
Review Article
Accuracy of Algorithms and Visual Inspection for Detection of
Trigger Asynchrony in Critical Patients : A Systematic Review

Monique Bandeira ,1 Alı́cia Almeida ,1 Lı́via Melo ,2 Pedro Henrique de Moura ,1

Emanuelle Olympia Ribeiro Silva ,1 Jakson Silva ,1 Armèle Dornelas de Andrade ,1
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Objective. &is study aimed to summarize the accuracy of the different methods for detecting trigger asynchrony at the bedside in
mechanically ventilated patients.Method. A systematic review was conducted from 1990 to 2020 in PubMed, Lilacs, Scopus, and
ScienceDirect databases. &e reference list of the identified studies, reviews, and meta-analyses was also manually searched for
relevant studies. &e reference standards were esophageal pressure catheter and/or electrical activity of the diaphragm. Studies
were assessed following the QUADAS-2 recommendations, while the review was prepared according to the PRISMA criteria.
Results. One thousand one hundred and eleven studies were selected, and four were eligible for analysis. Esophageal pressure was
the predominant reference standard, while visual inspection and algorithms/software comprised index tests. &e trigger
asynchrony, ineffective expiratory effort, double triggering, and reverse triggering were analyzed. Sensitivity and specificity ranged
from 65.2% to 99% and 80% to 100%, respectively. Positive predictive values reached 80.3 to 100%, while the negative predictive
values reached 92 to 100%. Accuracy could not be calculated for most studies. Conclusion. Algorithms/software validated directly
or indirectly using reference standards present high sensitivity and specificity, with a diagnostic power similar to visual inspection
of experts.

1. Introduction

Patient-ventilator asynchrony (PVA) consists of incoordina-
tion between the patients ventilatory need and mechanical
support [1]. Twenty-five percent of patients under artificial
ventilation experience some asynchronous event [2]. &ose
asynchronies not corrected are associated with abusive use of
sedatives, respiratory muscles damage, prolonged time on
mechanical ventilation (MV), cognitive changes, sleep dis-
turbance, dynamic hyperinflation, and lung injury [3–5], thus
contributing to weaning failure, increased length of stay in the
intensive care unit (ICU), and higher mortality risk [6, 7].

Several methods are considered the gold standard to
detect PVA, including the esophageal pressure (Pes) analysis
[8], the association between Pes and electrical activity of the

diaphragm (EAdi), or diaphragmatic neurogram [8–10].
Nevertheless, these methods are commonly applied in
clinical research and certain ICU cases. &e limitation of use
in the daily routine is due to the fact that both are an ad-
ditional invasive device, and it may also be related to the
technical specificities of insertion and proper placement of
the catheter, feasibility, and the interpretation of the mea-
surements [3, 8, 11, 12].

Noninvasive methods include graphical analysis of
pressure, volume, and flow waveforms at the bedside, system
analysis, or software for automatic PVA detection [2, 13]. In
this context, software development for reliable and repro-
ducible PVA detection is growing, and there is a great
methodological diversity to detect the different types of
asynchronies.
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Considering that trigger asynchrony is the most fre-
quent type in the ICU and represents at least 80% of
asynchronous events [1, 7, 14], the present study proposes
a systematic review to summarize the accuracy of methods
to diagnose trigger asynchrony at the bedside in patients
with respiratory failure using the Pes catheter and the
EAdi as reference standards and, therefore, assist inten-
sive care professionals in early diagnosis and clinical
management.

2. Methods

2.1. Review Stage. &is systematic review was registered in
the International Prospective Register of Systematic Reviews
(PROSPERO) database (Register no. CRD42020203676).
Accurately, prospective cross-sectional observational, ret-
rospective, and validation studies, involving mechanically
ventilated patients of both sexes, aging ≥18 years, and
presenting at least two methods for detecting PVA (in-
cluding a reference standard) were included.

&ose studies that did not evaluate the accuracy of
methods for detecting PVA or the trigger asynchrony, with
patients under noninvasive mechanical ventilation, who
were not admitted to the ICU, and/or those mechanically
ventilated with sleep disorders or neuromuscular diseases
were excluded.

&e reference standards were Pes and EAdi. &e com-
parison methods were the visual inspection of pressure,
volume, and flow waveforms and software/algorithms for
automatic detection. Further analysis between software/al-
gorithms (already validated using a reference standard) and
visual inspection were also discussed. &e terms concerning
trigger asynchronies and the methods for PVA detection are
described in Supplementary File 1.

An exhaustive search using indexers combined with the
Boolean logic operators “AND,” “OR,” and “NOT” was
conducted within the following databases: Medical Litera-
ture Analysis and Retrieval System Online (Medline) da-
tabases via PubMed (from 1990 to 2020), Latin American
and Caribbean Health Sciences Literature (Lilacs) (from
1990 to 2020), SciVerse Scopus (Scopus) (from 1990 to
2020), and ScienceDirect (from to 1990 to 2020 (Supple-
mentary File 2). &e keywords and synonyms used were
established with no language or publication status restriction
and based on the Health Sciences (DeCS) and Medical
Subject Headings (MeSH) descriptors. &e reference lists of
the identified studies were manually searched for potentially
relevant studies.

2.2. Data Collection and Analysis. Initially, two researchers
(MB and AC) independently searched the articles using
the predetermined indexers and read the titles and ab-
stracts. Studies that were potentially relevant or raised
questions were retained for careful full-text analysis. &e
articles in which both reviewers agreed to include were
retained for further analysis, while disagreements were
resolved by a third researcher (SLC). &e selection process
for this systematic review is presented in a flowchart

according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (Supplementary
File 3).

2.3. Risk of Bias Assessment and Data Synthesis. &e char-
acteristics of each study and the risk of bias were performed
following the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS-2) using the Review Manager 5.4 soft-
ware (RevMan 5.4, &e Nordic Cochrane Centre, Copen-
hagen, Denmark) (Supplementary File 4).

3. Results

&e database search generated 1111 results, and after re-
moving 50 duplicates and reading 1061 abstracts, only 49
articles were selected for full-text analysis. Of these, 45 were
excluded for being conducted in a noninvasive ventilatory
mode, without data regarding the accuracy and for not
presenting outcome measures for this study. &erefore, only
four of these met the eligibility criteria and were included in
this study: Chang et al. [15], Chen et al. [16], Blanch et al.
[17], and Rodriguez et al. [18].

3.1. Study Characteristics. &e included studies were con-
ducted in Taiwan (2007 and 2008) [15], [16], Spain (2012)
[17], and Argentina (2019) [18] and used software and visual
inspection methods as diagnostic tests (index tests). It can be
highlighted that the criteria for defining trigger asynchrony,
the algorithms used, and agreement measures among ex-
perts were different between studies. &e descriptive char-
acteristics and outcomes of interest of the included studies
are shown, and the qualitative analysis is shown in Sup-
plementary File 5.

3.2. Individual Study Results. &e outcomes of interest are
shown in Supplementary File 6.

3.3. Lan Chang, Pau-Choo Chung, and Chang-Wen Chen,
2007. &is study proposed to evaluate the combination of
neural network and wavelet feature extraction for trigger
asynchrony detection (defined as 1 cmH2O Pes drop, drop of
airway pressure, and rise of airway flow) in 7 breath se-
quences, each one lasting more than 1,000 seconds.

A neural network analysis was performed to evaluate the
inspiratory and expiratory phases separately. &e compar-
ison between the neural network and visual inspection of
airway flow and pressure waveforms showed satisfactory
accuracy. However, situations with very few trigger asyn-
chronies can generate insufficiency in the true positive
statistic. In the future, trigger asynchrony properties, in-
cluding width, depth, and main frequency band shape,
should be explored to refine the algorithm and achieve better
results.

3.4. Chang-Wen Chen, Wei-Chieh Lin, Chih-Hsin Hsu, Kuo-
Sheng Cheng, and Chien-Shun Lo, 2008. In this work, an
algorithm was analyzed to detect ineffective triggering in the
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expiratory phase (ITE) in 24 mechanically ventilated pa-
tients with acute respiratory failure. Pes (reference standard
for detecting inspiratory effort) and airway pressure and flow
waveforms were recorded for a period of 10–30 minutes.
Only 14 patients presented ITEs in 1,831 out of the 5,899
breath segments analyzed. Of these, 1,703 had only one
asynchronous event, while 128 segments contained multiple
ineffective triggering.

Initially, airway flow and pressure waveforms were vi-
sually analyzed without visible Pes tracing to verify whether
patients presented ITE before proceeding to the analysis
using the algorithm. &ree ICU specialists, doctors, or re-
spiratory therapists performed visual inspection. &e sen-
sitivity and specificity for this method were 93.4% and 96%,
respectively.

&e distribution of flow and pressure waveform de-
flection was performed to quantify the diagnostic perfor-
mance of these two variables when determining the ITE
using the algorithm. &e optimal values adopted for
detecting the asynchronous events were 5.45 L/min for
maximumflow detection (sensitivity and specificity values of
91.5% and 96.2%, respectively) and 0.45 cmH2O for maxi-
mum airway pressure deflection (sensitivity of 93.3% and
specificity of 92.9%).

By analyzing the segments containing multiple ITEs, a
higher maximum airway pressure deflection was found.
Also, these expiratory segments lasted more than 2.95
seconds. &erefore, ITEs detection was performed with an
algorithm based only on a maximum airway pressure de-
flection cutoff value of 0.74 cmH2O and an expiratory
segment length of 2.95 seconds, resulting in a sensitivity of
88.4% and a specificity of 98.8%.

&erefore, this algorithm presented good accuracy, and
its sensitivity and specificity values were comparable with
visual inspection of airway flow and pressure waveforms.

3.5. Blanch et al., 2012. Blanch et al. [17] performed a pilot
study to determine the accuracy of a computerized system
(Better Care®) in automatically identifying ineffective efforts
during expiration (IEE) by analyzing flow waveforms. &is
software estimates the optimal expiratory flow curves,
compares with the actual flow of the patient, and expresses
this difference as percentage value. An ineffective expiratory
effort was recognized when the actual flow waveform de-
viated 42% from the ideal expiratory curve.&is method was
compared with visual inspection (five independent spe-
cialists in this area) and EADi (neurally adjusted ventilatory
catheter).

&e total study sample was subdivided into two groups of
eight patients. &e first group compared the Better Care®software and the visual inspection method using data from
1,024 randomly selected breaths, and the following results
were observed: a sensitivity of 91.5%, specificity of 91.7%,
positive predictive value of 80.3%, negative predictive value
of 96.7%, and kappa index of 79.7% (95% confidence interval
(CI): 75.6% to 83.8%). In the second group, the algorithm
was validated using EADi with data from 9,600 breaths.
Compared with EADi, the IEE algorithm presented a

sensitivity of 65.2%, specificity of 99.3%, positive predictive
value of 90.8%, negative predictive value of 96.5%, and kappa
index of 73.9% (95%CI: 71.3% to 76.3%).

&erefore, the Better Care® software was able to identifyIEE duringMV assistance with similar precision to the visual
inspection method and EADi.

3.6. Rodriguez et al., 2019. Rodriguez et al. [18] developed an
algorithm based on airway flow and pressure signals to
classify breaths as normal, reverse triggering asynchrony
(RT) with or without breath-stacking (BS), and patient-
initiated double triggering (DT). An esophageal balloon was
used as the reference standard. &erefore, this study aimed
to validate an algorithm to detect these changes in patient-
ventilator interaction.

&e diagnostic performance of the algorithm was val-
idated using two classifications. &e first was based on
visual inspection of the Pes signal of 699 breaths recorded
in 11 patients with acute respiratory distress syndrome.&e
other was obtained by visual inspection (2 physicians and 5
physiotherapists) of pressure and airway flow signals of
1881 breaths (99 patients). &e RT with or without BS
represented 19% and 37% of breaths in the Pes dataset,
while their frequency in the specialists’ dataset was 3% and
12%, respectively. &e DT was very rare in both datasets.
&e algorithm classification accuracy was 0.92 (95% CI:
0.89–0.94, P< 0.001) and 0.96 (95% CI: 0.95–0.97,
P< 0.001) compared with Pes and visual inspection (kappa
values were 0.86 and 0.84, respectively). &e algorithm
precision, sensitivity, and specificity for individual asyn-
chronies were excellent. &is algorithm yields an excellent
precision to detect clinically relevant asynchronies related
to RT.

4. Clinical Impact

Asynchrony detection using algorithm/software demon-
strated sensitivity and specificity values similar to expert
visual inspection in all included studies.

Despite differences between the standard references, all
studies presented specificity values higher than 90%. &e
algorithm proposed by Chen et al. [16] presented excellent
sensitivity and specificity values for maximum flow de-
flection and maximum pressure deflection, and results were
comparable with visual inspection. Although Rodriguez
et al. presented excellent sensitivity and specificity values for
RTwithout BS, the algorithmwas more sensitive and specific
for detecting RT with BS in both analyses (esophageal
pressure and visual inspection).

&e software proposed by Blanch et al. presented ex-
cellent sensitivity and specificity values compared with visual
inspection by ICU professionals, a finding similar to the
studies of Chen et al. [16], Rodriguez et al. [18], and Chang
et al. [15]. However, the comparison between the algorithm
and EADi showed a drop in sensitivity and high specificity to
detect the triggering asynchronies. &is study was limited to
patients without phrenic nerve injury and neuromuscular
disease since these conditions could interfere with EADi.
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Some factors may influence signal reliability when
creating algorithms based on Pes and EAdi signals, such as
retained airway secretion, cardiac oscillations, and expira-
tory muscle contraction and relaxation [16]. In the study by
Chen et al. [16], tracheal aspiration was performed before
data collection; therefore, the noise was not filtered, reducing
the clinical applicability since airway secretion is common in
the ICU environment. In the study by Blanch et al., the
software was built without controlling airway secretions;
however, this instrument was closer to clinical reality due to
its good sensitivity and specificity.

Despite the evolution, the mechanical ventilators are still
unable to automatically detect PVA [1, 17]. &e automatic
detection of trigger asynchrony using software/algorithms
presented sensitivity and specificity values comparable to
visual inspection of flow and pressure waveforms in all
included studies.

A desirable solution is that mechanical ventilators
become increasingly autonomous, responsive and intel-
ligent, capable of delivering continuously adjusted ven-
tilation for monitoring respiratory parameters or detected
needs, making it more comfortable and optimized
[12, 19].

&e efforts that have taken place to detect and classify
asynchronies, such as those described in this review, have
already stimulated the development, use, and incorporation
of algorithms, software or tools in some commercially
available mechanical ventilators for a finer control of ven-
tilatory synchronization, such as the Better Care® system,
IntelliSync + technology on the Hamilton Medical ventila-
tors, Dragger’s Primus® software, Puritan Bennett™ 980
Leak Sync Software, and the Bellavista™ 1000 ventilator.

&e visual inspection is an alternative for automatic
detection by software and algorithms since it is a simple and
low-cost method. Furthermore, professional training and
capacity building are essential for identifying asynchronous
events using graphical monitoring since availability and
applicability of more invasive, high-cost, or sophisticated
methods are limited, and PVA may lead to increased MV
duration, length of ICU stay, number of tracheostomies, and
hospital costs [1, 6].

A significant limitation is present in the applicability of
evidence. In general, the studies were heterogeneous re-
garding the patient number, reference standard methods,
diseases, and MV brands (which compromises different flow
and pressure curve analyses), ventilatory modes, and pa-
rameters. &erefore, the meta-analysis was not performed in
this review.

Further research regarding methods for detecting
asynchrony should take into account sample size, patient
selection, protocol standardization, ventilatory modes and
parameters, and other types of asynchronies.

5. Conclusions

Algorithms/software designed for the automatic detection of
trigger asynchrony using Pes and EADi as reference stan-
dard present high sensitivity and specificity; however, they
were similar to expert visual inspection. Further studies are

necessary to increase the accuracy of these methods at the
bedside and apply to different situations.

Data Availability

&e data supporting this SYSTEMATIC REVIEW are from
previously reported studies and datasets, which have been
cited. &e processed data are available in the article.

Additional Points

Clinical Significance. Algorithms/software for automatic
detection of trigger asynchrony are a promising innovation
for the ventilatory management, with potential impact in
reducing errors, more safety, and efficiency in care of critical
patients.
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