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Objective. Oral tongue squamous cell carcinoma (OTSCC) and buccal squamous cell carcinoma (BSCC) are the frst and second
leading causes of oral cancer, respectively. OTSCC and BSCC are associated with poor prognosis in patients with oral cancer.
Tus, we aimed to indicate signaling pathways, Gene Ontology terms, and prognostic markers mediating the malignant
transformation of the normal oral tissue to OTSCC and BSCC.Methods. Te dataset GSE168227 was downloaded and reanalyzed
from the GEO database. Orthogonal partial least square (OPLS) analysis identifed common diferentially expressed miRNAs
(DEMs) in OTSCC and BSCC compared to their adjacent normal mucosa. Next, validated targets of DEMs were identifed using
the TarBase web server. With the use of the STRING database, a protein interaction map (PIM) was created. Using the Cytoscape
program, hub genes and clusters within the PIM were shown. Next, gene-set enrichment analysis was carried out using the g:
Profler tool. Using the GEPIA2 web tool, analyses of gene expression and survival analysis were also performed. Results. Two
DEMs, including has-miR-136 and has-miR-377, were common in OTSCC and BSCC (p value <0.01; |Log2 FC|> 1). A total of
976 targets were indicated for common DEMs. PIM included 96 hubs, and the upregulation of EIF2S1, CAV1, RAN, ANXA5,
CYCS, CFL1, MYC, HSP90AA1, PKM, and HSPA5 was signifcantly associated with a poor prognosis in the head and neck
squamous cell carcinoma (HNSCC), while NTRK2, HNRNPH1, DDX17, and WDR82 overexpression was signifcantly linked to
favorable prognosis in the patients with HNSCC. “Clathrin-mediated endocytosis” was considerably dysregulated in OTSCC and
BSCC. Conclusion. Te present study suggests that has-miR-136 and has-miR-377 are underexpressed in OTSCC and BSCC than
in normal oral mucosa. Moreover, EIF2S1, CAV1, RAN, ANXA5, CYCS, CFL1, MYC, HSP90AA1, PKM, HSPA5, NTRK2,
HNRNPH1, DDX17, and WDR82 demonstrated prognostic markers in HNSCC. Tese fndings may beneft the prognosis and
management of individuals with OTSCC/BSCC. However, additional experimental verifcation is required.

1. Introduction

Oral cancers (OCs) are a frequent type of malignancy in the
head and neck region with a poor treatment outcome. Based
on a previous report, the GLOBOCAN study estimated that
377,713 of the world’s population would be afected by lip
and oral cavity cancer in 2020, leading to 177,757 deaths [1].
Te main risk factors for OCs are the use of tobacco and
alcohol, exposure to UV radiation, and infection with the

human papillomavirus (HPV) and Epstein–Barr virus (EBV)
[2]. In addition, the aggressive nature of OC cells is strongly
correlated with matrix metalloproteinase (MMP)-2, -9, and
-13 [3]. Radical resection, radiotherapy, and chemotherapy
are treatment approaches for OC patients. Among all the OC
cases, 90% are classifed as squamous cell carcinoma (SCC)
[4]. Oral tongue SCC (OTSCC) is the most frequent subtype
of OC and has the worst prognosis among all oral squamous
cell carcinomas (OSCCs) [5–8]. Besides, buccal squamous
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cell carcinoma (BSCC) was reported as the second most
common tumor in the oral cavity [9]. Despite advancements
in therapeutic methods, the 5-year survival rate of OSCC
patients has not improved efciently. When the illness is
discovered at stage IV, it drops from 80% to 30% when
compared to primary OSCC [10]. By the appearance of
clinical signs, up to 50% of OSCC patients are identifed after
they are already advanced [11]. In order to battle OSCC and
increase patient survival rates, it is necessary to suggest more
efective treatment options [12].

MicroRNAs (miRNAs) are noncoding and small RNAs
(20–23 nucleotides) that regulate the transcription of their
target genes; these upstream regulators bind to their
complementary sequences at 3′ UTR of their mRNA tar-
gets, leading to mRNA degradation or translation in-
hibition [13–15]. New research revealed that miRNAs
might drastically dysregulate the expression of genes linked
to ER stress, necroptosis, pro- and antiapoptotic activity,
and oncogenes [16, 17]. Terefore, miRNAs showed reg-
ulatory roles in critical biological procedures, including the
cell cycle process, apoptosis and necroptosis, proliferation,
and diferentiation [18]. Consequently, miRNAs were de-
fned as valuable biomarkers for the prognosis and di-
agnosis of patients with cancer, which have demonstrated
satisfying results when assigned as therapeutic targets in
cancer [12].

Accumulating evidence suggests that miRNAs play
a critical role in the pathogenesis and prognosis of patients
with head and neck squamous cell carcinoma (HNSCC). An
earlier study by Dioguardi et al. [19] found a strong cor-
relation between miR-31 overexpression and a poor prog-
nosis in HNSCC patients. Additionally, the miR-196 family
[20] and miR-155 [21] have been identifed as potential
predictive indicators of survival for HNSCC. Besides,
Dioguardi et al. [22] showed the underexpression of miR-
195 in patients with HNSCC and its excellent potential as an
independent prognostic survival marker for HNSCC.

Te present study hypothesized that miRNAs might
participate in the tumorigenesis of OTSCC and BSCC. It was
suggested that there are common diferentially expressed
miRNAs (DEMs) in the OTSCC and BSCC tissues compared
to the normal oral mucosa, leading to abnormal expression
of their target genes.Tese targets may be involved in several
signaling pathways and biological processes (BPs), which
may help elucidate the mechanisms underlying OSCC. Some
other target genes might act as prognostic markers in pa-
tients with OSCC.Tus, utilizing the orthogonal partial least
squares (OPLSs), common DEMs in OTSCC and BSCC in
comparison to their respective healthy tissues were revealed.
Ten, validated targets of common DEMs were identifed,
a protein-protein interaction (PPI) network was con-
structed, hub genes within the network were illustrated, and
the prognostic roles of hubs in HNSCC were evaluated using
Kaplan–Meier curves. Furthermore, the enriched pathways
and BP terms associated with the main clusters in the PPI
network were identifed.

Te dataset GSE168227 from the Gene Expression
Omnibus (GEO), available at https://www.ncbi.nlm.nih.gov/
geo/, was considered for reanalyzing to examine the present

hypothesis. Te dataset was developed by Rajan et al. [23] to
monitor the miRNA expression pattern in OTSCC, BSCC,
and their adjacent oral mucosa to achieve a novel prognostic
miRNA signature for OSCC. All tissue samples were from
patients at the Regional Cancer Center’s Head &Neck Clinic
(Tiruvananthapuram, India). Patients with any chronic
systemic condition or those who had already had cancer
therapy were not allowed to participate in the trial. Control
samples were attained from the patients undergoing oral and
maxillofacial surgery for noncancer illnesses. All tissue
specimens were immediately snap-frozen and stored in
liquid nitrogen. Te present study was confrmed by the
Ethics Committee of Hamadan University of Medical Sci-
ences, Hamadan, Iran (ethics no.
IR.UMSHA.REC.1401.451).

2. Methods

2.1. Dataset Recovery and Statistical Analysis. Te miRNA
expression dataset GSE168227 [23], based on the platform
GPL8227 (Agilent-019118 Human miRNA Microarray 2.0
G4470B), was downloaded as a TXT fle from Gene Ex-
pression Omnibus (GEO), available at https://www.ncbi.
nlm.nih.gov/geo [24]. Te dataset contained 48 oral tissue
samples, including OTSCC (n� 16), BSCC (n� 14), normal
tongue samples (n� 8), and normal buccal specimens
(n� 10). For feature selection, R programming (version
4.0.2) was used. DEMs in OTSCC and BSCC were found
using OPLSs in comparison to the comparable normal
tissues. A cut-of condition was set to p value <0.01 and |
Log2 fold change (FC)|> 1 [25, 26]. Common DEMs in-
volved in the malignant transformation of normal oral
mucosa to OTSCC and BSCC were indicated. Furthermore,
the Shiny apps web-based tool [27] showed the volcano plot
of miRNAs in the dataset GSE168227.

2.2. PPI Network Analysis Based on Common DEM Targets.
Te experimentally validated targets of commonDEMs were
identifed using the TarBase version 8 database, available at
https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=
tarbasev8/index [28]. Possible interactions among the tar-
gets with a combined score of 0.4 [29] were indicated using
the STRING knowledge tool, available at http://string-db.
org/ [30]. After removing disconnected nodes inside the
protein interaction map (PIM) [31], the connected network
was downloaded as a TSV format and subsequently
imported into the Cytoscape 3.9.1 software [32], available at
https://www.cytoscape.org to perform structural analysis.
Hub nodes were awarded to proteins whose degree and
betweenness were above two times the average and whose
closeness exceeded the mean of the PPI network’s nodes. In
line with our earlier research [33], utilizing the MCODE
plugin, the primary clusters within the PIM were also
highlighted.

2.3. Gene Set Enrichment Analysis. Signifcant molecular
pathways and Gene Ontology (GO) terms involved in the
malignant transformation of normal oral mucosa to OTSCC
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and BSCC were unraveled using g:Profler tool, available at
https://biit.cs.ut.ee/gprofler/gost [34]. Te cut-of condition
was set to the false discover rate (FDR)< 0.05 and the
number of entities ≥10, following our previous study [35].
Te results from two primary pathway sources, including
Reactome [36] and the Kyoto Encyclopedia of Genes and
Genomes (KEGGs) [37] databases, were considered for
pathway enrichment analysis. Notably, common DEMs
targets were taken into account for enrichment analyses of
cellular component (CC) and molecular function (MF). At
the same time, pathway and BP annotation enrichment
analyses were given to the genes inside the clusters as input
data [15].

2.4. Prognostic Role of HubGenes. Regarding the critical role
of hub genes in the pathogenesis of OTSCC and BSCC, the
prognostic impact of hubs in the HNSCC was evaluated
using the Gene Expression Profling Interactive Analysis 2
(GEPIA2) database [38], available at http://gepia2.cancer-
pku.cn/#index. By reanalyzing the raw RNA-seq expression
data of malignant and healthy tissue samples from the
TCGA and GTEx datasets, the GEPIA2 generates
Kaplan–Meier curves. Prognostic indicators were defned as
genes with the log-rank test and the hazard ratio (HR) p

values < 0.05. Te prognostic role of the combination of
genes was also evaluated [39].

2.5. Gene Expression Evaluation of Prognostic Markers.
Te mRNA expression patterns of prognostic genes were
evaluated in HNSCC tissues (n� 519) and healthy samples
(n� 44). It was performed by boxplot analysis provided by
the GEPIA2 database [38].

3. Results

3.1. DEMs in OTSCC and BSCC. Two prediction models
were created using OPLSs to fndDEMs between the OTSCC
and BSCC tissues in comparison to their healthy counter-
parts. Each model was built using 369 variables and 24
samples. At p value <0.01 and Log2 FC> 1, a total of 10
DEMs were indicated in OTSCC compared to the healthy
oral mucosa (R2X� 0.494; R2Y� 0.71; and Q2� 0.264).
Besides, seven DEMs were identifed in BSCC than in
control samples (R2X� 0.526; R2Y� 0.715; and Q2� 0.411)
(Figure 1(a)). All DEMs in OTSCC and BSCC are listed in
Table 1. Two DEMs, including has-miR-136 and has-miR-
377, were common in two subtypes of OSCC. Volcano plots
showed DEMs in the studies groups based on −Log 10 p

value and Log 2 FC (Figure 1(b)).

3.2. Hub Genes, Modules, Pathways, and GO terms. Te
TarBase database detected 976 genes as experimentally
validated targets for common DEMs. Te list of targets was
used as input data in the STRING database to construct
a PPI network. Single nodes were removed from the PIM,
and subsequently, a connected network including 932

proteins and 6682 interactions was imported into Cytoscape.
Te average degree, betweenness, and closeness value was
calculated as 14.33, 0.0023, and 0.33, respectively. Ninety-six
nodes were then identifed as hub genes linked to the
pathogenesis of OTSCC and BSCC. (Table 2). Further
structural analysis was performed using the MCODE plugin.
Seven substantial clusters (cluster No. 1, cluster No. 2, cluster
No. 3, cluster No. 4, cluster No. 7, cluster No. 8, and cluster
No. 9) were found to be involved in the pathways and BPs
linked to the pathogenesis of OTSCC and BSCC. Cluster No.
1 demonstrated the most MCODE score (MCODE score-
� 17.714), and cluster No. 2 included the most number of
genes (n� 55) (Figure 2). Te most important pathways
implicated in the carcinogenesis of OTSCC and BSCC also
included “pathway in cancer” (KEGG:05200), “proteoglycan
in cancer” (KEGG:05205), “bladder cancer” (KEGG:05219),
and “clathrin-mediated endocytosis” (REAC: R-HSA-
8856828). Te two most essential BPs promoting malignant
transformation in the tongue and buccal area were “cell
death” (GO:0008219) and “apoptotic process” (GO:
0006915). Moreover, “neoplasm” (GO:0005654) and “nu-
clear lumen” (GO:0031981) CCs were considerably afected
in OTSCC and BSCC. Moreover, “Protein-containing
complex binding” (GO:0044877) and “RNA binding”
(GO:0003723) were the most enriched terms in the category
of MFs. Figure 3 demonstrates the most signifcant pathways
and GO terms dysregulated in the pathogenesis of OTSCC
and BSCC.

3.3. Prognostic Markers. Kaplan–Meier curves showed that
the overexpression of EIF2S1, CAV1, RAN, ANXA5, CYCS,
CFL1, MYC, HSP90AA1, PKM, and HSPA5 was signif-
cantly associated with a dismal prognosis in the patients with
HNSCC. EIF2S1 showed the most negative marker with the
criteria of HR� 1.7, log-rank test p value� 0.00016, and HR
p value� 0.00019. Additionally, an improved prognosis in
HNSCC was associated with the overexpression of NTRK2,
HNRNPH1, DDX17, and WDR82. With an HR, log-rank p

value, and HR p value of 0.71, 0.011, and 0.011, respectively,
NTRK2 was the most positive marker. Terefore, these
markers might be assigned as drug targets in patients with
OTSCC and BSCC. Figure 4 presents the survival analysis of
prognostic markers. Figure 5 shows interactions between
hub genes. Te combination of EIF2S1, CAV1, RAN, and
ANXA5 showed a considerable negative signature with the
criteria of HR� 1.6, log-rank p value� 0.00028, and HR p

value� 0.00032 (Table 3).

3.4. Gene Expression of Markers. Based on boxplot analysis,
the mRNA levels of EIF2S1, CAV1, RAN, SELE, ANXA5,
CYCS, CFL1, HSP90AA1, PKM, HSPA5, HNRNPH1, and
DDX17 exhibited a signifcant overexpression in HNSCC
than in healthy controls. NTRK2 demonstrated a consider-
able underexpression in HNSCC than in normal oral mu-
cosa. Te MYC and WDR82 expressions were insignifcant
(Figure 6).
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Figure 1: (a) Score plots in the predictive (x-axis) and orthogonal (y-axis) components of two datasets selected from GSE168227. (b)
Volcano plots of miRNAs in OSCC compared to the normal oral tissues. Left and right images present results from OTSCC and BSCC
tissues compared to their corresponding healthy samples, respectively. OTSCC, oral tongue squamous cell carcinoma; BSCC, buccal
squamous cell carcinoma; OSCC, oral squamous cell carcinoma.

Table 1: Diferentially expressed miRNAs in OTSCC and BSCC compared with the normal oral mucosa identifed by OPLS.

A, DEMs in OTSCC
MicroRNA ID p value FC Log2 FC
hsa-miR-136 0.002 0.307 −1.702
hsa-miR-30e 0.004 0.383 −1.386
hsa-miR-95 0.009 0.403 −1.311
hsa-miR-338-3p 0.005 0.411 −1.283
hsa-miR-376a 0.006 0.420 −1.251
hsa-miR-144 0.008 0.420 −1.251
hsa-miR-1 0.006 0.449 −1.155
hsa-miR-337-5p 0.004 0.473 −1.081
hsa-miR-133a 0.001 0.476 −1.070
hsa-miR-377 0.005 0.478 −1.066
B, DEMs in BSCC
MicroRNA ID p value FC Lof2 FC
hsa-miR-136 0.005 0.274 −1.868
hsa-miR-299-5p 0.006 0.412 −1.280
hsa-miR-144 0.005 0.430 −1.217
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Table 1: Continued.

hsa-miR-139-5p 0.000 0.481 −1.055
hsa-miR-30a 0.002 0.482 −1.053
hsa-miR-377 0.007 0.494 −1.016
hsa-miR-204 0.005 0.498 −1.006
OTSCC, oral tongue squamous cell carcinoma; BSCC, buccal squamous cell carcinoma; DEM, diferentially expressed miRNA; FC, fold change.

Table 2: A total of 96 nodes demonstrated high centrality values in the PPI network associated with OTSCC and BSCC and considered
hub genes.

Gene symbols Degrees Betweenness Closeness
MYC 149 0.076 0.483
HSP90AA1 130 0.060 0.472
HSPA5 78 0.033 0.435
PTEN 106 0.032 0.449
FN1 88 0.026 0.425
MDM2 76 0.026 0.432
MAPT 65 0.025 0.427
MAPK1 76 0.023 0.431
SMAD4 73 0.018 0.418
RAC1 62 0.018 0.410
GSK3B 72 0.017 0.427
CCNB1 59 0.017 0.416
CUL1 48 0.017 0.398
CCND1 84 0.016 0.428
ARF1 37 0.016 0.382
FOS 62 0.016 0.416
HIF1A 75 0.016 0.428
HIST2H2BE 67 0.016 0.414
HNRNPC 75 0.015 0.417
CANX 44 0.015 0.396
NCL 62 0.014 0.414
CAV1 57 0.014 0.414
PPP1CB 49 0.014 0.407
G3BP1 55 0.014 0.409
GRIA2 43 0.013 0.390
HUWE1 46 0.013 0.401
FMR1 49 0.013 0.409
DICER1 51 0.012 0.402
PUM2 41 0.012 0.385
STAT1 51 0.012 0.406
IGF1R 54 0.012 0.419
NRXN1 39 0.011 0.379
NTRK2 38 0.011 0.389
SRSF1 68 0.011 0.407
RANBP2 43 0.011 0.395
UBE3A 41 0.011 0.403
DDX5 52 0.011 0.400
SEC13 41 0.011 0.384
UBE4B 30 0.011 0.375
PTPN11 46 0.010 0.399
P4HB 41 0.010 0.389
IQGAP1 48 0.010 0.406
TRIP12 36 0.010 0.384
HNRNPH1 56 0.010 0.393
YWHAG 34 0.010 0.393
CYCS 49 0.009 0.411
HNRNPD 51 0.009 0.398
YAP1 44 0.009 0.395
DHX15 56 0.009 0.387
VCL 41 0.009 0.384
QKI 33 0.009 0.387
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4. Discussion

Te incidence of OTSCC and BSCC is considered the frst
and second highest among all oral cancers, respectively
[40, 41]. MMP-13 inhibitors [42] may be efective treatments
for improving survival rates in patients with OTSCC and
BSCC because of the substantial role MMP-13 plays in the
invasion of OC cells. However, unraveling the most critical
genes, molecular pathways, and GO annotations mediating
the malignant transformation of normal oral mucosa to
OTSCC and BSCC might be helpful in treating OSCC. Gene
set enrichment analysis showed that the “Clathrin-mediated

endocytosis” pathway (REAC: R-HSA-8856828) signif-
cantly mediates the malignant transformation of normal oral
mucosa to OTSCC and BSCC. “Clathrin-mediated endo-
cytosis” (CME) is an endocytic process that regulates the
expression of plasma membrane receptors and infuences
the pathways that lead to those receptors’ downstream
signals [43–45]. Xiao et al. [46] showed that ERK1/2
phosphorylates the FCH/F-BAR and SH3 domain-
containing protein (FCHSD2), leading to enhanced
clathrin-coated pit (CCP) initiation and CME, resulting in
decreased cell-surface EGFR expression and reduced pro-
liferation and migration of nonsmall cell lung cancer cells.

Table 2: Continued.

Gene symbols Degrees Betweenness Closeness
DDB1 40 0.009 0.392
CRK 35 0.009 0.386
RAN 43 0.009 0.387
XRCC5 44 0.008 0.396
SNRPF 45 0.008 0.371
EIF2S1 43 0.008 0.400
CD44 57 0.008 0.402
TLR4 48 0.008 0.397
CHD4 56 0.008 0.391
CFL1 39 0.008 0.392
KDM6A 42 0.008 0.391
H2AFV 42 0.008 0.379
CALR 40 0.008 0.399
PPP2R1A 35 0.008 0.397
USP9X 36 0.007 0.390
XIAP 42 0.007 0.404
DDX17 45 0.007 0.394
MATR3 46 0.007 0.393
SP1 36 0.007 0.391
SOD1 36 0.007 0.399
HNRNPDL 48 0.007 0.392
PTGES3 37 0.007 0.390
PRPF8 46 0.007 0.380
SKIV2L2 43 0.007 0.364
PUM1 35 0.007 0.370
TRRAP 36 0.007 0.383
EWSR1 43 0.007 0.398
NEDD4 30 0.006 0.384
FLNA 44 0.006 0.390
UBQLN2 38 0.006 0.394
PKM 35 0.006 0.396
WDR82 35 0.006 0.374
RBFOX1 29 0.006 0.364
MYH9 31 0.006 0.379
KPNA2 35 0.005 0.391
AKT3 29 0.005 0.383
ATRX 41 0.005 0.384
TGFBR2 38 0.005 0.387
MMP2 47 0.005 0.385
MBNL1 30 0.005 0.368
TCP1 33 0.005 0.381
EIF3A 31 0.005 0.364
ANXA5 50 0.005 0.412
MMP9 52 0.005 0.400
SMARCB1 41 0.005 0.389
PPI, protein-protein interaction; OTSCC, oral tongue squamous cell carcinoma; BSCC, buccal squamous cell carcinoma.

6 Biochemistry Research International



Te present study illustrated that hsa-miR-377 and hsa-
miR-136 are commonly downregulated in OTSCC and
BSCC compared to the normal oral mucosa. Sun et al. [47]
reported a signifcant downregulation of miR-377-3p in
nonsmall cell lung cancer (NSCLC) tissues compared to
their corresponding healthy lung specimens. Besides, Sun
et al. [47] demonstrated a remarkable negative correlation
between the expression of oncogene E2F3 mRNA and miR-
377-3p in lung tissues using Pearson correlation analysis
(r2� 0.3614, p< 0.0001), suggesting the tumor suppressive
role of miR-377-3P by downregulating the E2F3. Te au-
thors noted that the elevation of the long noncoding RNA
(lncRNA) NEAT1 prevented the increased cell death caused
by miR-377-3p. NEAT1 overexpression was linked to car-
cinogenesis and cancer development, and NEAT1 has been

described as an oncogenic gene in several malignancies
[48, 49]. Evidence suggests that estrogen receptor-α36
(ERα36) plays a signifcant role in the tumorigenesis of
luminal subtypes of breast cancer. In this regard, the
enhanced expression of ERα36 is associated with disease
development and drug resistance [50–52]. Tiebaut et al.
[53] showed a negative correlation between the expression of
the miR-136-5p and ERα36 in breast cancer cells. Te
miR136-5p mimic transfection in MCF-7 cells diminished
the ERα36 expression.

OSCC is the most common HNSCC [54], counting for
95% of all HNSCC cases [55]. Furthermore, the GEPIA2
(or GEPIA) database for HNSCC is commonly used to
explore the prognostic efect of genes in OSCC and/or to
evaluate the mRNA expression levels of genes in OSCC

Cluster 2 (55, 233)
Score: 8.63 Cluster 8 (51, 91)

Score: 3.64

Cluster 7 (36, 69)
Score: 3.943

Cluster 9 (27, 46)
Score: 3.538

Cluster 4 (23, 62)
Score: 5.636

Cluster 1 (22, 186)
Score: 17.714 Cluster 3 (11, 32)

Score: 6.4

Figure 2: Seven clusters were identifed by the MCODE plugin within the PIM associated with the pathogenesis of OTSCC and BSCC. Te
network was built based on validated targets of common DEMs in two subtypes of OSCC. MCODE, molecular complex detection; PIM,
protein interaction map; OTSCC, oral tongue squamous cell carcinoma; BSCC, buccal squamous cell carcinoma; DEM, diferentially
expressed miRNA.
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compared to healthy controls. Using immunohisto-
chemical analysis, Sun et al. [56] compared the protein
expression levels of AKT1 and PLK1 in OSCC tissues to
normal oral specimens. Subsequently, Sun et al. [56] used
the GEPIA web server to validate their experimental re-
sults; this included evaluating the mRNA expression levels
of AKT1 and PLK1 in HNSCC than in healthy tissues and
analyzing the prognostic efect of the genes in patients
with HNSCC. Fang et al. [57] identifed several genes with
a correlation score >0.8 in a PPI network associated with
the pathogenesis of OSCC. Next, the authors used the
GEPIA tool to evaluate the prognostic role of the genes in
HNSCC. Furthermore, Dai et al. [58] performed
a weighted gene comethylation network analysis
(WGCNA) to identify hub modules and CpG sites cor-
related with OSCC. Ten, Dai et al. [58] used the GEPIA
for HNSCC to conduct a Kaplan–Meier survival analysis
to investigate the possible predictive signifcance of the
numerous hub CpG site-associated genes. Te GEPIA2 for
HNSCC was used in the present study to investigate the
potential prognostic impact of the hub genes in OTSCC
and BSCC. Gene expressions of the prognostic markers
were also evaluated using GEPIA2 for HNSCC.

Based on the targets of hsa-miR-377 and hsa-miR-136,
a PPI network of 932 genes and 6682 edges was created here.

EIF2S1, CAV1, RAN, ANXA5, CYCS, CFL1, MYC,
HSP90AA1, PKM, and HSPA5 overexpression was sub-
stantially related to a poor prognosis in patients with
HNSCC, and 96 hub genes showed a striking centrality
within the PPI network. Besides, the overexpression of
NTRK2, HNRNPH1, DDX17, and WDR82 was linked to
a favorable prognosis in HNSCC patients (the log-rank test
and HR p values <0.05).

Eukaryotic translation initiation factors were introduced
as novel drug targets in many cancers [59]. Eukaryotic
translation initiation factor 2 subunit 1 (EIF2S1 [EIF2A])
mediates the binding of Met-tRNAi to the 40S/mRNA
complex [60]. Several reports have linked the missregulation
of eukaryotic translation initiation factors to abnormal cell
growth and tumor development [61–63]. Additionally, an-
giogenesis and metastasis in cancer cells are linked to the
PERK/eIF2a signaling pathway [64, 65]. Intestinal-type
adenocarcinoma is rare cancer afecting the nasal cavity
and paranasal sinuses. Schatz et al. [66] found that it sig-
nifcantly overexpressed EIF2S1, EIF5A, and EIF6 when
compared to healthy tissue samples. Recently, Li et al. [67]
linked the UTP14A overexpression in oesophageal squa-
mous cell carcinoma (ESCC) cells to the upregulation of
PERK/eIF2a signaling pathway, leading to the cell cycle
process and migration of ESCC cells. Te overexpression of
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EIF2S1 was confrmed at the mRNA level in HNSCC
compared with healthy tissues.

Lu et al. [68] performed a study to elucidate the role of
caveolin-1 (CAV-1) and ferroptosis on HNSCC develop-
ment. Te research fndings by Lu et al. [68] showed that
CAV-1 was markedly overexpressed in HNSCC compared
to healthy tissues. Te ferroptosis process was signifcantly
inhibited by CAV-1, which increased cell proliferation,

invasion, and metastasis. CAV-1 was signifcantly associated
with a dismal prognosis in HNSCC patients as well.
Terefore, CAV-1 was assigned as a potential target in
HNSCC.

Te present study had several limitations. Te dataset
GSE168227 only included patients from the Head and Neck
Clinic of Regional Cancer Centre (Tiruvananthapuram,
India). As a result, patients from other nations could not
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Figure 4: Survival analysis of EIF2S1, CAV1, RAN, ANXA5, CYCS, CFL1, MYC, HSP90AA1, PKM, HSPA5, NTRK2, HNRNPH1, DDX17,
and WDR82 in patients with HNSCC. Blue and red lines show under- and overexpressed markers, respectively. Te y-axis and x-axis
demonstrate the probability of survival and survival months of patients with HNSCC, respectively. Te dotted lines show a 95% confdence
interval. HNSCC, head and neck squamous cell carcinoma.
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Figure 5: A connected PPI network based on the hub genes. Violet and green circles represent negative and positive markers in HNSCC,
respectively. PPI, protein-protein interaction network; HNSCC, head and neck squamous cell carcinoma.

Table 3: A total of 14 hub genes in the PIM associated with the etiology of OTSCC and BSCC were revealed to be prognostic markers in
HNSCC.

A, single gene
Gene symbols (labels) HR (high) P (log-rank test) P (HR)
EIF2S1 (a) 1.7 0.00016 0.00019
CAV1 (b) 1.5 0.0016 0.0016
RAN (c) 1.5 0.0019 0.0021
ANXA5 (d) 1.5 0.0026 0.0027
CYCS (e) 1.4 0.009 0.0096
CFL1 (f) 1.4 0.0097 0.01
MYC (g) 1.3 0.028 0.029
HSP90AA1 (h) 1.3 0.028 0.029
PKM (i) 1.3 0.035 0.036
HSPA5 (j) 1.3 0.042 0.043
NTRK2 (k) 0.71 0.011 0.011
HNRNPH1 (l) 0.72 0.016 0.016
DDX17 (m) 0.74 0.027 0.027
WDR82 (n) 0.76 0.04 0.04
B, combination of genes
Prognostic signature HR (high) P (log-rank test) P (HR)
a and b 1.4 0.01 0.01
a to c 1.4 0.013 0.014
a to d 1.6 0.00028 0.00032
a to e 1.5 0.0029 0.0031
a to f 1.6 0.0012 0.0013
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Table 3: Continued.

a to g 1.5 0.0041 0.0044
a to h 1.6 0.0004 0.00045
a to i 1.6 0.00084 0.00092
a to j 1.6 0.00046 0.00052
PIM, protein interaction map; OTSCC, oral tongue squamous cell carcinoma; BSCC, buccal squamous cell carcinoma; HNSCC, head and neck squamous cell
carcinoma.
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Figure 6: Gene expression patterns of prognostic markers in HNSCC including (a) EIF2S1, (b) CAV1, (c) RAN, (d) ANXA5, (e) CYCS,
(f ) CFL1, (g) MYC, (h) HSP90AA1, (i) PKM, (j) HSPA5, (k) NTRK2, (l) HNRNPH1, (m) DDX17, and (n) WDR82. Box plots are based on
519 HNSCC tissues (pink color) and 44 healthy oral tissues (blue color). HNSCC, head and neck squamous cell carcinoma.
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completely beneft from the current results. Additionally, the
sample size was small since the GSE168227 only included 48
oral tissue samples. A set of miRNAs selected in the dataset
GSE168227 was based on the GPL8227 platform, which may
not symbolize all the miRNAs.

5. Conclusion

Te present study suggests has-miR-136 and has-miR-377 as
common DEMs in OTSCC and BSCC compared to the
normal oral mucosa (p value <0.01; |Log2 FC|> 1). A total of
976 genes were identifed as validated targets of common
DEMs. Ninety-six genes showed salient centrality within the
PIM mediating the tumorigenesis of OTSCC and BSCC, in
which EIF2S1, CAV1, RAN, ANXA5, CYCS, CFL1, MYC,
HSP90AA1, PKM, and HSPA5 were signifcantly linked to
a poor prognosis in HNSCC. In addition, individuals with
HNSCC had a better prognosis when they had NTRK2,
HNRNPH1, DDX17, and WDR82 overexpression.
“Clathrin-mediated endocytosis” was signifcantly enriched
in OTSCC and BSCC. Our fndings might improve the
prognosis of patients with OTSCC/BSCC, leading to more
efective therapeutic strategies. However, in vitro and in vivo
confrmations are needed in the future.
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