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Postoperative pulmonary dysfunction (PPD) is a frequent and significant complication after cardiac surgery. It contributes to
morbidity and mortality and increases hospitalization stay and its associated costs. Its pathogenesis is not clear but it seems to
be related to the development of a systemic inflammatory response with a subsequent pulmonary inflammation. Many factors
have been described to contribute to this inflammatory response, including surgical procedure with sternotomy incision, effects of
general anesthesia, topical cooling, and extracorporeal circulation (ECC) and mechanical ventilation (VM). Protective ventilation
strategies can reduce the incidence of atelectasis (which still remains one of the principal causes of PDD) and pulmonary infections
in surgical patients. In this way, the open lung approach (OLA), a protective ventilation strategy, has demonstrated attenuating the
inflammatory response and improving gas exchange parameters and postoperative pulmonary functions with a better residual
functional capacity (FRC) when compared with a conventional ventilatory strategy. Additionally, maintaining low frequency
ventilation during ECC was shown to decrease the incidence of PDD after cardiac surgery, preserving lung function.

1. Introduction

Postoperative pulmonary dysfunction (PPD) is a quite com-
mon complication after cardiac surgery [1]; 40% of patients
readmitted into intensive care units (ICU) present respiratory
failure [2], and the adequate therapeutic management that
might reduce its incidence is still unknown.

PPD pathophysiology is complex and its mechanisms
are not clear (Table 1). Even so, there are many surgery-
related factors that predispose cardiac surgical patients to
the pathogenesis of postoperative pulmonary complications,
such as the effects of general anaesthesia combined with
the effects of median sternotomy incision, cardiopulmonary
bypass (CBP), internal mammary artery dissection, and the
use of topical cooling for myocardial protection [3].

PPD clinical manifestations include pleural effusion, with
a frequent presentation (27–95%) [4], and atelectasis (16.6–
88%) [5] and postoperative hypoxemiawithout clinical symp-
toms (3–10%) [6] and acute respiratory distress syndrome
(ARDS), which have a low incidence (0.5–1.7%) [7] but high
mortality (50–90%) [8].

Furthermore, cardiac surgery produces a whole body
inflammatory response that has been highly related with lung
injury [9].This systemic inflammatory response is associated
with anomalies in gas exchange, such as an increased pul-
monary shunt fraction [10], increased pulmonary vascular
resistance [11], and intrapulmonary aggregation of leukocytes
and platelets [12]; also with alterations in lung mechanics,
resulting in a reduced pulmonary compliance and reduced
functional residual capacity (FRC) and vital capacity (VC) or
both of them.

2. Factors Associated with the Development of
PPD after Cardiac Surgery

2.1. General Anesthesia. Is well known that lung functional
impairment is inevitable after any major surgery, a condition
that most likely is related to the general anesthesia.

There are many factors related with general anesthesia
that affect pulmonary function. Anesthesia with the pro-
longed supine position produces an upward shift of the
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Table 1: Pathogenetic mechanisms of postoperative pulmonary
dysfunction (PPD).

Specific to cardiac surgery:
(i) Median sternotomy incision
(ii) Use of cardiopulmonary bypass (CPB)
(iii) Transfusion of blood product
(iv) Topical cooling for myocardial protection
(v) Dissection of the internal mammary artery
(vi) Effects of general anesthesia

Anomalies in gas exchange:
(i) Widening of the alveolar-arterial oxygen gradient
(ii) Increased microvascular permeability in the lung
(iii) Increased pulmonary vascular resistance
(iv) Increased pulmonary shunt fraction
(v) Intrapulmonary aggregation of leukocytes and platelets

Alterations in lung mechanics:
(i) Reductions in vital capacity (VC)
(ii) Reduction of functional residual capacity (FRC)
(iii) Reduction of static and dynamic lung compliance

diaphragm; this, combined with the relaxation of the chest
wall and altered chest wall compliance, and with the blood
volume modification in the thorax, results in an alteration
of the ventilation-perfusion mismatch and an abnormal
pulmonary shunt fraction [13]. Furthermore, the majority
of the drugs used in anesthesia also have repercussion in
the pulmonary function; inhalation anesthetics, for example,
inhibit hypoxic pulmonary vasoconstriction, and narcotics
reduce hypoxic and hypercapnic ventilatory response.

All these combined factors result in a widened alveolar-
arterial oxygen gradient [14] and a reduction of the vital
capacity and the functional residual capacity of the lungs
[13]; and it also contributes to the onset of hypoxemia and
atelectasis [14].

2.2. Extracorporeal Circulation (ECC). Extracorporeal cir-
culation (on-pump surgery) has clear consequences for
postoperative pulmonary function.Thevascular contribution
to the lungs depends almost exclusively on the pulmonary
arteries. The principal function of the bronchial circulation
is to feed the pulmonary structures; thus, it is responsible
for approximately 1% of the pulmonary circulation. However,
when the arterial circulation is chronically compromised, the
bronchial circulation takes on a leading role.

When ECC initiates, the cessation of pulmonary ven-
tilation results in collapsed lungs with loss of surfactant
and alveolar collapse, favouring the retention of secretions
and atelectasis. Moreover, pulmonary circulation is stopped
resulting in a pulmonary ischemiawith injured capillarywalls
and the release of inflammatory mediators [15]. All of this
increases abnormalities in gas exchange and leads to closure
of the small airways.

Thus, compared to on-pump, off-pump surgery was
associated with a reduced inflammatory response and lower
levels of circulating neutrophils and monocytes [16].

Furthermore, many studies have showed that procedures
without EC have lower pulmonary complication rates, earlier
extubations, shorter MV duration, and a lower incidence of
pneumonia compared to those with ECC [17].

So it seems to be clear that the use of ECChas evident con-
sequences for postoperative pulmonary function compared
with other types of major surgery, and it appears to cause
additional lung injury and a delay in pulmonary recovery,
probably due to the damaging effects of the associated
systemic inflammatory response.

On the other hand, some studies have found that off-
pump surgery was not always more beneficial than on-pump
surgery, showing, as Groeneveld et al. demonstrated, that
ECC is not always a determinant for the development of PDD
[18].

2.3. Surgical Effects and Systemic Temperature. There are
some factors associated exclusively with cardiac surgery that
affects pulmonary function and contribute to de development
of PPD, like themedian sternotomy incision, hypothermia for
myocardial protection, dissection of the internal mammary
artery, and the use of cardiopulmonary bypass.

It is not clear the effect of median sternotomy incision on
PPD. Studies comparing sternotomy incision with thoraco-
tomy incision showed that the minimal interruption to the
chest wall, less trauma, and negligible lung compressionmake
sternotomy a relatively benign procedure [14]. Many other
studies, like the ones from Barnas et al. [19] or Ranieri et al.
[20], have also demonstrated that the sternotomy incision did
not affect the mechanical properties of the chest wall.

Although patients with normothermia exhibited
decreases in the shunt fraction, PA-a O

2
, and the alveolus-

arterial gradient of CO
2
; central temperature did not appear

to significantly influence gas exchange (alveolar arterial
difference in oxygen partial pressure, or PA-a O

2
) after an

aortocoronary bypass graft. It suggests that normothermia
might be beneficial in the preservation of pulmonary
function after cardiopulmonary bypass surgery [21].

With all this, it seems clear that the severe pulmonary
dysfunction developed after cardiac surgery is influenced
by two main factors. One is the mechanical stress and
biotrauma induced by the mechanical ventilation and the
use of an inadequate ventilatory strategy with high volumes
and low PEEP levels that stimulate atelectasis. Second is the
exaggerated systemic inflammatory response to the cardiac
surgery and its associated factors, like the effects of general
anesthesia, sternotomy incision, topical cooling, and extra-
corporeal circulation.

2.4. Mechanical Ventilation (MV). Mechanical ventilation
can cause significant changes in lung structure and function.
This lung injury during mechanical ventilation induces pul-
monary inflammation that can spread to distant organs and
considerably affect treatment outcomes [22].

In addition to the MV lung injury, there are many factors
involved in cardiac surgery that affect pulmonary function
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too and play an important role in this inflammatory response,
including extra corporeal circulation (ECC), the surgical
intervention, and injuries due to ischemia-reperfusion.

Ventilation-induced lung injury with pulmonary inflam-
mation results from both mechanical and biological trauma
[23].

Mechanical trauma involves both volutrauma and baro-
trauma.The term barotrauma is used to indicate lung damage
attributable to the application of high airway pressure [24]; in
this way, volutrauma is referred to the alveolar overdistension
when using large tidal volumes. The stress produced by
this mechanical trauma could be strong enough to cause
destruction of the anatomical lung structure with epithelial
injury, loss of epithelial integrity, and edema.

Biological trauma is referred to the biological reaction
in response to mechanical ventilation stress. Ventilating with
high tidal volume induces the release of inflammatory medi-
ators that contribute to this ventilation-induced biotrauma
[25] by activating both local and systemic inflammatory
responses, what causes the release of cytokines and other
soluble inflammatory mediators and the activation of com-
plement, leukocytes, and endothelial cells, resulting in an
alteration of the normal function of tissues and organs by
altering cellular pathways.

Biotrauma results from the forces acting duringmechanic
ventilation with the cyclic opening and collapse of alveoli and
its overdistension that induce the release of proinflammatory
cytokines, recruitment of leucocytes, and local initiation of
inflammatory processes. It still remains unclear howmechan-
ical forces are translated into the biochemical signals that pro-
duce biotrauma [26]. According to the experimental studies,
that have studied the relationship betweenmechanical disten-
sion of the alveolocapillary membrane and the production of
mediators, the biotraumahypothesis assumes that lung injury
is caused by the release of this proinflammatory mediators
and the excessive activation of the immune system; in this
way, theories proposed imply mechanoreceptors, stretch-
sensitive channels, activation of inflammatory cascade [27],
and activation of the transcription of the nuclear factor kappa
[28] (NF-𝜅B)which becomes themajor factor ofmodification
of nucleic acid sequence in the cell nucleus and synthesis of
inflammatory factors (TNF-𝛼, IL-1𝛽, IL-6, and IL-8) [26].

Biotrauma causes diverse biological responses, like the
action of oxygen free radicals, cellular mechanisms of growth
or division and apoptosis, altered expression of genes and
proteins, activation of coagulation cascade, and stimulation
of various elements of the immune system, which lead
consequently to the cascade of inflammation. And this
exaggerated inflammatory response initiated locally in the
pulmonary tissue may cross into the systemic circulation
causing systemic inflammatory response [29].

The presence of atelectasis is one of the principal causes of
PDD and a primary factor in the development of pulmonary
inflammation [27], and there is a correlation between the
amount of atelectasis and the intrapulmonary shunt [30].

Atelectasis is related with a too low end-expiratory lung
volume and their development is associated with the loss of
surfactant and the cyclic opening and collapse of unstable
lung units, which is promoted by ventilation with zero or

inadequate PEEP [31]. This repetitive collapse and reopening
of alveoli is termed atelectrauma [32].

When the atelectatic lung units are exposed to high
ventilating pressures, the alternate opening and collapsing of
alveoli generate damaging transverse forces localised in these
dependent parts. This transverse forces applied to the col-
lapsed units could be sufficiently high to damage the airway
epithelium and cause a “stress induced failure” of the alveolar
capillary membrane resulting in an increased microvascular
permeability, edema, and an influx of plasmatic proteins
causing surfactant dysfunction and initiating an inflam-
matory reaction [33–35]. In this way, Dreyfuss et al. [35]
demonstrated that volutrauma (ventilation with high tidal
volumes producing high transpulmonary pressure) rather
than barotrauma (ventilation with high pressures producing
low transpulmonar pressure) was the primary determinant
factor for pulmonary injury and inflammatory response.

3. Therapeutic Measures That Minimize PPD
after Cardiac Surgery

3.1. Protective Ventilation Strategy: Open Lung Approach
(OLA). It is well studied that protective ventilation strategies
can reduce the incidence of atelectasis and pulmonary infec-
tions in surgical patients [36]. The OLA ventilatory strategy
was initially conceived to treat patients with ARS; its aim is to
reduce the shear forces generated by the cyclic opening and
closing of the atelectasic alveoli and minimize the develop-
ment of diffuse alveolar damage, pulmonary edema, recruit-
ment of inflammatory cells, and cytokines production [37, 38]
of the injurious ventilation strategies with high tidal volume.

The OLA strategy has to be applied with recruiting
maneuvers and sufficient PEEP to increase transpulmonary
pressure enough for maintaining opened the maximum
possible number of alveoli with minimum delta pressure
(Pplateau-PEEP) to prevent pulmonary overdistension [39].
The low delta pressure is typically achieved by using low
tidal volumes (4–6mL/kg). Serita et al. [40] found that
individualised recruitment maneuvers, brought about an
improvement in oxygenation and lung compliance in patients
undergoing selective cardiac surgery.

Using OLA ventilatory strategy the sudden changes of
volume in large alveolar zones are minimized [41] and
atelectasis were not observed in CT-scans in healthy anes-
thetized children.This ventilatory strategy also attenuates the
surfactant alterations, what in consequence reduce the loss of
proteins in the alveoli [42].

As this strategy prevents the cyclic collapse of alveoli
by splinting them open at end-expiration, the stress to the
alveolocapillary membrane resulted to be limited. It was
observed a decrease in the biochemical markers released
by damaged cells after ventilation with high pressures that
confirm this [43].

It is important to notice that applying an adequate
PEEP level and preventing the collapse at end-expiration
minimizes the inflammatory response and diminishes bac-
terial translocation [44]. Furthermore, two recent studies
with patients undergoing abdominal surgery showed that
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pulmonary inflammation can be reduced [45] and procoag-
ulant alveolar changes can be prevented [46] by using lower
tidal volume and PEEP.

As many studies have demonstrated, OLA strategy has
multiple advantages. Miranda et al. [47] showed that OLA
ventilation (tidal volume 6mL/kg, PEEP 14 cmH

2
O), applied

immediately after intubation, significantly attenuates the
inflammatory response by reducing IL-6, IL-8, IL-10, TNF-
alpha, and interferon-gamma plasma levels compared to
conventional ventilation (tidal volume 8mL/kg, PEEP 5 cm
H
2
O).Duringmechanical ventilation, the application ofOLA

was accompanied by significant increases in the PaO
2
/FiO
2
,

suggesting a significant reduction in atelectasis [48]. These
investigators found later [49] that the effect of OLA on
pulmonary volume was maintained after extubation; the day
after extubation, the group ventilated with OLA showed 40%
higher FRC than those given conventional ventilation. This
effect on the FRC was maintained until the 5th day after
extubation. Also, the OLA group had a significant decrease
in the incidence of hypoxemia (SpO

2
< 90% with ambient

air) on the day after extubation compared to the group with
conventional ventilation.

Furthermore, Ranieri et al. [50] found in previous exper-
imental findings in patients with ARDS, that the levels
of tumor necrosis factor-alpha (TNF𝛼), interleukin-6 (IL-
6), and IL-8 in bronchoalveolar lavage (BAL) were lower
with a ventilatory strategy titrated for optimal positive end-
expiratory pressure (PEEP) and low tidal volumes than with
a strategy that used high tidal volumes. In a multicentre
study with 861 patients, ventilation with low tidal volumes
(6mL/kg) diminished plasma concentrations of IL-6 and
significantly reduced the 28-day mortality of patients with
ARDS. This suggested that the application of suitable ven-
tilatory strategies clearly affected the development of an
inflammatory response after cardiac surgery.

The OLA strategy has not been evaluated clinically in
terms of outcomes (mortality or readmissions to the ICU).
Even though, when the causes for readmission into the ICU
after cardiac surgery were studied, Chung et al. [51] founded
that after discharge from the ICU, the percent increase in
the required fraction of inspired oxygen was correlated to
an increased risk of readmission. Given that OLA strategy
reduces the incidence of hypoxemia and increases FRC on
discharge, these results suggested that it might reduce the
incidence of ICU readmission.

On the other hand, OLA ventilatory strategy has some
adverse effects that have been noticed. For example, high
PEEP may detrimentally increase intracranial pressure and
impair ventricular filling, the RV afterload is increased, but
contractility is not affected [52, 53].

Cardiovascular effects are particularly prominent in
patients who are fluid depleted.

Dyhr et al. [54] found that cardiac output was not
affected by high PEEP levels after a recruitment maneuver in
cardiac surgery patients. These results were later confirmed
byMiranda et al. [55] who, using a pulmonary artery catheter
in patients undergoing cardiac surgery, showed that OLA
ventilation did not affect pulmonary vascular resistance or
the RV ejection fraction.

As we said, high PEEP could increase RV afterload. Even
so, high PEEP levels used during OLA ventilation probably
did not affect RV afterload because atelectasis was avoided
and low tidal volumes were used. This is because it has
been shown that atelectasis caused a significant increase in
RV afterload [56]. This effect is because of two different
mechanisms, the local hypoxic pulmonary vasoconstriction
induced in nonaerated lung areas [53] and the capillary
compression due to the overdistension in aerated lung areas.

Several clinical and experimental studies suggested that
OLA strategy and isolated recruitment maneuvers increased
RV afterload in patients without a history of RV failure
undergoing cardiac surgery [57, 58]. Additionally,Miranda et
al. [55] showed, at the study we have mentioned before, that
high PEEP levels during OLA ventilation did not decrease
the RV preload when the patients had an adequate previous
preload.

Even so, an exhaustive monitoring is absolutely necessary
when isolated recruitment maneuvers are performed in
patients with previous right cardiac failure. It is important
to be extremely cautious with these patients, and avoid them
if adverse events are predictable according to the monitored
values.

Taking all these into account, our group recommends
OLA strategy, initiating it after the intubation in the OR and
continuing with this strategy until the patient is extubated.
We supportOLA in this context, as we have not found adverse
effects and, as we have mentioned before, it has important
potential advantages (like reducing ventilator-induced pul-
monary inflammation, increasing the PaO

2
/FiO
2
, attenuating

the postoperative reduction in FRC, and decreasing the
incidence of hypoxemia).

3.2. Ventilation Strategy during ECC. Apnoea during ECC
has been suggested to promote activation of lysosomal
enzymes in the pulmonary circulation, which in turn are
correlated with the incidence of postoperative pulmonary
dysfunction [59]. Hipoventilation during ECC is associated
with the development of microatelectasis, hydrostatic pul-
monary edema, poor compliance, and an increased inci-
dence of infection [60]. In this way, the hypothesis is that
maintaining mechanical ventilation during ECC may limit
postoperative pulmonary complications [61].

Atelectasis is the principal determinant in postoperative
lung gas exchange and may play a larger role in ventila-
tory abnormalities after cardiac surgery than edema due to
increased permeability.

To prevent all these complications, it has been applied
somemaneuvers such as the intermittent ventilation or appli-
cation of continuous airway pressure (CPAP) during ECC
[62, 63]. CPAP application during CPB has been reported
as an effective adjunct in some studies [63]. Loeckinger et
al. [61] studied continuous positive airway pressure (CPAP)
at 10 cm H

2
O during ECC and the effect on postoperative

pulmonary gas exchange. They found a significantly higher
PaO
2
, a significantly lower PA-a O

2
4 h after ECC, and better

gas exchange after extubation in theCPAPgroup compared to
controls. More recently, John and Ervine [64] demonstrated
in their randomized study that maintaining ventilation with
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a tidal volume of 5mL/kg during ECC provided other ben-
efits compared to discontinued ventilation. They showed a
decrease in extravascular lung water and a shorter extubation
time in the ventilation group compared to controls. In this
way, Davoudi et al. [65] showed in a prospective randomized
study that a continued ventilation with low tidal volume
during CPB improved post-by pass oxygenation and lung
mechanics.

On the other hand, even though the use of CPAP [61],
recruitment maneuvers [66], or low-tidal volume ventilation
during CBP has demonstrated to decrease inflammation and
improve oxygenation, lung mechanics, and shunt fraction,
this positive effects have been shown to be transient with a
questionable impact on the clinical outcome [67].

Another option proposed to attenuate lung dysfunction
post-ECC is maintaining ventilation together with pul-
monary artery perfusion during ECC. In this way, Friedman
et al. [68] demonstrated in an experimental comparative
study that ventilation with pulmonary artery perfusion dur-
ing ECC might have benefits in preserving lung function by
reducing platelet and neutrophil sequestration and attenuat-
ing the TXB2 response after ECC.On the other hand, another
experimental study by Serraf et al. [69] showed no significant
improvement in pulmonary vascular resistance, respiratory
index, or oxygen tensions with continuous ventilation during
ECC.

Based on these results, the evidence for clear benefits
of maintining ventilation during ECC is not totally clear.
Even so, continued ventilation with low frequency during
ECC seems to be easy, safe, low-cost, and potentially quite
beneficial and it has been suggested to be an easy method to
implement with no additional cost.

3.3. Early Extubation andNoninvasiveMechanical Ventilation.
As we said before, ventilation with a high tidal volume and
low or none PEEP, in cardiac surgery patients, is associated
with an inflammatory response that contributes to the venti-
lation induced biotrauma [25]. High tidal volume ventilation
in the immediate postoperative period of cardiac surgery
has been associated with prolonged mechanical ventilation,
a longer ICU stay and an increased risk of organ dysfunction
[70]. In thisway, using low tidal volumes (of around 6mL/Kg)
and an adequate PEEP level in the intraoperative and postop-
erative period have been highly recommended to avoid lung
collapse and diminished atelectasis. This could also reduce
duration of mechanical ventilation and the reintubation rate
[71].

Early extubation (less than 6–8 h) after cardiac surgery
has been shown to reduce complications in the postoperative
period, as well as decrease in ICU stay and costs [69].

Camp et al. [72] demonstrated that an early extubation
(within 9 hours after cardiac surgery) is associated with an
improved outcome and have been shown to be the best
predictor of uncomplicated recovery and a decreased late
mortality after cardiac surgery.

Furthermore, a recent Cochrane review [73] concluded
that early intubation is not associatedwith an increased risk of
postoperative complications or reintubation and it produces
a reduction of the length of ICU stay.

Atelectasis plays an important role in the development of
postoperative respiratory failure [74]. Noninvasive mechan-
ical ventilation (NIV) should be applied to prevent acute
respiratory failure (ARF) in patients at high risk of developing
it [75].

NIV has also been used to treat an established post-
operative acute respiratory failure, although there are non-
conclusive results [76] and it has not demonstrated to be
clearly effective once ARF is already established [77].

Otherwise, preventive use of NIV or CPAP has demon-
strated to reduce respiratory work and improve gas exchange,
oxygenation and alveolar ventilation [78–80], and it could
also be used to wean patients from mechanical ventilation
[75]. If it is used correctly, NIV has been reported to reduce
atelectasis and PPD, and to diminish reintubation rates,
length of stay in ICU, and hospital and ICU readmissions
[79, 80].

4. Conclusion

PPD is a frequent and almost inevitable consequence of
cardiac surgery whose incidence still remains unacceptably
high nowadays. His pathogenesis is not clear, but many
factors have been shown to be involved in its development. In
this way, there are two principal mechanisms that have been
identified as the fundamental causes for the development
of PPD, one is the stress of the surgery and its associated
factors (ECC, median sternotomy incision, hypothermia for
myocardial protection, dissection of the internal mammary
artery, etc.) that cause an important systemic inflammatory
response.The other important factor is the lung injury caused
by inflammation and aggravated by suboptimal mechanical
ventilation.

Taking all this in to account, our group recommends the
use of OLA strategy in patients undergoing cardiac surgery
with an early initiation (after the orotracheal intubation),
combining low tidal volumes (tidal volume 6mL/kg) with
recruitment maneuvers and the instauration of a PEEP of 8–
14 cm H

2
O. Additionally, maintaining low frequency ventila-

tion during ECC seems to be a quite promising strategy with
important benefits in preserving lung function. With these
two ventilatory procedures, we could probably attenuated the
inflammatory response, improve gas exchange parameters
and postoperative pulmonary functions with a better FRC,
and reduce the incidence of readmission in UCI with a
better outcome. And all these benefits could be achieved with
almost a little or even no hemodynamic alterations.

Early extubation is well documented and should be
the goal in adults after cardiac surgery, as it may reduce
postoperative complications and decrease ICU stay and costs.

NIV applied early has shown to be effective in reducing
atelectasias and PPD, minimising reintubation rates, length
of stay in ICU, and hospital and ICU readmissions.
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