuron dysregulation disrupts
the decreased function of GABA receptor subunits and the
atypical activities of inhibitory GABAergic neurons. Multi-
ple GABA remodeling enzymes seen in FXS have been
altered to facilitate hyperexcitation and seizures.

4.3. Rett Syndrome (RTT) (Single Gene Mutation). RTT is a
postpartum neurodevelopmental condition that is more evi-
dent in females during childhood. The symptoms of RTT
emerge early at the age of 6–18 months and comprise lan-
guage disability, lack of social skills, and persistent motor
disability. MeCP2 is a transcription factor involved in chro-
matin modulation and the genes responsible for RTT encode
RNA splicing. In resting neurons, MeCP2 binding to meth-
ylated CpG dinucleotides regulates the gene expression
through histone deacetylase corepressor complexes and
chromosome modification proteins. It was discovered that
MeCP2 acts as a transcriptional activator for a variety of
genes [110].

In RTT, lack of MeCP2 results in altered gene manifesta-
tion by loss of activity that could disrupt neural plasticity
[83]. The absence of MeCP2 has been shown to alter the
expression of thousands of genes [111], but the precise
mechanism accompanying MeCP2 deficiency in epilepsy
and ASD is still unknown. In the developing brain, these
changes trigger an aberration in synaptic plasticity, subse-
quent to an abnormal E/I ratio. Additionally, genetic muta-
tions that contribute to seizures and epileptogenesis in
early life impair synaptic plasticity and inevitably lead to
ASD and ID [112].

4.4. Down Syndrome (DS) Copy Number Variation. DS is
described by distinctive facial dysmorphisms, intellectual
impairment, and congenital abnormalities. Epilepsy occurs
in about 8–13% of individuals with DS [113]. Patients
with DS have been documented to experience a variety
of different seizure types. Children who have both DS
and ASD can experience a general decline in brain func-
tion and an increased risk of seizures. It is suggested that
5–9% of individuals with DS exhibit ASD-like symptoms
[114]. In offspring with DS, diagnosing ASD remains a
concern due to comorbid intellectual impairment. Com-
paring 20 children with or without ASD with trisomy 21,
it was discovered that those with ASD have slightly more
impaired language skills, social ability, and cognition
[115]. In mouse models, Dyrk1A has been shown to per-
form critical roles in cell cycle regulation and synaptic
plasticity [116]. Furthermore, whole exome sequence study
has detected Dyrk1A mutation in many ASD and microce-
phalic infants [116].

4.5. Phelan-McDermid Syndrome/SHANK3 Deletion.
SHANK3 is a scaffolding protein located in the postsynaptic
region that regulates the production of the metabotropic glu-
tamate receptor 5 (mGluR5) [117]. Shank3 also plays a role
in the regulation of AMPA receptors recycling and synaptic
long-term potentiation [118]. Mutation of the SHANK3
gene at 22q13.3 has been linked to early hypotonia, cogni-
tive, and language impairments, autism-like behaviors,
lymphedema, and dysmorphic traits. Several studies indi-
cated that seizures were more prevalent if a de novo deletion
occurred on the maternal rather than paternally inherited
chromosome 22 [119]. Shank3 knockout mice exhibit autis-
tic traits, as well as anomalies in the corticostriatal network.
Patients with ASD have been shown to have SHANK1 dele-
tions [120] and SHANK2 mutations [121].

5. Treatment Approaches

Antiseizure medications ought to rescue cognitive flexibil-
ities and comorbidities in ASD with epilepsy models induced
by E/I imbalance. This approach certainly is successful in
animal models. For example, a mouse model for common
DRS was treated by clonazepam [122], attenuating cognitive
actions [67], but this treatment does not work in humans. In
a randomized controlled experiment, it was discovered that
exposure to cannabidiol (CBD) and its metabolites increased
dosage proportionality in individuals with DRS. Clobazam
(CLB) with three dosages of CBD (5, 10, and 20mg/kg/d)
resulted in a PK interaction, increasing plasma levels of N-
desmethylclobazam (N-CLB) in patients. It is possible that
elevated levels of N-CLB might contribute to both benefit
(antiseizure) and unfavorable effects (sedation, exhaustion)
associated with CBD treatment [123]. The side effects of
CBD were more severe than those of a placebo. However,
it was typically well tolerated at doses of 5–20mg/kg/d,
and the safety profile observed in open-label studies was
consistent with the safety results. All three CBD dosages
were typically well tolerated [124]. In recent study, CBD
and Cannabis sativa extracts were examined using a 6Hz
corneal stimulation mice model [125]. This research offers
the comprehensive qualitative and quantitative characteriza-
tion of terpenes in extracts, with a special focus on K2 hemp
oil, which was prepared while conserving volatile compo-
nents. According to the findings, terpenic components have
a role in increasing the antiepileptic action of cannabinoids
in K2 hemp oil, compared to K1 and pure CBD, even if small
chemicals in extracts might contribute to overall activity.
The findings imply that both cannabinoids and terpenes
found in oil extracts should be evaluated as potential thera-
peutic agents for epileptic seizures and epilepsy [126]. Con-
ventional anticonvulsant drugs are ineffective in treating
cognitive disorders characterized by an imbalance of E/I
[127]. This suggests that the process of cognitive impairment
is likely to be more complex than modification of the E/I
equilibrium of ASD and epilepsy. The E/I equilibrium theory
should be reviewed in terms of existing hypotheses to cate-
gorize fundamental possible pathways.

The use of antiseizure medication therapy as a treatment
for ASD symptoms has not been well studied in controlled
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studies. Several clinical studies have shown that valproic acid
may be used to treat autistic children who have clinical sei-
zures or epileptiform EEG identified abnormalities [128].
Patients with abnormal EEG or seizure history were classi-
fied as responders in an open study with valproic acid in
which 10 of 14 individuals displayed improvement in key
symptoms of autism and accompanying emotional instabil-
ity, hyperactivity, and aggressiveness [129]. Levetiracetam
has been shown to aid autistic individuals with hyperactivity,
irritability, emotional inconsistency, and aggressiveness
[130]. Almost 7% of the patients quit taking levetiracetam
due to abnormal behavior, and this was the most prevalent
reason for discontinuation. These behavioral changes
included suicide thoughts and aggressiveness toward others.
Levetiracetam may aggravate behavioral symptoms in indi-
viduals with a genetic susceptibility to psychiatric condition.
The individuals with generalized epilepsy were more likely
to stop using levetiracetam due to behavioral disorders than
those with localized epilepsy [131]. However, the “rebound
effect” occurs when people abruptly stop using antiseizure
medications and experience an increase in the frequency
and severity of epileptic episodes. Delta band power in the
postictal component of a seizure was linked to the incidence
of seizures following levetiracetam discontinuation. Allo-
pregnanolone levels in the hippocampus were shown to be
positively associated with seizure and delta band power.
Recent findings show that the seizure postictal component
has a role in the rebound effect, which is characterized by
an imbalance in hippocampus neurosteroid levels [132].

A ketogenic diet (KD) is a high-fat, moderate-protein,
low-carbohydrate dietary intervention therapy in neurologi-
cal disorders such as epilepsy and ASD [133]. The neuropro-
tective effect of a KD in ASD, which is probably achieved by
improved energy metabolism, decreased levels of oxidative
stress, regulation of neurotransmitters, suppression of the
mammalian target of rapamycin (mTOR) signaling pathway,
and regulation of the gut microbiota, implies that KD is
most likely a safe and effective therapy for ASD [134].

Nevertheless, negative consequences such as growth retar-
dation limit the usage of KD. Previously, it was found that
children maintained on KD for three months have decreased
ghrelin levels [135]. Recent study discovered a sustained
decrease in ghrelin levels in children with refractory epilepsy
who were treated with KD and received a sufficient calorie
intake. The reduced amount of ghrelin may be associated to
the slower development of children on KDs [136].

Health care quality and disease management are
improved by the use of e-health technologies. In a previous
study, researchers developed a KD management app and a
website to provide information to caregivers about this die-
tary therapy for children with refractory epilepsy. From Jan-
uary to March 2016, a questionnaire survey was performed
by 40 different families. Findings suggest that use of e-
health apps in the daily management of the ketogenic diet
might be a useful strategy, especially during the continuing
pandemic crisis of COVID-19 [137]. In the absence of clin-
ical studies, no definitive recommendations regarding any of
these therapies can be made. Among individuals with ID,
ASD, and dysmorphic characteristics, CMA (chromosomal

microarray analysis) has shown the greatest diagnostic yield
(66.7%), suggesting its value as a first level diagnostic genetic
test in this population [138]. As a result of these advances,
many novel ASD causing de novo mutations have been
found [139].

6. Conclusion

There is a substantial gap in understanding of the relation-
ship between epilepsy and ASD and research that addresses
this issue is limited. Presently, it is unclear whether epilepti-
form interictal discharges and ASD are epiphenomena of the
physiological process or whether their connection results
from causation. In this review, the relationship between
ASD, epilepsy, and ID was studied along with whether they
shared similar neurodevelopment pathways. There are
numerous characteristics of ASD and epilepsy, both heredi-
tary and acquired, which may be categorized as originating
from atypical connectivity. It has been discussed that several
proteins involved in the synaptic plasticity of autism and
epilepsy and that their genes are disrupted as a result of
genetic mutations. It is important to determine whether
these two phenomena are associated: if they are linked,
new pharmacological therapies are required for the protec-
tion patient cognition and behavior. Alternatively, if
unlinked, patients should not be treated with anticonvul-
sants due to their low-risk benefit ratio. This concept may
lead to a new avenue for a better understanding of the
known association between autism and epilepsy including,
but are not limited to, gene transcriptional regulation, cellu-
lar growth, and synapse development, stability, and function.
Regardless of the complicated relationship between these
two conditions, it is suggested that an underlying patho-
physiological pathway is common to epilepsy and autism.
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