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Background and Aim. Schizophrenia is a complex psychiatric disorder with an unknown etiology. Previous studies suggest that
apoptosis is potentially involved in the pathophysiology of schizophrenia, but whether apoptotic markers can help diagnosis of
schizophrenia has not been reported. This study aimed to establish a potential diagnostic model based on apoptosis-related
gene expression in blood samples and to construct a competing endogenous RNA (ceRNA) network that could provide
mechanistic insight of schizophrenia. Methods. Gene expression profiles and apoptosis-related data were downloaded from the
Gene Expression Omnibus and Molecular Signature databases, respectively. Apoptosis-related differentially expressed mRNAs
(DEGs) and miRNAs (DEMs) from blood samples between the schizophrenia and healthy control individuals were screened. A
diagnostic model was developed using the data from univariate and least absolute shrinkage and selection operator (LASSO)
regression analyses, followed by validation using the GSE38485 dataset. Cases were divided into low-risk (LR) and high-risk
(HR) groups based on the risk score of the model, and differences in immune gene sets and pathways between these two
groups were compared. Finally, a ceRNA network was constructed by integrating long non-coding RNAs (lncRNAs), DEMs,
and DEGs. Results. A diagnostic model containing 15 apoptosis-related genes was developed and its diagnostic efficiency was
found to be robust. The HR group was correlated with higher immune scores of chemokines, cytokines, and interleukins; it
was also significantly involved in pathways such as pancreatic beta cells and early estrogen response. A ceRNA network
composed of 2 lncRNAs, 14 miRNAs, and 5 mRNAs was established. Conclusions. The established model is a potential tool to
improve the diagnostic efficiency of patients with schizophrenia, and the nodes included in the ceRNA network might serve as
biomarkers and therapeutic targets for schizophrenia.

1. Introduction

Schizophrenia is a complex neuropsychiatric syndrome
that affects approximately 1% of the world’s population
and poses a serious health burden [1]. Symptoms of
schizophrenia include psychotic episodes and cognitive
dysfunction, resulting in a lack of motivation and social
withdrawal [2]. Patients with schizophrenia develop mental
illness and disability, which may ultimately lead to distur-
bances in their daily lives and a reduced life expectancy
[3]. The heterogeneous phenotypic and genetic characteris-
tics of schizophrenia continue to present challenges for

exploring its etiology, diagnosis, and developing treatment
protocols.

Increasing attention is being paid to the study of envi-
ronmental factors associated with alterations in gene expres-
sion through epigenetic regulation [4]. Moreover,
discoveries in the field of schizophrenia pathophysiology
have made it possible to establish reliable biomarkers [5].
It has been reported that effective biomarkers can verify
potential therapeutic targets or predict responses and can
inform clinical diagnoses or treatment strategies for schizo-
phrenia [6]. Therefore, the investigation of potential bio-
markers of schizophrenia can help develop diagnostic tools.
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Apoptosis is a regulated form of cell death that remains
active during neurodevelopment; it can also be reactivated under
a variety of neuropathological conditions [7]. Accumulating evi-
dence has demonstrated that apoptosis plays a potential role in
the pathophysiology of schizophrenia. Proapoptotic triggers
can lead to non-lethal apoptotic activity, which may induce neu-
ronal and synaptic elimination without cell death, resulting in
cognitive decline in patients with schizophrenia [8, 9]. Addition-
ally, DNA fragmentation, a feature of apoptosis, has been
observed in the cortical regions of schizophrenia patients [10].
Nevertheless, there is no report about research on apoptosis-
related biomarkers in the pathogenesis of schizophrenia.

In addition tomRNA, non-coding RNAs, such as lncRNAs,
may be also involved in the pathogenesis of schizophrenia. A
high expression of lncRNAs in the brain contributes to the
healthy function of neurons and synapses; thesemolecular path-
ways are frequently found to be dysfunctional in schizophrenia
[11]. Specific changes in lncRNAs and miRNAs have been
observed in the brains with schizophrenia, further supporting
their roles in this disorder [12]. In addition, the competing
endogenous RNA (ceRNA) network composed of miRNAs,
mRNA, and lncRNAs plays a key role in maintaining synaptic
density and neurogenesis, which is also implicated in schizo-
phrenia [13]. However, there have been few studies on the con-
struction of ceRNA networks based on apoptosis-related genes.
In this study, we downloaded the gene expression profile of
blood samples from schizophrenia and normal control (NC)
cases from several public databases, followed by the identifica-
tion of differentially expressed genes (DEGs) and miRNAs
(DEMs). Apoptosis-related geneswere extracted from the public
database and integrated with DEGs to construct a diagnostic
model of schizophrenia. A ceRNA network was established to
reveal the regulatory mechanisms of schizophrenia. These find-
ings may help elucidate the disease mechanisms, improve diag-
nosis, and guide the development of new drugs.

2. Materials and Methods

2.1. Data Acquirement. A total of 310 schizophrenia and 242
NC samples obtained from four public datasets were included
in this study. In brief, mRNA-seq expression profiles of the
341 samples (182 schizophrenia and 159 controls) were down-
loaded from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/), and the miRNA expression
profiles of 211 samples (128 schizophrenia and 83 controls) were
extracted from the ARRAYEXPRES database (https://www.ebi

.ac.uk/arrayexpress/). Detailed information for each dataset is
presented in Table 1.

2.2. Data Preprocessing. After data standardization, the
probe number was matched with the gene symbol using
the downloaded platform annotation file of the GEO data-
sets. According to the source of the samples, data from
peripheral blood mononuclear cells (PBMCs) were merged
as the training sets (GSE27383 and GSE54913), and those
from whole blood were merged as the validation set
(GSE38485). The R package inSilicoMerging (v1.14.0) [14]
was used to merge datasets, after which the empirical Bayes
method [15] was applied to remove batch effects, and the
obtained matrix was used for subsequent analysis.

Based on the miRNA microarray data from the
ARRAYEXPRESS database, the probe number was matched
with miRNA using the downloaded platform annotation file
to obtain the expression value of miRNA.

2.3. Identification of Apoptosis-Related DEGs. A total of 228
apoptosis-related genes were downloaded from two datasets
(HALLMARK_APOPTOSIS and KEGG_APOPTOSIS)
hosted on the Molecular Signature (MSigDB) database
(v7.1). Next, these genes were mapped to the obtained mRNA
matrix, and 189 apoptosis-related genes were screened for fur-
ther analysis. Differential expression analysis of schizophrenia
vs. controls was performed according to the expression level
of these genes established using the Student’s t test. Genes
with p < 0:05 were considered apoptosis-related DEGs.

2.4. Correlation and Protein–Protein Interaction Analyses.
To understand the relationship between genes, the Pearson
correlation coefficient (PCC) between any two apoptosis-
related DEGs was calculated. Additionally, these genes were
entered into the STRING database, and the parameters were
set to human and medium confidence (protein–protein
interaction [PPI] score = 4) to obtain PPI pairs. After obtain-
ing PPI pairs, the PPI network was visualized using the
Cytoscape software (v3.6.1) [16].

2.5. Construction of a Diagnostic Model. Univariate logistic
regression was performed to identify disease-associated genes
and genes with p < 0:05. least absolute shrinkage and selection
operator (LASSO) Cox regression with 20-fold cross-
validation was conducted to obtain the optimal gene signature
and corresponding coefficients using the glmnet package in R
(v4.0–2) [17]. The risk score (RS) for each patient was

Table 1: Detailed information for each dataset included in this analysis.

Datasets Years Samples NC SCZ Database Platforms

GSE27383 2013 PBMC 29 43 NCBI GEO
[HG-U133_Plus_2] Affymetrix Human Genome U133

Plus 2.0 Array

GSE38485
2012 Whole blood 22 15 NCBI GEO Illumina HumanRef-8 v3.0 Expression BeadChip

2012 Whole blood 96 106 NCBI GEO Illumina HumanHT-12 V3.0 Expression BeadChip

GSE54913 2014 PBMC 12 18 NCBI GEO
Arraystar Human LncRNA microarray V2.0 (Agilent-033010

Probe Name version)

E-MTAB-3303 2015 PBMC 83 128 ARRAYEXPRESS A-MEXP-1820—Illumina Human microRNA V2 BeadChip

NC: normal control; PBMCs: peripheral blood mononuclear cells; SCZ: schizophrenia.
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calculated using the following formula: RS =∑βgene × Expgene;
where βgene represents the LASSO coefficient, and Expgene
represents the expression level of the gene. Based on the
median score, the samples were assigned to low-risk (LR)
and high-risk (HR) groups. To verify whether this model
was effective for whole blood, we used the same formula to
construct a diagnostic model for the validation set. In addi-
tion, a receiver operating characteristic (ROC) curve was plot-
ted to determine the predictive performance of the model.

2.6. Correlation Analysis of Immune and Different Risk
Groups. Immune-related gene sets were obtained from the
ImmPort database [18], and the immune gene set score for

each sample was calculated using the single-sample Gene
Set Enrichment Analysis (ssGSEA) algorithm in the gene
set variation analysis (GSVA). The difference in immune
scores between the HR and LR groups was assessed using a
t test. PCC between immune gene sets and each gene in
the model was calculated and displayed using a heatmap.
Moreover, differences in human leukocyte antigen (HLA)
family genes between the two risk groups were assessed,
followed by a calculation of the PCC between HLA family
genes and each gene in the model.

2.7. Comparative Analysis of Pathway between HR and LR
Groups. Based on the “h.all.v7.4. symbols.gmt” in the
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Figure 1: Box plot of data distribution before (a) and after (b) the removal of batch effects. The red boxes represent the normal control
samples, and the blue boxes represent the schizophrenia sample.
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MSigDB database as an enrichment background, the GSVA
score of each HALLMARK pathway in samples was calcu-
lated using the GSVA algorithm [19]. Differences in path-
ways between the LR and HR groups were analyzed using
the limma package in R (v3.10.3) [20]. Pathways with |t
score|> 1 and adjusted p < 0:05 were regarded as signifi-
cantly enriched.

2.8. Analysis of ceRNA Regulatory Mechanism. DEMs
between schizophrenia and controls were identified using
the Student’s t test, and miRNAs with p < 0:05 were consid-
ered to be differentially expressed. The miRWalk 3.0 was
used to perform the miRNA prediction of genes in the diag-
nostic model, with default parameters: binding probabil-
ity> 95%, binding site position= 3UTR. The predicted
miRNAs were then intersected with DEMs, and the overlap-
ping miRNAs were obtained to generate miRNA–mRNA
pairs. Furthermore, DIANA-LncBase was used to predict
lncRNAs targeted by miRNAs in miRNA–mRNA pairs.
These lncRNAs were then matched with the DEGs within
schizophrenia vs. controls to obtain the differentially
expressed lncRNAs and the corresponding lncRNA–miRNA
pairs. Finally, the mRNAs and lncRNAs regulated by the
same miRNA were screened, and a ceRNA network based
on the mRNA–miRNA–lncRNA pair was constructed using
the Cytoscape software.

3. Results

3.1. Data Preprocessing. As described in Materials and
Methods section, the data were merged, and batch effects
were removed. The distribution of data after removing the

batch effect tended to be consistent with the median in a
line, indicating that our data were of high quality and could
be used for subsequent analyses (Figures 1(a) and 1(b)). In
total, 61 schizophrenia and 41 control samples were
included in this analysis, and the expression values of
10,810 genes were obtained.

3.2. Apoptosis-Related DEGs in Schizophrenia. After inte-
grating the above genes and apoptosis-related genes, 189
genes were screened for further analyses. The expression
values of these genes in each sample were extracted, and dif-
ferential analysis was performed. As per the set threshold
(p < 0:05), 41 apoptosis-related DEGs were identified
between the schizophrenia and control groups (Figure 2).

3.3. Correlation Analysis and PPI Network Construction. The
PCCs between two apoptosis-related genes were calculated
to investigate the relationship between these DEGs. The
expression of these genes was closely correlated
(Figure 3(a)). NFKBIA and IL1B had the strongest positive
correlation (Figure 3(b)), whereas TNFRSF1A and BTG3
had the strongest negative correlation (Figure 3(c)). The
interaction between these genes was predicted using the
STRING database, and a PPI network containing 156 edges
and 37 nodes was constructed (Figure 3(d)). Genes such as
IL1B, JUN, IL6, NFKBIA, and FASLG were simultaneously
linked to multiple nodes in the network and may be consid-
ered key genes.

3.4. Establishment and Validation of the 15-Gene Signature
Diagnostic Model. After the univariate logistic regression
analysis, 36 genes (p < 0:05) were screened and regarded as

Figure 2: Apoptosis-related differentially expressed genes (DEGs) between schizophrenia (SCZ) and normal control (NC) samples.
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Figure 3: Continued.
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disease-related genes (Figure 4(a)). Then, 15 optimal vari-
ables were selected from 36 diagnostic genes using the
LASSO regression analysis, which was used to construct a
diagnostic model (Figures 4(b) and 4(c)). The diagnostic
RS was calculated using the following formula: RS = ð0:025
× EGR3Þ + ð0:292 × PMAIP1Þ + ð0:639 × LGALS3Þ + ð1:665

×DNAJC3Þ + ð0:352 × CD14Þ + ð1:222 × CYLDÞ + ð4:053
× BTG3Þ − ð0:606 ×DIABLOÞ − ð1:852 × PIK3CDÞ − ð1:516
×DFFAÞ − ð0:111 × PIK3CAÞ − ð1:103 × IRF1Þ − ð2:532 ×
HSPB1Þ − ð0:792 × TNFRSF1AÞ − ð0:896 × FASLGÞ.

To evaluate the reliability and robustness of this model,
we performed a series of analyses on the training and
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Figure 3: Correlation analysis and construction of PPI network. (a) Heatmap revealing the correlation of apoptosis-related DEGs. (b)
NFKBIA is positively correlated with IL1B. (c) TNFRSF1A is negatively correlated with BTG3. (d) PPI network of 37 genes. Green nodes
represent downregulated genes, and the orange nodes represent upregulated genes. The size of the node represents the degree score
between genes.
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Figure 4: Continued.
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validation sets. Using the median RS as the cutoff, patients in
the two sets were assigned to the LR and HR groups. In the
training set, the HR group contained more disease samples,
whereas the LR group mainly consisted of NC samples
(Figure 5(a)). The expression levels of the 15 genes in the
LR and HR groups are displayed in a heatmap (Figure 5(b)).
The area under the curve (AUC) value of this diagnostic
model was 0.968 (Figure 5(c)). In addition, the RS distribution
and gene expression heatmap for the validation set were also
plotted (Figures 5(d) and 5(e)). The AUC value of this model
for the validation set was 0.712 (Figure 5(f)). Taken together,
these results indicated that the diagnostic performance of this
model was reliable.

3.5. Relationship between the Immune Gene Sets and
Different Risk Groups. The enrichment scores of the 17
immune gene sets in each sample were calculated and com-
pared between the LR and HR groups. The results showed
that the enrichment scores of chemokines, cytokines, and
interleukins were higher in the HR group than in the LR
group, while the scores of the interleukin receptors, natural
killer cell cytotoxicity, and tumor necrosis factor (TNF) fam-
ily member receptors were higher in the LR group
(Figure 6(a)). The correlation between these different gene
sets and each gene in the model was also analyzed. We found
a strong positive correlation between TNFRSF1A and TNF
family member receptors (Figure 6(b)) and a strong negative
correlation between PIK3CA and interleukins (Figure 6(c)).

Moreover, differences in the HLA gene family between
LR and HR were also compared. Four genes were significantly
different between the two groups; the expression level of
HLA-DOA was increased in the HR group, whereas those of
HLA-C, HLA-E, and HLA-F were decreased in the HR group

(Figure 6(d)). The correlation analysis indicated that IRF1
had a strong positive correlation with HLA-C (Figure 6(e))
and CYLD had a strong negative correlation with HLA-C
(Figure 6(f)).

3.6. GSVA of LR and HR Groups. GSVA was performed to
explore the differences in pathways between the HR and
LR groups. The results revealed that 12 pathways were sig-
nificantly enriched in the HR groups, including pancreatic
beta cells, early estrogen response, and kras signaling. Mean-
while, the LR group was significantly involved in three path-
ways, including MYC target v2, WNT beta-catenin
signaling, and allograft rejection (Figure 7).

3.7. Construction of lncRNA-Related ceRNA Network. A total
of 103 DEMs between the schizophrenia and NC groups
were screened, and miRNAs targeting 15 genes in the
model were also identified. After integrating the analysis,
88 miRNA–mRNA pairs were obtained. Then, lncRNAs
targeting miRNAs were predicted, and 26 lncRNA–
miRNA pairs were obtained. Finally, 22 mRNA–
miRNA–lncRNA pairs that met the ceRNA regulatory
mechanism were selected for network construction. The
ceRNA network was composed of 2 lncRNAs (ZNF883
and HCP5), 14 miRNAs (miR-150-3p, miR-520a-5p, and
miR-130b-5p), and 5 mRNAs (EGR3, CYLD, DNAJC3,
DIABLO, and DFFA), with 14 lncRNA–miRNA and 22
miRNA–mRNA pairs (Figure 8).

4. Discussion

As an important psychiatric disorder, schizophrenia affects
patients and their families by disrupting healthy functioning

−10 −8 −6 −4 −2

1

2

3

4

5

6

Log (𝜆)

Bi
no

m
ia

l D
ev

ia
nc

e

33 33 33 33 33 33 34 33 33 31 24 20 15 15 15 10 4 0

(c)

Figure 4: Construction of a diagnostic model in patients with schizophrenia. (a) Forest plot of the diagnostic effect of 36 genes (p < 0:05) via
univariate logistic regression analysis. (b) LASSO coefficient profiles of 15 screened DEGs. (c) Twenty folds cross-validation for LASSO
analysis.

8 Behavioural Neurology



0 20 40 60 80 100

−20

−16

−12

−8

Ri
sk

 sc
or

e

Low_risk
High_risk

Ri
sk

 sc
or

e

−20

−15

−10

−5

0

NC
SCH

(a)

EGR3
PMAIP1
CYLD
BTG3
DFFA
PIK3CA
HSPB1
PIK3CD
FASLG
DNAJC3
LGALS3
CD14
DIABLO
IRF1
TNFRSF1A

Group
Risk score
Risk group

Risk group
Low_risk
High_risk

Risk score
−10

−20

Group
SCH
NC

−3

−2

−1

0

1

2

3

(b)

Figure 5: Continued.

9Behavioural Neurology



Specificity
Se

ns
iti

vi
ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

AUC: 0.968

(c)

0 50 100 150 200
−34

−32

−30

−28

−26

Ri
sk

 sc
or

e

Low_risk
High_risk

Ri
sk

 sc
or

e

−30

−20

−10

0

NC
SCH

(d)

Figure 5: Continued.

10 Behavioural Neurology



and thinking [21]. Large-scale transcriptomic [22], genomic
[23], and epigenomic [24] studies have revealed the multi-
factorial biological mechanism of schizophrenia; however,
its etiology remains elusive. Current anti-schizophrenia
drugs only treat its symptoms and are associated with a
HR of serious adverse effects [25]. In order to further under-
stand the pathogenesis of schizophrenia and to improve its
diagnosis and treatment, we constructed a diagnostic model
based on apoptosis-related genes and explored the potential
of ceRNA regulatory mechanisms that may be linked to the
disease.

In this study, we screened apoptosis-related DEGs
between schizophrenia and control samples and developed
a 15-gene-based diagnostic model. Validation analysis was
performed to evaluate the diagnostic performance of this
model, and the results showed that the AUC values of the
models in the training and validation sets were larger than
0.7 [26], indicating that this model had satisfactory diagnos-
tic ability. Of these 15 genes, 8 have been reported to be
associated with schizophrenia. LGALS3 encodes a member
of the galectin family and may play a role in the pathogenesis
of schizophrenia by participating in inflammatory processes
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Figure 5: Evaluation of the diagnostic performance of diagnostic model in the training and validation sets. (a) Risk score (RS) distribution in
samples classified as low-risk (LR) and high-risk (HR) groups in the training set. (b) Heatmap of the expression level of apoptosis-related
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in the central nervous system; high expression levels of
LGALS3 have been detected in patients with schizophrenia
[27]. The protein encoded by CD14 is a surface antigen that
may reduce or suppress severe inflammatory responses [28].
A previous study revealed that the expression level of CD14
was significantly higher in schizophrenia samples than in
controls, indicating an inflammatory state [29]. PIK3CD
encodes phosphoinositide 3-kinases (PI3Ks) that are
involved in the immune response and are associated with

neurodevelopmental disorders, including schizophrenia
[30]. Etemadikhah et al. [31] reported that PIK3CD is down-
regulated in schizophrenia and may be considered as a
potential therapeutic target. PIK3CA also encodes the PI3Ks
enzyme and its activity is decreased in patients with schizo-
phrenia [32]. As a specific peripheral immune biomarker,
the expression level of IRF1 is decreased in patients with
schizophrenia [33]. The overexpression of HSPB1 directly
inhibits apoptotic pathways to increase neuronal survival,
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Figure 6: Correlation between the immune gene sets and different risk groups. (a) Differences in the immune gene sets between LR and HR
groups. (b) TNFRSF1A showing a positive correlation with tumor necrosis factor (TNF) family member receptors. (c) PIK3CA showing a
negative correlation with interleukins. (d) Differences in the human leukocyte antigen (HLA) family genes between LR and HR groups.
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thereby protecting against injury-induced nerve death [34].
Changes in HSPB1 expression levels were observed in
patients with schizophrenia, and HSPB1 polymorphisms
were associated with an increased risk of schizophrenia
[35]. TNFRSF1A is downregulated in elderly schizophrenia
subjects, which may be related to cognitive decline [36].
FASLG acts as a marker of apoptosis, and increased apopto-
tic signaling occurs at the onset of schizophrenia and is asso-
ciated with treatment progression [37]. Taken together, the
previously reported expression levels of these genes are con-
sistent with our results. We speculated that these genes might
be involved in schizophrenia by affecting immune-related
biological processes. However, the roles of the remaining
genes in the pathogenesis of schizophrenia have not yet been
investigated. Previous studies have shown that genes such as
PMAIP1 [38], DNAJC3 [39], DFFA [40], and BTG3 [41] are
involved in apoptosis, but their specific mechanism of action
in schizophrenia needs to be further explored.

The constructed diagnostic model could categorize indi-
viduals into LR and HR groups. The immune analysis
showed that the immune scores for chemokines, cytokines,

and interleukins were significantly higher for patients in
the HR group than those in the LR group. Chemokines are
promising biomarkers of inflammation and immune activa-
tion, which may be associated with psychiatric disorders
[42]. A clinical trial found that the levels of chemokines with
neuroimmunomodulatory effects are higher in patients with
schizophrenia, particularly in the elderly [43]. The potential
applications of chemokines as diagnostic or therapeutic bio-
markers should be considered in future clinical studies [44].
Moreover, several cytokines may serve as state markers for
acute exacerbations or as characteristic markers of schizo-
phrenia [45]. Together, these immune-related gene sets have
been confirmed to play important roles in the development
of schizophrenia, suggesting that the model established in
this study has diagnostic value and research significance.

Furthermore, we constructed a ceRNA network based on
5 mRNAs, 14 miRNAs, and 2 lncRNAs. Among these, two
lncRNAs, ZNF883 and HCP5, may play a role in the patho-
genesis of schizophrenia. Gong et al. recently found that
ZNF883 is upregulated in hippocampal neurons and could
be considered as a biomarker and therapeutic target for
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epilepsy [46]. HCP5 is mainly detected in immune organs
such as the blood, spleen, and thymus [47]. HCP5 can be
used as an immune-related marker for various human
malignancies [48, 49]; however, its role in schizophrenia
has not been elucidated. Meanwhile, miRNAs, such as
miR-150-3p, miR-520a-5p, and miR-130b-5p, were linked
to at least two mRNAs. These miRNAs are involved in
immunological dysfunction; however, their roles in schizo-
phrenia have not been reported. According to the present
study, we speculate that these genes might contribute to
the disease by affecting the immune response.

It should be noted that this study analyzed gene expres-
sion and miRNA profiles of human blood samples. Although
alterations of apoptotic markers in the schizophrenic brains
have been reported [8–12], whether the alterations in
apoptosis-related DEGs and DEMs observed in this study
are related to the apoptotic activation in the brain remains
to be studies. Most RNAs in the blood samples are from
PBMCs, but very small amounts of RNAs and RNA frag-
ments could come from the brain through secreted or extra-
cellular vesicles, which might contribute to the blood RNA
profiling. It remains to be elucidated whether the blood alter-
ations of apoptosis-related gene expression represent or are
related to those in the brain. Nevertheless, our findings of
the diagnostic value of the model based on apoptosis-related
gene expressions suggest that the apoptosis-related gene
expression profile in the blood either corresponds to similar
changes in the brain or is somehow involved in the specific
brain changes.

Several limitations of our study need to be noted. First,
the diagnostic model is only validated in samples from pub-
lic data, and clinical samples also need to be enrolled to con-
firm the diagnostic performance of the model. Validation
of the results of this study in a new and separate set of clin-
ical data will strengthen the conclusion. Second, ceRNA

networks were obtained via a bioinformatics analysis, and
whether specific ceRNA regulatory mechanisms exist in
patients with schizophrenia needs to be investigated
through in vivo and in vitro experiments. This will be the
focus of future research.

5. Conclusion

Through analyzing the gene expressions and the lncRNA
and miRNA profiles of blood samples from schizophrenic
patients and controls, we constructed a robust diagnostic
model based on apoptosis-related genes. Our initial study
suggests that this model can be used for risk classification
of individuals with schizophrenia and potentially has a diag-
nostic value. Moreover, a lncRNA-related ceRNA network
may offer new insight into the regulatory mechanisms of
schizophrenia. These findings may help improve the diag-
nostic efficiency of schizophrenia and provide guidance for
personalized management for schizophrenic patients.
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The data used to support the findings of this study are avail-
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