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Alzheimer’s disease (AD), as the main cause of dementia, has a progressive and neurodegenerative pattern with number of cases
increasing over the next decades. Therefore, discovering an effective treatment with the ability to invert memory impairment and
pathophysiological events of AD seems to be required. The present study performed to investigate the probable effects of
Edaravone (EDV) in AD-like disorder induced by intracerebroventricular streptozotocin (ICV-STZ) administration in mice.
This study also compares the two different methods of ICV-STZ in the memory impairment induction. NMRI male mice were
administrated with 3mg/kg of STZ for two times during 48 hours span, and after 24 hours, animals were treated with EDV
(5 and 10mg/kg), Donepezil, and Memantine for 14 days. After behavioral tests regarding memory and cognitive function,
animals were sacrificed, and the hippocampi were utilized for further analyses. Our results demonstrated that administration
of STZ induced memory impairment in the Morris water maze (MWM) test and decreased the discriminative factor in
novel object recognition (NOR). The biochemical output shows a significant decrease in ferric reducing antioxidant power
(FRAP) and glutathione (GSH) levels followed by increase in malondialdehyde (MDA) and protein carbonylation (PCO)
levels. The output showed no difference between the patterns of AD-like disorder induction. Following our treatment
groups, administration of EDV (5 and 10mg/kg), Donepezil, and Memantine significantly improved memory performance
and discriminatory behavior. Aforementioned treatments managed to improve FRAP and GSH content of hippocampus,
while significantly attenuating MDA, PCO, and nitric oxide overproduction. In addition, no significant difference has been
observed between the effect of 5 and 10mg/kg EDV application. It was supposed that EDV managed to ameliorate memory
dysfunction, discriminatory behavior, oxidative stress, and cellular antioxidant power in a dose-independent pattern in mice.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia that presented itself mainly as senior part of com-
munity. Affecting the life of 24 million people worldwide
with the number of patients doubling every 20 years [1].
The current cost for management of dementia suffering
patients is nearly 1% of global gross domestic product, put-
ting a huge burden on social and medical systems [2]. The

main pathological aspects of AD are the imbalance in pro-
duction and clearance of Aβ peptide, which leads to the
degeneration of neural cells, deformation of synapsis, and
neuroinflammation all these factors influence the function
and integrity of brain [3].

The consequent formation of Aβ42 senile plaques
attracts microglial response, which leads to overproduction
of pro-inflammatory cytokines [tumor necrosis factor alpha
(TNF-α), Interferon gamma, and Interleukin-1β (IL-1β)].
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The aforementioned events lead to escalation of oxidative
stress in neural tissue. Brain tissue carries low level of
reduced glutathione (GSH) and high level of iron, which
decreases the potency for free radical scavenging and
increases the chance of cellular apoptosis [4]. Mitochondrial
dysfunction plays a significant role in pathophysiology of
AD at primary states by facilitating Aβ deposition, loss of
dendritic branches, and Neurofibrillary tangles formation.
The higher level of oxidative stress leads to increase of cyto-
plasmic mtDNA and cytochrome oxidase as a result of sig-
nificant reduction of mitochondrial size [5]. There is a link
between escalation of oxidative stress and dopamine-
related symptoms including cognitive decline [6]. It is
observed that the brain regions with high Aβ1–42 accumu-
lation also carry high concentration of peroxided lipids as
byproduct of free radical rise. Oxidative stress could alter
protein phosphorylation pattern, Mammalian target of rapa-
mycin (mTOR) activation, and glucose metabolism leading
to neural autophagy [7].

In case of medical therapy, choices are narrow and many
medications for AD belong to Acetylcholinesterase (AChE)
inhibitors namely rivastigmine and donepezil (DON), showing
promising effect in improving memory performance and cog-
nitive impairment in patients. However, demonstrating minor
effect in preventing progressive pattern of AD and probable
side effects may prevent patients from continuing treatment
[8]. DON has demonstrated neuroprotective potency by vari-
ous mechanisms including increasing neural protection
against Aβ42-induced toxicity, decreasing lactate dehydroge-
nase release as a marker for neural damage as well as activating
phosphatidylinositol 3-kinase/protein kinase B/mTOR path-
way [9]. Memantine, another frequent AD medication, acts
as antagonizing N-methyl-D-aspartate (NMDA) receptors in
an uncompetitive manner, and improved patients’ perfor-
mance in Boston Naming Test and the Trail Making Test,
while slowed the atrophy of right hippocampus [10]. Meman-
tine also prevents neural excitotoxicity to glutamate response
and increased the level of soluble Aβ peptide [11]. Most of
the novel hybrid components utilized in latest research act
via suppressing AChE, scavenging free radicals, and inverting
the chelation of redox-active Cu and Fe [6]. Edaravone
(EDV), as the selected medication in this research, has been
proved to show significant effects in amyotrophic lateral scle-
rosis (ALS) treatment in phase III clinical studies. However,
the overallmechanism for this action is not broadly discovered,
and some studies linked these effects to neuroprotection by
scavenging peroxyl water soluble and insoluble radicals and
suppressing the inflammatory microglial response in ALS
[12, 13].

The main objective of this study was to investigate
probable neuroprotective effect of EDV against memory
cognitive impairment in mice as a model for AD. A vali-
dated intracerebroventricular (ICV) injection of streptozot-
ocin (STZ) was utilized for AD-like pattern induction.
Then, memory function and ability were performed by
Morris water maze (MWM) test and novel objective recog-
nition (NOR) task. Then, oxidative stress biomarkers and
nitric oxide (NO) levels were measured in the brains of
AD animal models.

2. Materials and Methods

2.1. Animals. NMRI male mice (25–30g) were purchased
from Pasteur Institute, Tehran, Iran. Animals were kept under
standard laboratory condition including 21–23°C, free access
to water/food, and 12 hours of dark/light cycle. All tests on
rodents were performed between 10:00AM and 2:00PM
according to National Institutes of Health guidelines for ani-
mal experiments, and approved by the animal ethic commit-
tee of Zanjan University of Medical Sciences (Ethical Code:
ZUMS.REC.1399.178).

2.2. Drugs and Treatments. DON, Memantine, and STZ were
dissolved in sterile physiological saline (0.9%), and EDV was
dispersed in 1% Dimethyl sulfoxide (DMSO) and physiologi-
cal saline (0.9%) solution, resulted in a 0.15mg/ml dispersion.
To exclude the probable effects of EDV co-solvent, the control
group received the same DMSO and saline solution. Intrace-
rebral STZ injection method for memory impairment was
performed using a 2.5nm syringe injecting 3mg/kg of STZ
in 4μl solution in left or right cerebrum of the anesthetized
mice. The dosage and pattern of injection for STZ were based
on Kosaraju et al. [14] study. 24 hours after the last injection,
animals were subjected to the behavioral tests including
MWM test and NOR (n = 7 – 8). Different set of animals were
utilized for biochemical assessments (n = 3 – 4).

2.3. Experimental Design. To evaluate whether the number
of injections would affect memory performance, 24 mice
were divided into two groups: Group 1 received one dose
of STZ-ICV injection, and after 24 hours, the memory per-
formance was evaluated in MWM task; Group 2 received a
second dose of ICV-STZ 48 hours after the first dose,
followed by a memory performance test with a 24-hour
interval.

For main research, rodents were randomly divided into
nine groups each containing 12 mice (Figure 1). The
description of each group is as follows: (1) control group
received intraperitoneal vehicle of STZ and/or EDV through
ICV and/or intraperitoneal route, respectively, for 14 days.
(2) DON group received 1mg/kg of DON via an IP route
every other days for 14 days. (3) Memantine group received
5mg/kg of Memantine via IP route every other day for 14
days. (4) EDV group received 10mg/kg of EDV via IP route
every other day for 14 days. (5) Alzheimer (ALZ) group
received 3mg/kg STZ via intracerebral route two times in
48 hours interval (after the second method of STZ induction
showed less deviation and more sustenance in AD-like dis-
order symptoms). (6, 7) ALZ+EDV group received 3mg/
kg of ICV-STZ via ICV route with a 48-hour interval; 24
hours later, administration of 5 and 10mg/kg of EDV started
via IP route and repeated every other day for 14 days. (8)
ALZ+DON group received 3mg/kg of ICV-STZ via ICV
route in 48 hours interval; 24 hours later, administration of
1mg/kg DON started via IP route and repeated every other
day for 14 days. (9) ALZ+Memantine group received
3mg/kg of ICV-STZ with a 48-hour interval; 24 hours later,
administration of 5mg/kg Memantine started via IP route
and repeated every other day for 14 days. Animals were
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sacrificed 24 hours after the last behavioral test by cervical
dislocation without application of anesthetic, and hippo-
campi were dissected and frozen at −80 to minimize alter-
ations for biochemical and histopathological assay.

2.4. MWM Test. In order to evaluate the effects of interven-
tion on spatial learning and memory function, MWM test
was performed. A day after the last injection, animals were
submerged in a circular pool kept at 22–25°C. Above the
pool, a camera, which was connected to a computer, was set-
tled. All the data about swimming pattern, route, and speed
of the animals were recorded by Mazeruter software. Near
the surface of water, an escape platform was placed in the
presumed Q2 quarter of the round pool. On probe trials,
mice were allowed to swim freely in the pool with the escape
platform inside, for 60 seconds and stay for 10 seconds on
the platform. In case of rodents that were unable to find plat-
form, they were manually placed on the platform for 10 sec-
onds. Training pattern for rodents consisted of four probe
trials in 4 consecutive days. A day after the last trial, all ani-

mals were placed separately on water maze for 60 seconds,
while the escape platform had been removed. The normal-
ized time animals spent on Q2 zone of the maze (former
place of the escape platform) was calculated for each rodent
by El-Sahar et al. [15].

2.5. Novel Object Recognition. Cognitive impairment is one
of the noticeable aspects of AD, in order to assess the ten-
dency of rodents to spend more time with unfamiliar objects
NOR as function of episodic memory, and this test was per-
formed in a box made of Plexiglas (70 × 70 × 30 cm). On first
phase, animals were placed in the empty box for 15 minutes
each day for 2 days prior to test in order to habituate to
unfamiliar environment. After 24 hours on second phase,
rodents were placed in the box again to explore similar
shaped and sized object placed at equal distance from the
center for 10 minutes. On the next day and third phase, ani-
mals brought to box found one object is replaced with novel
object with different color and shape; rodents left to explore
both objects for 3 minutes. Discrimination ratio was calcu-
lated by dividing the time rodent spent to explore the novel
object by the total time of exploring novel object and famil-
iar ones [DR= (T Novel)/(T Novel + T Familiar)] [16].

2.6. Ferric Reducing Antioxidant Power. Ferric reducing anti-
oxidant power (FRAP) assay was utilized to evaluate the total
antioxidant potency of the samples in iron(III) reduction to Iro-
n(II), in reaction with 2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ) as
the colorimetric reagent. The absorbance of the samples was
measured at 593nm [17].

2.7. Evaluation of Lipid Peroxidation. Malondialdehyde
(MDA) is the main byproduct of the escalation of oxidative stress.
In order to measure the scale of lipid peroxidation (LPO) produc-
tion, the absorbance of MDA with thiobarbituric acid reactive
substances (TBARs) was recorded at 532nm [18, 19].

2.8. Evaluation of Reduced GSH. GSH is one of the main
endogenous antioxidants in neural tissue, showing a consid-
erable decline of GSH is known as the first marker for the
occurrence of neuroinflammation. DTNB [5,5’-Dithiobis
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Figure 1: Timeline of ALZ induction procedure, treatment, behavioral, and molecular assessment.
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Figure 2: Comparison of the effect of two methods of ALZ-like
disorder induction in Morris water maze task (n = 12).
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(2-nitrobenzoic acid)] was used as the reagent for GSH mea-
surement, and the absorbance was measured at 412nm [19].

2.9. Evaluation of the Protein Carbonylation. Protein carbon-
ylation (PCO) counts as another byproduct in oxidative
stress increasing pattern. This measurement was based on
PCO reaction with 2,4-dinitrophenylhydrazine, and the
absorbance was measured at 365nm [17].

2.10. NO Level Assay. The amount of NO in the brain samples was
measured based on spectrophotometric method at 540nm wave-
length following reaction of nitrites with Griess reagent and form
purple azo using Zistfanteb commercial kit (Cib Biotech, Iran).

2.11. Histopathological Assay. The collected samples were
fixed using 4% formalin, and dehydration was performed
using 70% ethanol solution. The tissues then were irrigated
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by xylene and fixed in paraffin block. Finally, 15μm thick-
ness slices were cut and dyed using hematoxylin and eosin
(H&E staining). The prepared slides were examined under
Carl Zeiss Axio light microscope, and images were taken
for further analyses [20].

2.12. Statistical Analysis. Results were expressed as mean
± SD, and R studio programming software was used for

statistical analyses. Comparison between the groups
was carried out using two-way analysis of variance
(ANOVA). Furthermore, to evaluate the main impact
of disease induction and treatment as well as their inter-
action, post hoc Tukey’s Honestly significant difference
test was applied. P < 0:05 was considered statistically sig-
nificant. Plots were generated using Matplotlib library in
Python.
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3. Results

3.1. Effects of Number of STZ Admirations on Water Maze
Performance. As demonstrated in Figure 2, the output of T test
analyses shows no significant difference between one adminis-
trated dose of STZ and two administrated doses of STZ on induc-

tion of memory impairment in mice (P > 0:05). Although there is
no significant difference between responses in receiving ICV-STZ
double injection in 48-hour interval and once prior to behavioral
tests, low standard deviation and higher duration time of AD
induction following two injections of ICV-STZ were more relative
model for AD induction than one injection of ICV-STZ.
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3.2. Effects of ALZ Induction and Treatment on Water Maze
Task Performance. Two-way ANOVA analysis showed sig-
nificant effects of ALZ induction [F = 1:031; P < 0:314],
treatment [F = 4; P = 0:006], and ALZ induction × treatment
interaction [F = 1:569; P = 0:192] on MWM test. Results of
Figure 3 express that ICV-STZ caused memory impairment
in mice by decreasing their presence in Q2 zone significantly
when compared to control group (P < 0:001) by 37.5%.
Treatment with Memantine, DON, and EDV for 14 days
has considerably improved animal performance in MWM
in comparison to ALZ group (P < 0:01) by 52% for ALZ
+Memantine and ALZ+EDV 10 groups, 60% for ALZ
+EDV 5, and 76% for ALZ+DON, respectively. The differ-
ences in the memory improvement levels between 5 and
10mg/kg doses of EDV were insignificant (P > 0:05).
DON, Memantine, and EDV did not induce any alteration
on memory performance in intact mice (Figure 3; P > 0:05).

3.3. Effects of ALZ Induction and Treatment on NOR
Performance. Two-way ANOVA analysis showed significant
effects of ALZ induction [F = 7:86; P = 0:006], treatment
[F = 6:585; P < 0:001], and interaction [F = 4:733; P = 0:002
] on NOR performance. As presented in Figure 4, STZ admin-
istration considerably decreased animal tendency for novel
objects (P < 0:001) by 34%. As for 14 days of treatment with
Memantine, DON, and EDV, all medication managed to
improve rodent’s tendency to novel objects while compared
to ALZ group (P < 0:001) by 40–42% in all treatment groups.
DON, Memantine, and EDV groups did not demonstrate any
significant alteration in discrimination factor when compared
to control group (Figure 4; P > 0:05).

3.4. Effects of ALZ Induction and Treatment on FRAP
Level. Two-way ANOVA analysis showed significant

effects of ALZ induction [F = 3884; P < 0:059], treatment
[F = 4:201; P = 0:009], and ALZ induction × treatment
interaction [F = 3:677; P = 0:017] on FRAP level. As the
data in Figure 5 depicts, STZ administration significantly
declined total cellular antioxidant level compared to con-
trol group (P < 0:001) by 44%. Treatment with Meman-
tine, DON, and EDV has significantly improved
cellular FRAP level in comparison to ALZ group
(Figure 5; P < 0:001) by 72–80%. The FRAP recovery
potency of EDV between two dosage groups was insignificant
(P > 0:05). The aforementioned medications did not alter
FRAP level when administered to normal animals (P > 0:05).

3.5. Effects of ALZ Induction and Treatment on GSH Level.
Two-way ANOVA analysis showed significant effects of ALZ
induction [F = 80:857; P < 0:001], treatment [F = 13:368;
P = 0:001], and ALZ induction × treatment interaction
[F = 17:84; P = 0:001] on GSH level. The illustrated Figure 6
indicates that ALZ group shows significantly lower amount for
GSH compared to control group (P < 0:001) by 53%. Meman-
tine, DON, and EDV treatments managed to recover GSH
resources in comparison with ALZ group (Figure 6; P < 0:001)
by 107–123%. These three interventions did not alter the GSH
levels of brain when applied to normal mice (P > 0:05).

3.6. Effects of ALZ Induction and Treatment on MDA Level.
Two-way ANOVA analysis showed significant effects of ALZ
induction [F = 248:112; P < 0:001], treatment [F = 55:489;
P = 0:001], and ALZ induction × treatment interaction
[F = 54:289; P = 0:001] on MDA level. Figure 7 reveals that
ICV-STZ administration escalates MDA production in
ALZ group compared to control group by 380%. In addi-
tion, treatment of ICV-STZ with Memantine, DON, and
EDV significantly dropped the overproduction of MDA
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after 14 days of therapy compared to ALZ group (Figure 7;
P < 0:001) by 70–79%. Concerning the effect of all selected
treatments on healthy animals, neither of them made sig-
nificant alteration in MDA compared to control group.

3.7. Effects of ALZ Induction and Treatment on PCO Levels.
Two-way ANOVA analysis showed significant effects of
ALZ induction [F = 18:01; P < 0:001], treatment [F = 8:796;
P = 0:001], and ALZ induction × treatment interaction
[F = 7:364; P = 0:001] on PCO level. As presented in
Figure 8, ALZ group demonstrated a significantly higher
amount for PCO compared to control group (Figure 8;
P < 0:001) by 75%. Memantine, DON, and EDV managed
to recover overproduction of PCO significantly com-
pared to ALZ group (P < 0:001) by 42–45%.

3.8. Effects of ALZ Induction and Treatment on NO Levels.
Two-way ANOVA analysis showed significant effects of ALZ
induction [F = 211:18; P < 0:001], treatment [F = 9:638;
P = 0:001], and ALZ induction × treatment interaction

[F = 10:184; P = 0:001] on NO level. As demonstrated in
Figure 9, ICV-STZ caused significant surge in NO levels
compared to control group (532% increase, P < 0:001).
Further treatment with EDV (5 and 10mg/kg), DON,
and memantine has noticeably dropped the surge of
NO levels compared to ALZ group (52%, 59%, 34%,
and 57%, respectively, P < 0:001). However, NO levels
in three aforementioned groups were yet significantly
higher than that of control group (Figure 9; P < 0:001).
The administration of DON, Memantine, and EDV
shows no significant changes in NO percentage amounts.

3.9. The Effect of Intervention on Histopathological Output.
As in Figure 10 and Table 1, the ICV-STZ results in moder-
ate to severe alteration in basophilic necrotic neuron, vacuo-
lization, and microglial nodule in ALZ group (Figure 9(e))
based on scoring of histopathological changes, while mild
microglial nodule was observed in ALZ+EDV (5mg/kg),
ALZ+DON (1mg/kg), and ALZ+Memantine (5mg/kg)
groups (grade 1) (Figures 10(f), 10(h), and 10(i)) and

Figure 10: Hippocampus sections in control and treatments groups (n = 3). H&E staining. ×100. (a) Control group received of STZ and/or
EDV; (b) DON group received 1mg/kg of Donepezil; (c) Memantine group received 5mg/kg of Memantine; (d) EDV group received 10mg/
kg of EDV; (e) ALZ group received 3mg/kg, which received ICV-STZ two times in 48 hours interval and receiving ICV-STZ once: basophilic
necrotic neuron (yellow arrows), microglial nodule (blue arrow), and mild vacuolization (green arrows); (f) ALZ+EDV group received
3mg/kg of ICV-STZ in 48 hours interval; 24 hours later administered with 5mg/kg of EDV: microglial nodule (blue arrows); (g) ALZ
+EDV group received 3mg/kg of ICV-STZ in 48 hours interval; 24 hours later administered with 10mg/kg of EDV: there was no
damage; (h) ALZ+DON groups received 3mg/kg of ICV-STZ+1mg/kg of Donepezil: microglial nodule (blue arrows); (i) ALZ
+Memantine group received 3mg/kg of ICV-STZ +Memantine group received 5mg/kg of Memantine: microglial nodule (blue arrows).
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Table 1). On ALZ+EDV (10mg/kg), however, no alterna-
tion was noted compared to control group (Figure 10(g)
and Table 1). The DON, Memantine, and EDV groups dem-
onstrated no histopathological alteration compared to con-
trol group (Figures 10(a), 10(b), 10(c), and 10(d) and
Table 1).

4. Discussion

Alzheimer is one of the main causes of dementia affecting
the life of millions of elder communities around the world.
While the pathophysiology of AD is widely investigated,
the medical approaches in controlling its progression are
highly limited. AChEIs are considered the main vastly uti-
lized medication. However, lack of improvement in some
cases and sustained reversal of symptoms over time [21]
have motivated researchers to investigate novel compounds
for this disease.

This study utilized STZ to induce AD-like disorder in
mice, and in the very first step compared the effect of two
methods of STZ-ICV injections in memory impairment
induction (1-single injection and 2-double injection with a
48-hour interval). The results of MWM demonstrated no
significant difference between these two methods in memory
performance. However, the double injection method
resulted in smaller SD amounts and on the other hand,
increased the time in which animals demonstrated memory
deprivation and other Alzheimer’s symptoms. Therefore,
the double injection method with a 48-hour interval was
applied alongside the project. ICV-STZ in similar studies
increased accumulation of Aβ, rapid influx of Ca2+ into neu-
ral cells, induced mitochondrial dysfunction as well as hyper
stimulation of glutamate receptors [22, 23]. ICV-STZ

method considerably mimics the phenotype of sporadic
AD-like signs as result of insulin resistant brain state [24].

In this model for AD-like disorder, DON and Meman-
tine have been selected as our standard treatments because
they have been proved to ameliorate memory and behavior
impairments in AD-like rodent models via MWM and
NOR tests [25, 26]. In addition, they mitigated byproducts
of Reactive Oxygen Species accumulation namely MDA
and PCO and improved neural antioxidant protection by
recovering total antioxidant amount in FRAP and GSH
levels [27]. These effects are not simply due to their direct
free radical scavenging properties, but due to their amend-
ing effects on synaptic performance and modulating neural
cells homeostasis [28]. As for Memantine, which improves
GSH production in astrocytes; ameliorates GSH levels,
which in turn results in glutamate’s higher affinity to
NMDA, increasing NMDA channels’ activity [29].

In this study, EDV administration managed to improve
animals’ memory performance in MWM and the discrimi-
nation factor in NOR significantly in comparison to AD-
like disorder group. In this context, it has been proved that
enhancement in the function of peripheral cortex and hip-
pocampus is related to higher rodents’ discriminative behav-
ior in NOR [30]. EDV treatment also demonstrated
recovering effect on abnormalities induced by ICV-STZ
application, namely regulatory effect on FRAP as a represen-
tative of total antioxidant resources and GSH as the main
endogenous neural antioxidant. In addition, this treatment
managed to deprive oxidative stress in neural tissue signifi-
cantly, via a considerable decline in MDA and PCO further
products.

In a relative study, EDV managed to reverse neuroinflam-
mation by modulation of IL-1β and NLRP-3 as the key roles
of immune response and suppressed neural apoptosis by
decreasing the expression of Caspase 1 and NF-κB [31].
EDV, as a lipophilic antioxidant, has managed to increase
superoxide dismutase and catalase levels leading to further
degradation of hydrogen peroxide and recovery of enzymatic
antioxidant protection, which would in turn improve mito-
chondrial function as the main source of superoxide free rad-
icals [32, 33]. It has been proved that ICV-STZ mainly affects
brain signal transduction by increasing Aβ accumulation,
MDA formation, TNF-α, and IL-6 level, which can be altered
by EDV, so that the hippocampal antioxidant resources
would be retrieved [34, 35].

In the present study, EDV managed to prevent oxidative
stress by declining PCO and MDA products in a dose-
independent pattern. No significant difference has been
observed between 5 and 10mg/kg EDV treated mice in con-
trolling oxidative stress. In a relative study, EDV treatment
in ICV-STZ rats managed to attenuate MDA levels and
recover GSH levels in brain hippocampus, while also retriev-
ing NO levels and AChE activity leading to restoration of
blood flow as well as memory impairment [36].

The excessive amount of NO production can mitigate
oxidative stress and facilitate the neuroinflammation process
by increasing IL-1β, IL-6, and TNF-α expression and sup-
pressing Brain-derived neurotrophic factor and triggering
receptor expressed on myeloid cells 1 (TREM1) [37]. In

Table 1: Grading of histopathological changes in the hippocampus
of mice.

Groups
Alteration in

basophilic necrotic
neuron

Alteration in
vacuolization

Alteration in
microglial
nodule

Control − − −
DON − − −
Memantine − − −
EDV(10 mg/
kg)

− − −

ALZ + ++ ++

ALZ
+EDV(5
mg/kg)

− − +

ALZ
+EDV(10
mg/kg)

− − −

ALZ+DON − − +

ALZ
+Memantine

− − +

Scoring was done as follows: NO (−); Mild (+); Moderate (++); and Severe
(+++).
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our study, EDV treatment has deprived the overproduction
of NO, which resulted in histopathological abnormalities
that consist of microglial nodule formation and vacuoliza-
tion in Alzheimer-like disorder. This process indicates neu-
ral inflammation and necrosis in the similar manner of AD
[38]. In conclusion, our findings demonstrate that EDV is
capable of attenuating memory impairment, discriminatory
behavior, oxidative stress, NO overproduction, and cellular
antioxidant power in a dose-independent pattern in mice.
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