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The most common and aggressive tumor is brain malignancy, which has a short life span in the fourth grade of the disease. As a
result, the medical plan may be a crucial step toward improving the well-being of a patient. Both diagnosis and therapy are part of
the medical plan. Brain tumors are commonly imaged with magnetic resonance imaging (MRI), positron emission tomography
(PET), and computed tomography (CT). In this paper, multimodal fused imaging with classification and segmentation for
brain tumors was proposed using the deep learning method. The MRI and CT brain tumor images of the same slices (308
slices of meningioma and sarcoma) are combined using three different types of pixel-level fusion methods. The presence/
absence of a tumor is classified using the proposed Tumnet technique, and the tumor area is found accordingly. In the other
case, Tumnet is also applied for single-modal MRI/CT (561 image slices) for classification. The proposed Tumnet was modeled
with 5 convolutional layers, 3 pooling layers with ReLU activation function, and 3 fully connected layers. The first-order
statistical fusion metrics for an average method of MRI-CT images are obtained as SSIM tissue at 83%, SSIM bone at 84%,
accuracy at 90%, sensitivity at 96%, and specificity at 95%, and the second-order statistical fusion metrics are obtained as the
standard deviation of fused images at 79% and entropy at 0.99. The entropy value confirms the presence of additional features
in the fused image. The proposed Tumnet yields a sensitivity of 96%, an accuracy of 98%, a specificity of 99%, normalized
values of the mean of 0.75, a standard deviation of 0.4, a variance of 0.16, and an entropy of 0.90.

1. Introduction

A tumor is an unusual mass detected inside or on the brain.
A tumor is a solid or fluid-filled mass of aberrant tissues.
The tumor is also known as a neoplasm. According to the
global cancer registered data, cancer cases in both sexes
account for approximately 18,000,000, with around 20,000
instances of brain tumors. Very high HDI (human develop-
ment index) regions had the maximum occurrence (102,260
cases, or 34.4%) and mortality (77,815 cases, or 32.3%) [1].
There are various approaches to imaging which are MRI,
PET, and CT to diagnose the tumor’s position and size.
MRI is a technique that is noninvasive and produces com-
prehensive 3D anatomy images [2]. CT scan is another
imaging technique that provides tumor information in a

few seconds. Apart from this, PET is a functional imaging
technique [3]. The image fusion method is stated as
collecting all of the necessary data from several images and
fusing them into a single fused image. More informative data
will be obtained from the single fused image than from any
of the input images, and it contains all the mandatory data
[4]. Image fusion’s objective is not just to minimize the
amount of information but also to create images that are bet-
ter appropriate and suited for understanding humans and
machines. Image fusion is useful in medical imaging applica-
tions because it improves radiologists’ detection of abnor-
malities in CT and MR brain images [5]. Image fusion will
provide fused pictures that are more insightful than the sep-
arate input images, which makes them more appropriate for
classification problems [6]. It decreases the volume of data,
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holds significant features, removes artifacts, and provides an
output image that will be more suitable for interpretation.
Image fusion can be broadly categorized as follows:

(i) Multimodal image fusion

(ii) Multiview image fusion

(iii) Multifocus image fusion

(iv) Multitemporal image fusion

Multimodal is obtaining different imaging sensors and is
used for medical diagnosis and security. A multiview is a sin-
gle sensor image from different viewpoints. Multiple focal
lengths of imaging equipment are used to capture multifocus
images. Multitemporal refers to pictures taken at various
intervals of time. There are various stages for grading image
fusion processes. Multimodal fused images are employed in
biomedical processing among the four categories of fusion
techniques based on image acquisition. This is due to the
integration of multiple pieces of information into a single
image, an essential requirement for physicians to conduct
in-depth analysis and proceed with further assessments [7].

The three types of fusion are feature-level fusion, pixel-
level fusion [5], and decision-level fusion. Pixel-level picture
fusion is thought to be the simplest and most successful
method for analyzing it [8]. Unlike alternative approaches,
pixel-level image fusion generates a combined image that is
richer in information for both computer processing and visual
perception. This is achieved through the direct integration of
the original information from the source images [9]. In con-
trast to alternative methods, pixel-level image fusion directly
integrates the inherent details from the source images to gen-
erate a fused image that is more comprehensive in terms of
data for both computer processing and human vision. In these
approaches, the resulting fused image incorporates either the
maximum, minimum, or average values of corresponding
pixels from the two input images. Feature-level fusion extracts
features such as edges and textures and then fuses these sup-
plementary features. In decision-level fusion, a decision is
obtained from the source images through certain criteria and
then the information from the source images is fused [9].
Among these techniques, pixel-level fusion is a simple tech-
nique, feature-level removes redundancy, and decision-level
is a robust technique.

1.1. Image Segmentation Methods. Image segmentation tech-
niques can be classified according to segmentation methods
and their processing that is required to reach the objective of
extracting features. They are

(i) Simple threshold method

(ii) Edge detection-based segmentation

(iii) Region growing and splitting technique

(iv) Cluster model

(v) Watershed segmentation

(vi) Artificial neural network-based segmentation

Among the other methods of image segmentation, seg-
mentation based on artificial intelligence (AI) improves
accuracy comparatively and also saves time. Artificial neural
networks (ANNs) are among the most dominant AI tech-
niques available, which can categorize and quantify lesions
with pinpoint accuracy as well as mimic the clinical evalua-
tion for a given problem [8].

An artificial neural network separates the defective regions
of a picture by pixel-by-pixel processing [10]. After statistical
features are extracted from the problematic regions, a super-
vised algorithm grades the image [11]. AI systems are thought
to have a significant interest in the field of medical diagnosis
using machine learning and image processing [12].

The most common application of artificial intelligence in
medical image classification and recognition is artificial neu-
ral network approaches [13]. A significant method for the
effective identification of brain tumors is the artificial neural
network. Steps are taken in this work to detect brain tumors
accurately [10]. Although other methods of segmentation
have their own merits and demerits, the convolutional neu-
ral network method is based on decision-making by learning
from the given set of images [11].

Our work’s contribution is as follows:

(i) We propose a simplified CNN architecture and
Tumnet model with a minimum number of layers
in convolution, pooling, and fully connected stages
compared with other CNN architectures

(ii) Small-size kernel (3 × 3) is considered for all the
layer operations

(iii) Complexity in the number of layers is minimized with
5 convolutional layers, 3 pooling layers with ReLU
activation function, and 3 fully connected layers

(iv) We conduct a simulation of brain tumor images
with meningioma and sarcoma images of the same
slices by fusing the images, classification, and seg-
mentation of the tumor area. This process can be
implemented to find out postoperative tumor resid-
ual tumor cells

(v) Tumnet is also implemented for single-modal MRI
and CT image slices to classify and extract tumor areas

2. Related Work

Extensive literature was made on the fusion, classification,
and segmentation of brain tumor images. A detailed analysis
was performed on various techniques of image fusion, seg-
mentation, and classification. Liu et al. [12] provided a thor-
ough analysis of recent advances in deep learning-based
pixel-level image fusion techniques. They discuss the current
state-of-the-art approaches, including single-shot and multi-
scale fusion methods, and analyze their benefits and draw-
backs. Altaf [14] proposed a method for accurately
delineating the gross tumor volume in brain gliomas using
CT-MRI image fusion. The author presents a framework
that integrates different image processing techniques,
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including registration, segmentation, and fusion, to achieve
better tumor volume estimation. Selvakumar et al. [15] pro-
posed a method for neoplastic segmentation and area calcu-
lation using fuzzy C-means and K-means clustering
algorithms. The authors discuss the merits and demerits of
each technique and show that the proposed method can
achieve better segmentation results compared to other
state-of-the-art methods. Rammurthy and Mahesh [16] pro-
posed an MRI image-based deep learning method for the
identification of brain tumors. The authors employ a Whale
Harris Hawks optimization algorithm to make CNN learn
for classification. The review provides useful insights into
the cutting-edge methodologies for medical image registra-
tion and fusion [17].

Maqsood et al. [7] proposed a technique to identify brain
tumors using image fusion based on CNN. Selmakuvar et al.
[15] presented a narrative review of brain image segmenta-
tion methods in recent years. They discussed various tech-
niques such as deep learning, clustering, and graph-based
methods, and highlighted their advantages and disadvan-
tages. Pereira et al. [18] developed a CNN-based method
for segmenting brain tumors in MRI images. They used a
small kernel of size (3 × 3) and attained 0.74 as an average
dice coefficient. Ramamoorthy and Banu [19] presented a
review of video enhancement techniques for medical and
surveillance applications. They discussed various approaches
such as contrast enhancement, noise reduction, and superre-
solution. Bhandari et al. [20] suggested a CNN-based seg-
mentation of brain lesions. They used a 3D CNN
architecture and attained 0.80 as the dice coefficient. Ranj-
barzadeh et al. [21] developed a segmentation of brain
lesions for multimodal MRI images implementing deep
learning and attention mechanisms. The authors [22] pro-
posed a thresholding-based method for medical image seg-
mentation. They discussed various applications of
thresholding techniques in medical image segmentation.
Arif et al. [23] presented a technique for brain tumor identi-
fication and classification by means of biologically inspired
orthogonal wavelet transform and deep learning techniques.
Bahadure et al. [24] proposed a method for MRI-based
detection of brain tumor and feature extraction using biolog-
ically inspired BWT and SVM. They obtained an accuracy of
95.45% for tumor detection and 91.67% for feature
extraction.

Rammurthy and Mahesh [16] proposed a deep learning
classifier for the identification of brain tumors utilizing
MRI images. The classifier relies on Whale Harris Hawks
optimization (WHHO) and can accurately classify MRI
images as tumor or no tumor. Çinar and Yildirim [25] sug-
gested a hybrid CNN architecture for brain tumor detection
on MRI images. The proposed architecture combines convo-
lutional neural networks with handcrafted features and can
accurately detect brain tumors. Nayak et al. [26] suggested
a classification system for brain tumors using a dense
efficient-net. The proposed approach can accurately put
brain tumors into distinct groups. Isin et al. [27] provide
an overview of deep learning techniques for MRI-based
brain tumor image segmentation. Saravanan et al. [28] pro-
posed a CNN-based approach for the identification and clas-

sification of glioma brain lesions. Pereira et al. [29] proposed
an automatic brain tumor grading approach using CNN and
an assessment of quality. The proposed approach can accu-
rately grade brain tumors based on their characteristics.
Vankdothu and Hammed [30] proposed a recurrent convo-
lutional neural network-based approach for the identifica-
tion and classification of brain tumor MRI images. The
technique suggested can exactly classify brain tumor MRI
images into different categories. The authors proposed a
multilevel CNN model for brain tumor classification in IoT
healthcare systems [31].

The literature review highlights the increasing popularity
of deep learning-based approaches for the detection and
classification of tumors in MRI brain images. Despite these
benefits, there are still challenges that need to be addressed,
such as the increase in accuracy of detection, classification,
and complexity in the deep learning model. The proposed
system incorporates a pixel-level fusion technique for multi-
modal images and utilizes a simple thresholding technique
for segmentation. A CNN model with a small kernel and
minimal layers is utilized for the categorization of brain
tumors. This model as a whole improves the accuracy of
classification.

3. Materials and Methods

The proposed approach is divided into two sections. Prepro-
cessing comes first, followed by the implementation of the
proposed method. As an input, brain MRI and CT imaging
datasets are employed. Implementation includes tumor and
nontumor images. Images must be transformed to .jpg for-
mat before being used in the MATLAB environment.

3.1. Preprocessing. The downloadable images of the brain
and its lesion can be found at http://www.med.harvard
.edu/AANLIB/home.html [32] and https://www.kaggle
.com/datasets/navoneel/brain-mri-images-for-brain-tumor-
detection?resource=download [33]. The file format and spa-
tial resolution of downloaded images are 256 × 256 gif. As a
preprocessing, 256 × 256 images are resized to 227 × 227 as
the Tumnet model was designed to process only 227 × 227
images, and the gif format is converted to jpg images for fur-
ther processing. Meningioma and sarcoma types of brain
tumors are taken from the database. Out of 170 sets of
meningioma and sarcoma together available in the database,
154 sets of MR-CT combination (70 sets of meningioma and
84 sets of sarcoma) are considered multimodal slices from
the MedHarvard database, and 561 single-modal slices
(280 MRI meningioma and 281 CT sarcoma images) are

Source
image S1

Fused
image F12

Source
image S2

Figure 1: Fusion structure.
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considered for the dataset from the Kaggle database. This
accounts for a total of 869 slices of images for further pro-
cessing. Our primary concern in preprocessing here is the
removal of salt-and-pepper noise, and the downloaded
images from this specified database are already preprocessed
and void of salt-and-pepper noise. So, the only preprocess-
ing stage includes resizing images to 227 × 227. From the
database, 170 sets of meningioma and sarcoma brain tumors
were extracted. Among these, 154 sets (70 meningiomas and
84 sarcomas) were identified as multimodal slices, consisting
of both MR and CT images. Additionally, 561 single-modal
slices were included in the dataset, comprising 280 MRI
images of meningioma and 281 CT images of sarcoma. In
total, there are 869 image slices available for further process-
ing. Training and validation images are 70% and 30%,
respectively.

3.2. Fusion Using the Averaging Method. The images can be
fused using the averaging method. This method takes up the
two images, and the resultant images will have the average

pixels of both images [34]. The pixels of each image will be
considered and added, and they will be divided by the quan-
tity of the images utilized. All the pixels in the images will
continue this method, and the output fused image will be
obtained. The fusion structure is depicted in Figure 1.

ConsiderN source images, S = Si, i = 1,−−−−−−N , 1

M fusion structures, T = Ti, i = 1−−−−−−−M 2

The fused image is stated by

F = Ti S , i = 1,−−−−−−−−−M
= Fij, i = 1−−−−−−−−−−−M, j = 1−−−−−−−−−−−−Ki

3

where Ki is an image fusion algorithm to result in infused
images from N source images and M fusion structures.
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Figure 2: Structure of brain tumor detection model.
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The mathematical equation of image fusion is given by

MC1 x, y =
M1 x, y + C1 x, y

2
, 4

where MC1(x,y) is the fused MRI and CT images.
The image averaging method considers the correspond-

ing pixels from both MRI and CT images [35] and is fused
by considering the average of those pixels [36]. This method
of pixel-wise image fusion carries the dominant features
from a couple of MRI and CT images [8].

3.3. Image Segmentation with Deep Learning. Because it
allows us to interpret the image content, image segmentation
is an important aspect of computer vision and image pro-
cessing [27]. It can be used for image reduction, scene inter-
pretation, and finding objects in medical images and satellite
images, among others. Many image segmentation methods
have been created over time, and while several picture seg-
mentation techniques have been developed over time, deep
learning for computer vision has allowed for the evolution
of numerous image segmentation deep learning models
[23]. Recurrent neural networks, convolutional neural net-
works, deep belief networks, and multilayer perceptron
(MLP) are examples of deep learning techniques [24].
CNN could be a feed-forward neural network that is usually
accustomed to analyzing visual pictures by processing infor-
mation with a grid-like topology. It is additionally called a
Tumnet. CNN is employed to perceive a neural network
which is conceived as the human visual cortex and classify
objects in a picture. Figures 2 and 3 represent a block dia-
gram of the proposed model and its corresponding flowchart
[37]. In the proposed model, novelty has been brought about
by combining fusion and segmentation techniques. Input
brain tumor images are initially preprocessed to make them
compatible with the architecture used and fused by using the
image architecture for feature extraction, and image classifi-
cation is performed by a fully connected layer [38]. If the
tumor is present, then the tumor region is extracted and its
area is calculated. The Tumnet method, which involves fea-
ture extraction and classification [25], is illustrated in
Figure 3. The intricate architecture of the Tumnet model is
seen in Figure 4. The Tumnet algorithm helps to extract
information from images by using the ideal number of hid-
den layers [26]. Convolution, ReLU, pooling, and fully
linked layers are the Tumnet model layers. The layer param-
eters and measurements are shown in Table 1 [28].

3.3.1. Convolution Layer. Convolution is a process in image
processing from which features can be extracted. For exam-
ple, simple low pass filter, high pass filter, and image seg-
mentation operations involve convolution [39]. Table 2
displays the sample convolution kernels to extract the fea-
tures. It is clear from these operations that extraction of fea-
tures requires convolution operation concerning images.
Convolution operation goes on as

Z = X ∗ f , 5

where X is the input image, f is the filter, and Z is the fil-
tered image.

Based on the number of filters and layers, CNN obtain
the features from the given image in which the object has
to be identified.

In general, convolution operation is defined mathemati-
cally as

g x, y = 〠
k,l∈w

〠W k, l f x − k, y − l , 6

where f x, y is the image input and g x, y is the image
output.

The kernel chosen for convolution operation is 3 × 3
which makes the Tumnet model an optimum model to be
implemented [12].

3.3.2. Pooling Layer. The pooling layer is derived after the
convolutional layer, which subsamples the pixels to reduce
computational effort without impacting the individual prop-
erties of the activation maps. The pooling layer’s purpose is
to combine related characteristics into one [40]. For subsam-
pling, the minimum image rate, called the Nyquist rate, must
be followed.

f s ≥ 2fmax, 7

where f s is the sampling frequency and fmax is the maximum
sampling frequency.

The pooling layer has three major types, namely, maxi-
mum pooling, minimum pooling, and average pooling. In
this technique, maximum pooling is implemented to bring
dominant features from the original image. In the pooling
layer, the filter size is 2 × 2 and the stride length is 2. The
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Fully connected layer

Max pooling

RELU function

Convolutional layer

Testing samples

Flattening

Figure 3: Workflow of the Tumnet model.
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dimensions of the output received after a pooling layer for
an activation map with size nh × nw × nc are

nh − f + 1
s

∗
nw − f + 1

s
∗ nc, 8

where nh is the activation map height, nw is the activation
map width, nc is the number of channels in the activation
map, f is the filter size, and s is the length of the stride

3.3.3. ReLU Layer. The following formula applies to the recti-
fied linear unit (ReLU): f x =max 0, x , which has become
popular in recent years, as well as the more traditional sig-
moids, which are nonlinear functions used in neural networks.

R x =
x x ≥ 0,

0 otherwise,
9

(i) the result equals the x portion of the “max” function
for all x ≥ 0

(ii) the result equals the 0 portions of the “max” function
for all x < 0

Because the presence of anomalies in medical images is
nonlinear, this layer is in charge of nonlinear data conver-
sion [41]. To avoid overfitting, some of the neurons are
dropped out which is a regularization method of avoiding
overfitting of data. The applied dropout value is 0.6.

3.3.4. Flattening Layer. Flattening is a technique for convert-
ing a pooled feature map’s 2D array into a long single con-
tinuous linear array. Figure 5 illustrates the function of the
flattening layer.

3.3.5. Fully Connected (FC) Layer. A fully connected layer is
an example of a feed-forward. The fully connected levels are
the network’s final tiers.

A bias vector is added after the input has been multiplied
by a weight matrix in the FC layer, as shown in Figure 6 [42].

Following the convolution and downsampling layers are one
or more FC layers. Every neuron in the FC layer is linked to
every neuron in the next layer. This layer collects all of the
characteristics obtained by the previous layers across the
image to discover the bigger patterns [43]. The characteris-
tics are combined in the final fully linked layer which is used
to classify images in classification challenges. The completely
linked layer has six neurons in the softmax layer.

3.3.6. Activation Function Analysis. Figure 7 illustrates fea-
ture maps of stage 1 of the Tumnet model, in which feature
maps of pooling layer 1, convolution layer 1, and ReLU layer
1 were displayed. Also, the strongest activation channel of
convolution layer 1 has been compared with the input image
slice. Figure 8 depicts the activation function outputs of con-
volution layer 5 and ReLU layer 5. Also, the strongest activa-
tion channel of layer 4 has been shown. Channels in the
deeper layer learn complex elements like fissures and gyri,
while channels in the early layers learn only simple features
like color and boundaries [44].

Strong positive activations are represented by white pixels,
and strong negative activations are represented by black pixels
[45]. A colormap has been assigned for the feature maps to
enhance the visibility of the features. Feature map regions that
are gray do not activate as strongly from the image input [46].
A white pixel in a feature map represents that the input image
features are carried out in the resulting feature map effectively.
The figure represents the strongest activation channel of con-
volution layer 4. From the feature map, it is clear that the
tumor part is activated well at the deeper convolution layer 4
which indicates that by implementing this architecture, it
can achieve strong activations at this layer. The pseudocode
of the mode is depicted in Pseudocode 1.

4. Experimental Outcomes

This work demonstrates the results of the segmented image
of a brain lesion from the fused MRI and CT images of size
227 × 227 pixels (images downloaded from http://www
.medharvard.edu) [47]. The experiment was conducted in
the MATLAB 2019a version on 8GB RAM and a 64-bit
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Figure 4: Structure of the Tumnet model.
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Table 1: Learnable parameters of the Tumnet model.

S. no. Layer name Layer type Size of activations Size of learnables Total learned

1
Image I/P

227 × 227 × 1 with “zero center normalization”
Image input 227 × 227 × 1 — 0

2
Conv_1

8 3 × 3 × 1 Convolutions stride [1 1] with
padding “same”

Conv layer 227 × 227 × 8 Weight 3 × 3 × 1 × 8
Biases 1 × 1 × 8 80

3
Batch-norm_1

8 channel batch normalization
Batch normalization 227 × 227 × 8 Off-set 1 × 1 × 8

Scale size 1 × 1 × 8 16

4
ReLU_1

ReLU layer
ReLU layer 227 × 227 × 8 — 0

5
Maxpool_1

2 × 2 max pooling stride [2 2] with padding
[0,0,0,0]

Maximum pooling 113 × 113 × 8 — 0

6
Conv-2

16 3 × 3 × 8 convolution stride [1 1] with
padding “same”

Conv layer 113 × 113 × 16 Weight 3 × 3 × 8 × 16
Biases 1 × 1 × 16 1168

7
Batch-norm_2

Batch normalization and 16 channels
Batch

Normal form
113 × 113 × 16 Off-set 1 × 1 × 16

Scale size 1 × 1 × 16 32

8
ReLU-2
ReLU

ReLU layer 113 × 113 × 16 — 0

9
Maxpool_2

2 × 2 max pooling stride [2 2] with padding
[0,0,0,0]

Maximum pooling 56 × 56 × 16 — 0

10
Conv-3

32 3 × 3 × 16 convolution stride [1 1] with
padding “same”

Conv layer 56 × 56 × 32 Weight 3 × 3 × 16 × 32
Biases 1 × 1 × 32 4640

11
Batch-norm_3

Batch normalization and 32 channels
Batch

Normal form
56 × 56 × 32 Off-set 1 × 1 × 32

Scale size 1 × 1 × 32 64

12
ReLU-3
ReLU

ReLU layer 56 × 56 × 32 — 0

13
Maxpool_3

2 × 2 max pooling stride [2 2] with padding
[0,0,0,0]

Maximum pooling 28 × 28 × 32 — 0

14
Conv-4

64 3 × 3 × 32 convolution stride [1 1] with
padding “same”

Conv layer 28 × 28 × 64 Weight 3 × 3 × 32 × 64
Biases 1 × 1 × 64 18496

15
Batch-norm_4

Batch normalization and 64 channels
Batch

Normal form
28 × 28 × 64 Off-set 1 × 1 × 64

Scale size 1 × 1 × 64 128

16
ReLU-4
ReLU

ReLU layer 28 × 28 × 64 — 0

17
Maxpool_4

2 × 2 max pooling stride [2 2] with padding
[0,0,0,0]

Maximum pooling 14 × 14 × 64 — 0

18
Conv-5

128 3 × 3 × 64 convolution stride [1 1] with
padding “same”

Conv layer 14 × 14 × 128 Weight 3 × 3 × 64 × 128
Biases 1 × 1 × 128 73856

19
Batch-norm_5

Batch normalization and 128 channels
Batch

Normal form
14 × 14 × 128 Off-set 14 × 14 × 128

Scale size 1 × 1 × 128 256

20 ReLU_5 ReLU 14 × 14 × 128 — —

21 FC Fully connected layer 1 × 1 × 6 Weight 6 × 25088
Biases 6 × 1 150,534

22 Soft maximum Soft-max 1 × 1 × 6 — —

23 Class-output Classification O/P — — —
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operating system. Initially, input images are resized from
256 × 256 to 227 × 227 as required by the architecture.
Then, the images are fused by using pixel-level fusion,
namely, the averaging method. This method carries domi-
nant features from the original image. Image fusion is per-
formed in brain tumors which is helpful for
neurophysicians while giving treatment for radiotherapy or
postoperative radiotherapy [48]. Following that, the fused pic-
tures are trained using the CNN approach of the Tumnet
model (which learns features from the dataset already pro-
vided), which includes the processes of convolution, pooling,
and feature extraction (brain tumor component), with an
input layer, a hidden layer, and an output layer. If a tumor
exists, the size of the tumor component is retrieved from brain
imaging by using a simple threshold method. Structural simi-
larity (SSIM) for image fusion, as well as sensitivity, specificity,
entropy, standard deviation, and variance, are calculated as
performance measures.

(i) Structural similarity (image fusion)

It is a measure of structural similarities between two
images in which one image is a reference image and the other
one is compared with this image [49]. SSIM is found by

SSIM x, y =
2xy + C1 2Sxy + C2

x2 + y2 + C1 S2x + S2y + C2

, 10

where C1 and C2 are k1L
2 and k2L

2.

k1 and k2 are small constants of values 0.01 and 0.03.
L is the pixel’s dynamic range (L is 8 for 0-255 grayscale

range image).

(ii) Sensitivity

An algorithm can correctly identify a disease. The math-
ematical formula is given by

Sensitivity =
true positive TP

true positive TP + false negative FN
11

(iii) Specificity

An algorithm can correctly identify a disease that is not
there.

Specificity =
true negative TN

true negative TN + false positive FP
, 12

where TP is the true positive, segmented pixels appropriately
stated as positive; FP is the false positive, segmented pixels
inaccurately stated as positive; TN is the true negative, seg-
mented pixels appropriately stated as negative; and FN is
the false negative, segmented pixels inaccurately stated as
negative.

(iv) Entropy

The information content of an image is measured by
entropy. It describes how much randomness or ambiguity
is present in an image. The higher the quality of a photo-
graph, the more details it holds. The more the entropy, the
more detailed the image will be.

E I = 〠
L−1

0
P K log2P K , 13

Table 2: Filter kernels in the convolution layer.

Low pass filter
1
9

1 1 1

1 1 1

1 1 1

High pass filter

−1 −1 −1

−1 8 −1

−1 −1 −1

Line detection

−1 −1 −1

2 2 2

−1 −1 −1

Vertical line detection

−1 2 −1

−1 2 −1

−1 2 −1

Slanted line detection (45°)

−1 −1 2

−1 2 −1

2 −1 −1

Slanted line detection (-45°)

2 −1 −1

−1 2 −1

−1 −1 2

Figure 6: Fully connected layer.

7 8

9 3

Pooled feature map

7
8
9
3

Flattening

Figure 5: Flattening of pixels.
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Input image Convolution layer 1
feature maps

Strongest activation channel of
convolution layer 1

Pooling layer 1 ReLU layer 1

Figure 7: Feature maps of stage 1 of the Tumnet model.

Convolution layer 5 ReLU layer 5 Strongest activation channel 4

Figure 8: Feature maps of convolution layer 5, ReLU layer 5, and strongest activation channel 4.

1. Input: MRI and CT image brain tumor image dataset of size 256X256 pixels.
2. Preprocessing: Resized image: 227 X 227 pixels.
3. Perform image fusion of preprocessed input images by using pixel-level fusion method – Averaging method.
4. Train using the Tumnet model for the presence or absence of tumor
Tumnet details:
a. Convolution layer: Uses 3X3 kernel and stride length is 1
For the input images

Initialize m=0;
fori=1: feature maps count

for j=1: prevlayer_featuremaps
m = m+1;

b. Pooling Layer: Subsamples from 4X4 to 2X2
For the feature maps
width=cnn.layers.featuremap_width/subsample rate
height=cnn.layers.featuremap_height/subsample rate
c. ReLU layer: Uses Rectified Linear activation function to negative values to 0.
For the Pooled feature maps
CNN.layers.act_func=activation_func_name
Flattening layer: Converts the ReLU layer's output 2D matrix into a single-dimensional vector.
Fully connected Layer: Classification into six classes of MRI, CT, and MRI-CT (Tumor/No Tumor)
The softmax function is used to activate the completely connected layer.
5. Calculate the tumor size (in pixels) if the tumor is present by using the formula
Size of Tumor, ST= T ∗ 0 264 mm2,
where T is a segmented region in the binary image [15]
6. Calculate evaluation metrics: Structural Similarity for Image fusion Sensitivity, Specificity for image segmentation

Pseudocode 1: Pseudocode of Tumnet model.
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where I is the original image, P K is the probability of the
value k appearing in image I, and L is the number of various
gray levels.

(v) Standard deviation

The standard deviation describes how far the values in a
dataset depart from the average. One technique to assess
contrast is to provide the pixel value standard deviation in
an image.

(a) (b) (c)

Figure 9: MRI and CT Brain of size 256 × 256 pixels and its fused images. (a) Input-MRI image. (b) Input-CT image. (c) Fused MRI-CT
image by using the average method.

Table 3: Tumor area in mm2.

Method
Tumor area (mm2)

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Average-ST 4.00 4.80 5.00 5.00 3.58 3.55

Max-ST 4.25 4.20 4.3 4.20 4.02 4.02

Min-ST 5.00 5.00 5.02 4.80 4.01 4.00

10 Behavioural Neurology



(vi) Variance

A random variable’s variance indicates how far it
diverges from its mean value. The variance is the average
of the squares of the discrepancies between the individual
value and the expected value. This implies that it is always
in the affirmative.

4.1. Discussion. Figure 9 depicts a sample of input MRI
and CT images in an axial slice, with the MRI revealing
a tumor as well as the outline of gray and white matter
[36]. The fused image depicts a combination of prominent
MRI and CT features as a consequence of the pixel-level
fusion averaging approach. This approach is deemed sim-
ple because it works with pixels directly. Other pixel-level
fusion approaches, such as the maximum and minimum
methods, are contrasted with this fusion method. This is
called fusion at the feature level as stated by and classifica-
tion by using advanced classification techniques such as
CNN combined with small kernel concept. This seems to
be the novelty of this proposed method. This colearning
of a different set of features from various modals can be
an added advantage to the convolutional neural network
which in turn extracts features from the fused multimodal
image. As far as carcinoma is concerned, an accurate diag-

nosis is so vital that even one residual cell can multiply
into many [50]. This can be achieved by implementing
multimodal images for feature extraction, followed by
multimodal tumor classification (presence/absence of a
tumor).

This kind of fusion-based CNN can be applied for
patients who are taking both the MRI and CT scan as well
as those patients who are undergoing radiotherapy after
the operation of the tumor. During the treatment of radio-
therapy, fusion-based classification is important in detecting
any tumor cells. Figure 8 shows the extracted tumor outline
from the fused image with the implementation of the CNN
method. This method is implemented with the simple
threshold method, with an object solidity value greater than
0.7 and object areas greater than 100 pixels considered to be
the tumor region [21]. Only the two parameters mentioned
above can be changed in a simple threshold technique to
extract tumor outlines.

Although the goal of brain lesion detection is to obtain
active tumorous tissue and tumor regions that have spread,
the localization and detection of active tumorous tissue were
the focus of this study [51]. The tumor’s detected region is
then excised, and the tumor area in mm2 is determined, as
shown in Table 3. The extracted tumor image is shown in
Figure 10. Various performance metrics for image fusion

(a) (b) (c) (d)

Figure 10: Extraction of brain tumor images. (a) Input-MRI image. (b) Input-CT image. (c) Fused MRI-CT image. (d) Tumor outline.

Table 4: Fusion metrics.

Method SSIM tissue SSIM bone Accuracy (%) Sensitivity (%) Specificity (%) Standard deviation Entropy

Average 82.67 83.67 90.33 96.00 95.33 78.67 4.23

Maximum 67.83 67.33 84.67 73.83 74.83 75.00 3.93

Minimum 72.83 71.00 80.50 72.33 73.00 82.50 3.78
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and image segmentation techniques for tumor images were
calculated [52]. Table 4 depicts the fusion technique’s per-
formance metrics derived by combining the averaging
approach, the minimum pixel-level fusion method, and the
maximum pixel-level fusion method, as well as a basic
threshold and CNN. When both procedures are compared,
the averaging method produces higher values for both SSIM
tissue and SSIM bone. SSIM tissue is determined by compar-
ing the MRI input picture with the fused image, whereas
SSIM bone is determined by comparing the input CT image
with the fused image. This metric conveys how far the tissue
and bone structures are carried over to the fused image. A
higher value of SSIM tissue and bone provides more details in
the merged image. Tables 5, 6, and 7 show the analysis of fusion
metrics for average, maximum, and minimum methods. It also
illustrates the minimum and maximum range of performance
metric values for the three fusion methods, in which the com-
paratively average method outperforms well. Apart from the
gold standard metric SSIM, parameters like the fused images,
standard deviation, and entropy are also determined, which
are also shown in Table 7. Standard deviation conveys the devi-
ation of the pixel value from the mean value, and entropy
ranges between 1 and 8 for a 0 to 255 grayscale fused image.

Table 8 illustrates the brain tumor image segmentation
metric comparison of IFST techniques for the same set of
images. Parameters like accuracy, sensitivity, specificity,
standard deviation, and entropy were calculated, and the
accuracy value ranges from 60% to 90% for the IFST
method. The next important metrics are specificity and sen-
sitivity, which are high for the proposed method and are
around 96% and 95% on average, respectively, as shown in
Table 8. This is because pixel average is carried out at the
output, whereas in the other methods of pixel-level fusion,
there is a chance of a missing tumor due to the minimum
pixel value or maximum pixel value at which the tumor
may or may not be present.

The fusion approach is the first step in the simulation
process. This pixel-level fusion approach is used in this tech-
nique. Initially, the average fusion technique is applied in

which fusion metrics are obtained for 154 sets of tumor
images. Fusion metrics displayed were SSIM bone, SSIM tis-
sue, entropy of fused image, entropy of tumor image, mean
of fused image, mean of tumor image, standard deviation
of fused image, standard deviation of tumor image, variance,
sensitivity, specificity, and accuracy. SSIM tissue ranges from
44% to 99%, and SSIM bone ranges from 61% to 98%,
whereas the maximum method varies from 1% to 98% and
the minimum method ranges from 1% to 98%. Although
there is not much difference between the maximum value
among the three methods, it is to be noted keenly that the
minimum value of the maximum and minimum methods
falls to a very low value of 1. Apart from second-order
advanced statistical parameters, first-order statistical param-
eters are also obtained by using the three methods. The nor-
malized value of sensitivity, specificity, and accuracy reaches
its maximum value at 1. Among these parameters, SSIM tis-
sue and bone convey to us the true scenario of the proposed
algorithm performance. Table 7 conveys the average of

Table 6: Maximum method analysis.

Fusion metrics Minimum value Maximum value

SSIM tissue (%) 1 98.45

SSIM bone (%) 56.47 98.56

Entropy of fused image 0.89 0.99

Entropy of tumor image 0.85 0.99

Variance 0.20 0.24

Standard deviation of
fused image

86.93 99.25

Standard deviation of
tumor image

0.4 0.49

Mean of fused image 54.94 88.53

Mean of tumor image 0.27 0.49

Sensitivity (0-1) 0.54 1

Specificity (0-1) 0.99 1

Accuracy (0-1) 0.78 0.99

Table 7: Minimum method analysis.

Fusion metrics
Minimum

value
Maximum

value

SSIM tissue (%) 1 98.56

SSIM bone (%) 46.56 98.56

Entropy of fused image 0.82 0.98

Entropy of tumor image 0.79 0.99

Variance 0.22 0.25

Standard deviation of fused
image

89.98 98.11

Standard deviation of tumor 0.46 0.5

Mean of fused image 41.87 91.32

Mean of tumor image 0.30 0.51

Sensitivity (0-1) 0.60 1

Specificity (0-1) 0.98 0.99

Accuracy (0-1) 0.71 1

Table 5: Average method analysis.

Fusion metrics Minimum value Maximum value

SSIM tissue (%) 44.56 99.49

SSIM bone (%) 61.32 98.59

Entropy of fused image 0.9447 1

Entropy of tumor image 0 0.9877

Variance 0 0.2475

Standard deviation of
fused image

60.1181 71.4693

Standard deviation of
tumor image

0 0.4974

Mean of fused image 41.05 65.9838

Mean of tumor image 0 0.4473

Sensitivity (0-1) 0.47 1

Specificity (0-1) 0.93 0.99

Accuracy (0-1) 0.88 1
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fusion metrics for 154 sets of tumor images from five
patients who suffered from meningioma and sarcoma
cancers, in which sarcoma is a metastatic tumor [48]. T1-
weighted, T2-weighted, and proton-density sequences of
brain tumor images are available (PD) [42]. Images are
sliced axially, sagittally, and coronally, in which axial slices
are usually preferred since they contain most of the parts
of the brain. Images belong to a different set of patients hav-
ing the abovementioned abnormalities in their brain images.
This implies that, for a wide variety of cases, our proposed
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Figure 11: Classification accuracy and loss function of the Tumnet model.

Table 9: Comparative analysis for tumor classification accuracy.

Reference Year Deep learning model Accuracy (%)

Proposed 2022 Tumnet model 98

[31] 2022 Resnet50 95

[30] 2022 Recurrent CNN 95

[54] 2022 Improved CNN 93

[29] 2018 Convolutional neural network (CNN) 89

Table 8: Segmentation metrics.

Method Accuracy (%) Sensitivity (%) Specificity (%) Mean Standard deviation Variance Entropy

Average-ST 90 96 99 0.75 0.4 0.16 0.90

Max-ST 65 54 75 0.41 0.4 0.16 0.7

Min-ST 78 65 78 0.51 0.5 0.25 0.77

Table 10: Comparison of testing accuracy of the Tumnet model
with other existing models.

CNN model Testing accuracy (%)

Tumnet (proposed) 96

VGG-19 94

Alexnet 82

GoogLeNet 78

ConvNet 67
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algorithm suits well on average. Fusion-based convolutional
modal network is preferred for specific cases such as those
patients who are asked to take both MRI and CT after radio-
therapy treatment [53].

Considering the average values of the following methods,
such as Average-ST (simple threshold), Max-ST, and Min-
ST, this implies that for a given set of 154 tumor images, this
method holds good. This can be proved for more images
also. The Tumnet model is implemented along with the
average image fusion method. Tables 8 and 3 illustrate that
the proposed method has a higher range of performance
on average for the available tumor images. Performance
metrics have been illustrated for both fusion as well as seg-
mentation. The tumor area is calculated by using the for-
mula of T ∗ 0 264, where T is the segmented tumor in
pixels, and this formula gives the value in mm2.

It is observed that classification accuracy increases to
98% and loss function decreases to almost 0 for the given
set of images, as shown in Figure 11. Comparative analysis
with the latest references for classification accuracy is shown
in Table 9.

Tumnet, being the proposedmodel, shows the highest per-
formance of 96% in testing accuracy parameters for the Kaggle
dataset [33] which is explicitly shown in Table 10. Hence, the
Tumnet model outperforms the other existing models such as
VGG-19, Alexnet, GoogLeNet, and ConvNet for the dataset
considered for classification. Among these models, VGG-19
andAlexnet show low-level variation with the proposedmodel
which has 94% and 82%, respectively, whereas GoogLeNet
and ConvNet indicate a high level of variation which shows
78% and 67%, respectively. Thus, the Tumnet model proves
its robustness for different datasets.

Tumnet, the proposed model, performs to obtain an
accuracy of 98% for multimodal images of MRI, CT, and
fused MRI-CT images. A few methods shown in Table 11
outperform the Tumnet model, but they are limited to
single-modality MRI images, whereas the Tumnet model
shows its high potential for diversified images. Tumnet’s
strength lies in its ability to handle multimodal data, achiev-
ing a notable 98% accuracy. The results underscore the
importance of model architecture, dataset characteristics,
and multimodal approaches in achieving high accuracy in
brain tumor detection.

5. Conclusion

This research work proposes a Tumnet deep learning model
for the categorization of brain tumors from MRI, CT, and

fused MRI-CT slices. The model comprises 11 layers, includ-
ing convolution, pooling, and activation layers, with a smaller
kernel size of 3 × 3 for the convolution layer. The proposed
system was used with the MedHarvard database of different
tumors, including meningioma and sarcoma. The perfor-
mance of the 3 × 3 kernel architecture was compared with
larger filter architectures. The results of the research showed
that the proposed method achieved high accuracy, sensitivity,
and specificity in detecting brain tumors in both multimodal
and single-modal MRI/CT images. Hence, the proposed
approach possesses the capacity to assist physicians in accu-
rately diagnosing and treating brain tumors. In the future,
the potential of the Tumnet model can be extended to other
imaging databases by applying the 3 × 3 kernel to other stan-
dard models, which may enable accurate classification and
decision support for oncologists.

Data Availability

The multimodal brain tumor dataset such as MRI and CT has
been downloaded from the MedHarvard Brain Atlas, and its
website address is https://www.med.harvard.edu/aanlib/. The
image file format is in .gif, and it is converted to .jpg as a pre-
processing step. It has a 256 × 256 pixel size. 154 sets of tumor
images of the same slices from two different patients affected
with meningioma and sarcoma. Each set consists of a single
MRI and CT slice. Totally, 308 slices are considered for analy-
sis on this website. Also, 561 slices of MRI are downloaded
from https://www.kaggle.com/datasets/navoneel/brain-mri-
images-for-brain-tumor-detection?resource=download of
http://www.kaggle.com. Totally, 869 MRI and CT individual
slices are considered for analysis from the MedHarvard Brain
Atlas and Kaggle websites.
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