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Introduction. Sepsis, the leading cause of death in hospitalized patients globally, was investigated in this study, examining the varying
efects of positive fuid balance on sepsis subtypes through causal inference.Methods. In this study, data from the eICU database were
utilized, extracting 35 features from sepsis patients. Fluid balance during ICU stay was the treatment, and ICU mortality was the
primary outcome. Data preprocessing ensured linear assumptions for logistic regression. Binarized positive fuid balance with
mortality was examined using DoWhy’s logistic regression, while continuous data were analyzed with random forest T-learner. ATE
served as the primarymetric.Results. Results revealed that septic patients with higher fuid balance hadworsemortality outcomes, with
an ATE of 0.042 (95%CI: (0.034, 0.047)) using logistic regression and an ATE of 0.0340 (95%CI: (0.028–0.040)) using T-learner. In the
pulmonary sepsis subtype, higher mortality was associated with increased fuid balance, showing an ATE of 0.047 (95% CI: (0.037,
0.055)) using logistic regression and an ATE of 0.28 (95% CI: (0.22, 0.34)) with T-learner. Conversely, urinary sepsis patients had
improved mortality with higher fuid balance, presenting an ATE of −0.135 (95% CI: (−0.024, −0.0035)) using logistic regression and
an ATE of −0.28 (95%CI: (−0.34, −0.22)) with T-learner.Conclusion. Our research implies that fuid balance impact on ICUmortality
difers among sepsis subtypes. Positive fuid balance raises mortality in sepsis and pulmonary sepsis but may protect against urinary
sepsis. Further trials are needed to confrm these fndings.

1. Introduction

Sepsis is a dysregulated host immune response to active
infection that can lead to end-organ damage. It is a leading
cause of death in hospitalized patients, with an estimated
28.9 million cases and 6.3 million deaths worldwide each
year [1]. Although thoroughly studied, a few novel treat-
ments have been developed over the past few decades. Sepsis
is a complex and multifaceted syndrome, with variations in
the causative pathogen, site of infection, and degree of
dysregulated host response [2]. Studying a heterogeneous
disorder, such as sepsis, with the assumption of uniformity
reduces the probability of identifying treatments that may be
promising for larger subtypes [3]. Tis may explain why
many therapies with biological plausibility do not translate
into clinical results. Te challenges of designing sepsis trials
may be attributed to their heterogeneity, underscoring the

need to identify specifc subtypes or “phenotypes” of the
disease that may beneft from targeted treatments. Identi-
fying these sepsis phenotypes may improve our un-
derstanding of the underlying mechanisms of the disease
and enhance the design of clinical trials to achieve more
successful treatment outcomes. Recent studies using un-
supervised machine learning have shown promising results
in characterizing sepsis phenotypes, ofering hope for the
future of more efective sepsis trial design and treatment [4].

Te goal of fuid resuscitation in sepsis treatment is to
restore blood pressure and improve organ perfusion [5, 6].
However, recent studies have shown that excessive or
prolonged fuid administration can increase mortality [7, 8].
Nevertheless, it is plausible that some sepsis subtypes may
beneft from positive fuid balance, while others may be
harmed. Fluid administration based on sepsis subtypes has
not yet been investigated. Figure 1 illustrates the current
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method for studying sepsis as a monolithic entity. However,
we propose that larger subtypes should be studied separately,
given the heterogeneity of sepsis, with the hope of providing
individualized and precision medicine.

Randomized control trials remain the gold standard for
estimating treatment efects, as this limits the number of
confounders. However, they are resource-laden and ex-
pensive and can have methodological problems. Terefore,
there has been increased interest in statistical and machine-
learning methods to estimate causal efects called causal
inference [9, 10]. Statistical causal inference determines the
causal efect of treatment or exposure on an outcome by
using statistical methods. An example of a statistical method
used in causal inference is inverse probability of treatment
weighting (IPTW). IPTW uses the probability of receiving
treatment to balance the baseline characteristics between the
treated and untreated groups, thereby allowing for a more
accurate estimate of the causal efect of the treatment on the
outcome [11]. Using causal inference, we aimed to retro-
spectively discern the varying efects of positive fuid balance
on sepsis subtypes. We employed a simple mental model to
separate sepsis subtypes according to the site of infection.
We hypothesized that positive fuid balance will negatively
impact sepsis mortality.

2. Methods

2.1. Ethics Statement. Tis study analyzed a publicly avail-
able anonymized database with approval from a preexisting
institutional review board.

2.2. Sample Selection. Te eICU Collaborative Research
Database is a multicenter intensive care unit database with
data from over 200,000 intensive care unit (ICU) admissions
monitored by eICU programs [12]. Te eICU database
comprises 200,859 patient unit encounters for 139,367
unique patients admitted between 2014 and 2015 from 208
hospitals located throughout the US. Adult patients were
included in eICU (Figure 2). In addition, patients diagnosed
with urinary or pulmonary sepsis were queried from the
dataset. 35 features were extracted from the eICU database.
Te primary outcome was ICU mortality, whereas the
primary treatment was the total fuid balance in the ICU.

Feature sets with more than 40 percent missing values
were dropped, and scales and transformations were applied
to meet the linear assumptions for logistic regression [1].
Based on the initial visual analysis of outliers in the fuid
balance feature using violin plots, we excluded patients with
fuid balance greater than 15 and less than –15 liters. Te
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Figure 1:Te current approach to studying sepsis treatment that diminishes the heterogeneity of the syndrome.Te second image provides
a more nuanced approach as it separates large subtypes within sepsis and may allow for more individualized treatment discovery.
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Sklearn robust scaler was used [13]. Te data remained
highly skewed; therefore, further transformation using the
Yeo–Johnson transformer was utilized [13]. Outliers were
removed to reduce the skew for all features to be less than 0.5
and greater than −0.5. Te three sepsis groups were com-
pared in this analysis. Te frst group comprised the entire
sepsis cohort, which was compared with the pulmonary and
urinary sepsis groups. Our primary analysis method was
logistic regression in the DoWhy library, which requires
binarization of treatment features. Te net fuid balance of
each sepsis subtype was binarized using the SKlearn
binarizer with the mean (after initial feature transformation
to create normal distribution) of the features as the cutof.
Using logistic regression as the primary model and AUC as
the metric, recursive feature selection was performed using
the library from the feature engine.

We utilized the DoWhy library in Python to perform
causal inference on the data in four steps: model, identify,
estimate, and refute [14]. Our primary metric for evaluating
the degree of causality is the average treatment efect (ATE).
In the model step, we utilized the domain expertise of the four
intensivists to identify confounders and efect modifers to
construct a formal causal model. First, using domain expertise
for our directed acyclic graph, nine features were identifed as
efect modifers and confounders (Figure 3). Second, the
causal estimate was determined, which in our analysis was
noted to be the back-door criterion [9].Tird, the causal efect
was derived via inverse propensity weighting with logistic
regression or a metalearner via a random forest model
[15, 16]. Finally, multiple methods refute the estimate by
adding a random common cause and data subset analysis,
assuming that ATE should not vary signifcantly from the
original values if our results are valid.

Our primary model used to infer ATE for the binarized
treatment was inverse probability weighting (IPTW) with lo-
gistic regression. IPTW is a method used to estimate the causal
efect of a binary treatment on an outcome variable. It involves
weighting each individual in the sample according to the inverse
of their probability of receiving the treatment and then esti-
mating the treatment efect using a weighted regression model.

We further validated our fndings by analyzing the
continuous treatment values of positive fuid balance using
a machine-learning method called T-learners from the
EconMl library [17]. T-learners combined a treatment as-
signment and response model to calculate the causal efects
of treatment on outcomes. It can be implemented using
various machine-learning algorithms, including the random
forest model. Random forest is a machine-learning algo-
rithm that creates a collection of decision trees and uses
them to make predictions. One of the strengths of this
method is its ability to handle both continuous and binary
treatments. Considering the robustness of tree-basedmodels
to outliers and scales, minimal preprocessing of the data was
performed for learner analysis beyond initial outlier removal
using visual inspection.

3. Results

Tis study aimed to evaluate the causal efect of fuid balance
on ICU mortality in a sample of patients admitted to the
ICU. Summary statistics stratifed by mortality are presented
in Table 1, which demonstrates a statistically signifcant
diference in all features between alive and expired patients.
Te mortality outcome displayed a marked imbalance, with
only ten percent of the patients having died. Te results
showed that expired patients had a higher mean fuid bal-
ance than the live cohort.

To estimate the causal efect of fuid balance on mortality,
we utilized two models: an IPTW logistic regression model
with binarized treatment and a random forest T-learner
model with continuous treatment. ATE was calculated for
sepsis subtypes (Table 2). Te results of our study with the
logistic regression/binarized analysis showed that sepsis
overall had worse mortality outcomes, with an ATE of 0.042
(95% CI: (0.034, 0.047)). In addition, the T-learner model that
utilized continuous fuid balance values demonstrated an
ATE of 0.034 (95% CI: (0.028, 0.040)). Tis suggests that
patients with sepsis who received higher fuid balance had
worse mortality outcomes.

When looking at specifc subtypes of sepsis, pulmonary
sepsis had a worse outcome than the total sepsis group, with
an ATE of 0.047 (95% CI: (0.037, 0.055)) in the IPTWmodel.
Te T-learner model demonstrated a large efect with an
ATE of 0.28 (95%CI: (0.22, 0.34)).Tis suggests that patients
with pulmonary sepsis who received higher fuid balance had
worse mortality outcomes. In contrast, urinary sepsis had
improved outcomes with positive fuid balance and an ATE
of −0.135 (95% CI: (−0.024, −0.0035)). Te T-learner model
demonstrated a large mortality beneft with an ATE of −0.28
(95% CI: (−0.34, −0.22)). Tis suggests that patients with
urinary sepsis who received higher fuid balance had better
mortality outcomes.

Furthermore, we performed a refutation analysis using
the DoWhy library. We chose two methods to perform
refutation: adding a random confounder and utilizing only
a subset of data. Refutation analysis in causal inference adds
robustness to the results by challenging the validity of causal
assumptions. Te DoWhy library refutation method per-
forms this by adding a random common cause or using
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Figure 2: A total of 139,360 patients were available in the eICU
database, out of which 17,480 had an initial diagnosis of sepsis and
greater than 18 years of age. Te two largest subgroups were
identifed as pulmonary and urinary sepsis.
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a subset of data. In doing so, it assesses the sensitivity of the
causal efect estimates to the choice of variables and data. If
the causal efect estimates are robust to these challenges,
confdence in the validity of the causal inference results is
increased. Our refutation fndings, summarized in Table 3,
demonstrated minimal diferences in ATE for both methods
of refutation.

4. Discussion

Our study shows that there is indeed variation in ATEs
among sepsis subtypes with positive fuid balance. We used
causal inference techniques to discern the efect of positive

fuid balance on sepsis subtypes. Te results of our study
indicate that positive fuid balance negatively impacts sepsis
overall, but there was signifcant heterogeneity within the
subtypes. Te outcomes of pulmonary sepsis were signif-
cantly worsened by positive fuid balance, whereas those of
urinary sepsis improved. With higher fuid balance, we
hypothesized that pulmonary sepsis would have negative
efects, but we expected urinary sepsis to also have negative
efects, which was not the case. Tis relationship was con-
sistent in both our binarized treatment IPTWmodel and the
continuous treatment T-learner model.

Sepsis can take many diferent forms and is characterized
by marked heterogeneity. One approach to understand the
heterogeneity of sepsis is to classify patients into diferent
phenotypes or subtypes based on their clinical characteristics
and response to treatment [4]. Sepsis phenotypes can be
defned based on various factors, including the underlying
source of the infection, the presence of organ dysfunction,
and degree of infammation, to name a few. Prior studies

Admission Weight
Diabetes

Age

Bilirubin

Albumin

Fluid
Balance

Sodium

Mortality

Apache Score

Lactate

BUN

Figure 3: A directed acyclic graph (DAG) is a graphical representation of a set of variables and the relationships between them. Efect
modifers (light blue) and confounders (blue) are two important concepts in causal inference. Efect modifers are variables that modify the
efect of a treatment or exposure on an outcome. Confounders, on the other hand, are variables that are associated with both exposure and
outcome and thus may bias estimates of the treatment efect.

Table 1: Summary statistics stratifed by mortality, means± SD, or
N (%).

Features Overall Alive Expired
N 17,480 15,699 1,781
Apache score 67.6± 26.3 64.6± 23.8 94.6± 31.5
Admission weight
(kg) 81.4± 27.9 81.6± 28.0 79.6± 27.1∗∗

Sodium (mmol/L) 139.7± 5.9 139.6± 5.8 140.5± 6.9

Diabetes 13,352
(76.4%)

11,926
(89.3%) 1,426 (10.7%)

Bilirubin (mg/dL) 1.3± 2.3 1.2± 2.1 2.2± 3.8
Glucose (mg/dL) 121.1± 50.7 121.8± 49.2 115.0± 62.1
Lactate (mmol/L) 3.2± 3.0 2.9± 2.3 6.0± 5.3
BUN (mg/dL) 36.3± 26.1 35.1± 25.5 46.6± 28.8
Albumin (g/dL) 2.6± 0.7 2.7± 0.7 2.3± 0.7
Bicarbonate
(mmol/L) 21.9± 5.9 22.2± 5.7 18.7± 6.7

Net total −9.0± 1010.1 −34.3± 993.7 214.6± 1120.5
INR 1.8± 1.5 1.8± 1.4 2.3± 2.0
Platelet (103/μL) 195.6± 108.1 198.7± 107.3 167.6± 111.5
Age in years 65.2± 15.6 64.8± 15.8 68.7± 13.5
∗p< 0.001 for all features except that denoted with ∗∗. ∗∗p � 0.004.

Table 2: Average treatment efect (ATE) of sepsis subtypes using
inverse probability weighting (IPTW) with logistic regression and
T-learners machine-learning models.

ATE Confdence interval
Sepsis all
Binarized 0.042 (0.034, 0.047)
Continuous 0.034 (0.028, 0.040)
Pulmonary sepsis
Binarized 0.047 (0.037, 0.055)
Continuous 0.28 (0.22, 0.34)
Urinary sepsis
Binarized −0.013 (−0.024, −0.0035)
Continuous −0.28 (−0.34, −0.22)
∗IPTW with a logistic regression model corresponds to binarized values.
∗∗T-learners model corresponds to continuous values.
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have even phenotyped them based on genomics [18]. Our
study employed a more simplistic but likely practical phe-
notyping of sepsis at the site of infection.

One possible mechanism for the negative efect of positive
fuid balance in sepsis and pulmonary sepsis is that it may lead
to fuid overload in the setting of known sepsis-related gly-
cocalyx damage [19]. Tis is empirically supported by prior
research, which suggests that fuid overload is associated with
increased mortality in critically ill patients with sepsis [20–22].
Pulmonary sepsis appears to be especially sensitive to positive
fuid balance, as demonstrated in prior studies [23]. Seethala
et al. reported that patients with pneumonia as the primary site
of sepsis had an odds ratio of 2.31 for progression to acute
respiratory distress syndrome (ARDS) in the setting of positive
fuid balance, and those that progressed to ARDS had higher
mortality [24]. Patients with pulmonary sepsis may be at an
increased risk of progression to ARDS because of positive fuid
balance due to increased capillary permeability, leading to
pulmonary edema. It is unclear why positive fuid balance
appeared to have a protective efect on urinary sepsis in our
study, but this fnding needs to be validated prospectively.

One of the key strengths of this study is the use of causal
inference techniques, specifcally IPTW and T-learner
models, to estimate the causal efect of fuid balance on
ICU mortality in sepsis subtypes. We employed multiple
models with both binary and continuous values, which we
believe adds credibility to our assertions. Compared to
traditional observational methods, this method provides
a more robust and accurate estimate of causal efects. Our
study also employed refutation analysis, which is a robust
way to validate causal assumptions, adding further conf-
dence in the validity of the results. In addition, although our
study was retrospective, the sample size was relatively large.
We believe that the simplicity of our phenotyping method is
strength as it provides a simple mental model that can
potentially be applied with relative ease. Our study adds to
the current evidence by demonstrating that the efect of
positive fuid balance on sepsis outcomes may vary

depending on the subtype of sepsis, which, to the best of our
knowledge, has not been studied. Our results suggest that
positive fuid balance may harm patients with sepsis overall;
some subtypes fare worse, while others have a benefcial
efect. One potential implication of our fndings may be the
refnement of sepsis fuid expansion guidelines that account
for the sepsis subtype as a factor in resuscitation. By phe-
notyping sepsis into subtypes based on the site of infection,
our study provides a more nuanced understanding of the
efects of fuid balance on sepsis outcomes.

A practical application of our fndings is to adjust fuid
resuscitation strategies in sepsis according to the suspected site
of infection based on clinical presentation, cultures, and
imaging. For example, a reduced initial fuid bolus could be
considered for patients presenting with pulmonary sepsis as
compared to urinary sepsis, given the increased risk of harm
with positive fuid balance our study found in pulmonary
sepsis. If the patient with pulmonary sepsis remains hypo-
tensive after an initial conservative fuid bolus, earlier initiation
of vasopressor therapy may be preferred over additional fuid
boluses to avoid worsening pulmonary edema and progression
to ARDS. In contrast, patients presenting with urinary sepsis
may beneft from a more liberal initial fuid bolus if they
remain hypotensive, given the potential mortality beneft seen
with higher fuid balance in this subtype in our analysis. As
additional microbiology and imaging data become available,
the working diagnosis of the sepsis source may be refned, and
fuid management adjusted accordingly. While our retro-
spective analysis provides a foundation, prospective clinical
trials are needed to validate optimal individualized fuid
strategies based on the sepsis source. Our study has several
limitations. Tis was a retrospective analysis, and the con-
clusions must be validated prospectively.

We utilized causal inference techniques with the aim of
implying causality, but the gold standard remains RCT. Our
primary causal inference model can only handle binary
treatments, but fuid balance data are continuous, which
requires a signifcant amount of preprocessing and trans-
formation with the possibility of information loss in these
transformations. We supplemented the binarized analysis
with concurrent analysis of the continuous data to allay this
limitation. In addition, the T-learner model requires minimal
preprocessing, reducing the concern that signifcant pre-
processing required in the logistic regressionmodel limits our
inferences. Te visual approach to outlier removal could
introduce biases, but our intention was to avoid large impacts
from extreme outliers. We mitigated this by also using the
Sklearn robust scaler and Yeo–Johnson transformer to
minimize the impact of extreme values. While choosing the
mean as a threshold for binarization initially presents a lim-
itation, we mitigated this efect by reducing the data skew to
less than 0.5, ensuring a more symmetric distribution and
enhancing the appropriateness of themean as a representative
measure of the central tendency for our analysis.

 . Conclusions

In conclusion, our study showed a variation in the efect of
positive fuid balance on sepsis subtypes. We used causal

Table 3: Refutation results from DoWhy library for sepsis sub-
types: comparison of estimated efects with new efects and as-
sociated P values.

Estimated
efect

New
efect P value

Sepsis all
Using a subset of data 0.042 0.042 0.920
Adding a random common
cause 0.042 0.042 2.0

Pulmonary sepsis
Using a subset of data 0.046 0.047 0.92
Adding a random common
cause 0.046 0.046 2.0

Urinary sepsis
Using a subset of data −0.014 −0.014 1.0
Adding a random common
cause −0.014 −0.014 2.0

P values >0.05 indicate no statistically signifcant diference between
original and refutation ATE estimates, supporting the validity of the
original estimates.
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inference techniques to estimate the causal efect of fuid
balance on ICU mortality in sepsis subtypes and found that
positive fuid balance negatively impacted sepsis overall but
with signifcant heterogeneity within the subtypes. However,
our study was retrospective, and the conclusions must be
validated prospectively.

Data Availability

Data are open source and available through the eICU
database.
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