
Review Article
Questioning the Role of Carotid Artery Ultrasound in Assessing
Fluid Responsiveness in Critical Illness: A Systematic Review
and Meta-Analysis

Samuel C. D. Walker ,1 Adam C. Lipszyc ,2 Matthew Kilmurray ,1 Helen Wilding ,3

and Hamed Akhlaghi 1,4

1Department of Emergency Medicine, St Vincent’s Hospital, Melbourne, Victoria, Australia
2Department of Anaesthesia and Acute Pain Medicine, St Vincent’s Hospital, Melbourne, Victoria, Australia
3Library Service, St Vincent’s Hospital, Melbourne, Victoria, Australia
4Department of Medical Education, University of Melbourne, Melbourne, Victoria, Australia

Correspondence should be addressed to Samuel C. D. Walker; sam_walker_3@msn.com

Received 14 August 2023; Revised 10 March 2024; Accepted 19 March 2024; Published 27 April 2024

Academic Editor: Timothy Plackett

Copyright © 2024 Samuel C. D. Walker et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Background. A noninvasive and accurate method of identifying fuid responsiveness in hemodynamically unstable patients has
long been sought by physicians. Carotid ultrasound (US) is one such modality previously canvassed for this purpose. Te aim of
this novel systematic review and meta-analysis is to investigate whether critically unwell patients who are requiring intravenous
(IV) fuid resuscitation (fuid responders) can be identifed accurately with carotid US.Methods. Te protocol was registered with
PROSPERO on the 30/11/2022 (ID number: CRD42022380284). Studies investigating carotid ultrasound accuracy in assessing
fuid responsiveness in hemodynamically unstable patients were included. Studies were identifed through searches of six da-
tabases, all run on 4 November 2022, Medline, Embase, Emcare, APA PsycInfo, CINAHL, and Cochrane Library. Risk of bias was
assessed using the QUADAS-2 and the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE)
guidelines. Results were pooled, meta-analysis was conducted where amenable, and hierarchical summary receiver operating
characteristic models were established to compare carotid ultrasound measures. Results. Seventeen studies were included (n=842),
with 1048 fuid challenges. 441 (42.1%) were fuid responsive. Four diferent carotid USmeasures were investigated, including change
in carotid doppler peak velocity (∆CDPV), carotid blood fow (CBF), change in carotid artery velocity time integral (∆CAVTI), and
carotid fow time (CFT). Pooled carotid US had a pooled sensitivity, specifcity, and AUROC with 95% confdence intervals (CI) of
0.73 (0.66–0.78), 0.82 (0.72–0.90), and 0.81 (0.78–0.85), respectively. ∆CDPV had sensitivity, specifcity, and AUROCwith 95% CI of
0.72 (0.64–0.80), 0.87 (0.73–0.94), and 0.82 (0.78–0.85), respectively. CBF had sensitivity, specifcity, and AUROCwith 95%CI of 0.70
(0.56–0.80), 0.80 (0.50–0.94), and 0.77 (0.78–0.85), respectively. Risk of bias and assessment was undertaken using the QUADAS-2
and GRADE tools. Te QUADAS-2 found that studies generally had an unclear or high risk of bias but with low applicability
concerns. Te GRADE assessment showed that ∆CDPV and CBF had low accuracy for sensitivity and specifcity. Conclusion. It
appears that carotid US has a limited ability to predict fuid responsiveness in critically unwell patients. ∆CDPV demonstrates the
greatest accuracy of all measures analyzed. Further high-quality studies using consistent study design would help confrm this.

1. Introduction

Intravenous fuid administration is the frst-line therapy for
patients presenting with acute circulatory failure [1]. While
early fuid resuscitation reverses organ hypoperfusion and

improves clinical outcomes, inappropriate fuids can in-
crease morbidity and mortality [2–4]. A “fuid responder”
is a patient who, upon receiving an intravenous fuid bolus,
incurs an increase to their cardiac output. Tese patients
are said to have “preload reserve,” where increasing their
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cardiac preload improves their stroke volume (SV) and
ultimately cardiac output (CO). A “fuid nonresponder” is
a patient whose stroke volume will not improve with
further fuids, refecting either an already optimised pre-
load or advanced disease state. Reliable noninvasive and
readily available tools to identify fuid responders in the
setting of acute resuscitation remain clinically challenging
as accurate and timely assessment of the fuid status re-
quires either invasive or technically difcult procedures
[5–7].

Ultrasound has had an increasingly important role in
assessing fuid responsiveness in critically unwell patients in
both emergency departments and intensive care units. Tere
has been recent interest in the diagnostic accuracy of carotid
artery ultrasound (US) as a noninvasive, accessible way to
assess fuid responsiveness [8]. Te seminal work conducted
by Marik et al. [9] showed that carotid artery velocity time
integral (CAVTI) had 94% sensitivity and 86% specifcity in
detecting fuid responsiveness in septic patients. Several
studies have attempted to replicate the fndings of this study
in diferent clinical areas; however, heterogenous pop-
ulations with small sample sizes make it difcult to draw
meaningful conclusions.

Prior systematic review and meta-analyses of carotid
ultrasound in determining fuid responsiveness have yielded
promising results. Yao et al. [10] and Singla et al. [11] found
that carotid US could be used to determine fuid re-
sponsiveness in surgical and ventilated patients. Similarly,
Beier et al. [12] found that carotid US was a valid measure of
fuid responsiveness in both healthy and unwell patients.
Critically unwell patients have not been investigated in
isolation. Patients in physiological extremis cannot be
compared to elective and semielective surgical patients.
Tese patients often require more intensive treatments, have
longer stays in ICU, and have higher mortality rates than
surgical patients [13, 14]. Te aim of this novel systematic
review and meta-analysis is to investigate whether critically
unwell patients who are requiring intravenous (IV) fuid
resuscitation (fuid responders) can be identifed accurately
with carotid US.

2. Methods

Tis review was performed following the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
of Diagnostic Test Accuracy (PRISMA-DTA) statement [15].
Te protocol was registered with PROSPERO on the 30/11/
2022 (ID number: CRD42022380284).

2.1. Study Selection and Inclusion Criteria. Studies were
selected according to the PICOS statement.

2.1.1. Patients and Setting. All studies which investigated the
utility of carotid ultrasound as a measure of fuid re-
sponsiveness in critically unwell patients (shock of any kind
and vasopressor requirement) were considered. Critically
unwell was determined as patients who were requiring re-
suscitation as a result of some pathological process. Surgical

studies were excluded unless they fulflled this criterion
independently of their surgery, e.g., appendicitis with septic
shock. Studies were excluded if they had a portion of the
cohort that was critically unwell, and the data were pooled
and could not be separated. To avoid further confounding all
noncritically ill subjects, healthy volunteers and children
were also excluded.

2.1.2. Index Tests and Reference Standards. Studies needed
to have a reference standard for fuid responsiveness which
was compared to a carotid ultrasound measure. Reference
standards were any independent measure of measuring
cardiac output or equivalent, e.g., cardiac index and stroke
volume. Studies that investigated carotid US but had no
reference standard were excluded.

2.1.3. Comparison and Reference Standard. Reference
standards were any independent measure of measuring
cardiac output or equivalent, e.g., cardiac index and stroke
volume. Studies that investigated carotid US but had no
reference standard were excluded.

2.1.4. Outcome and Target Condition. Te target condition
was fuid responsiveness. Tis was determined by measuring
the reference standard before and after a fuid challenge. A
fuid challenge could be achieved by providing the patient
with a bolus of intravenous fuid or by providing them an
“autotransfusion” by performing a passive leg raise (PLR).
Patients were deemed fuid responsive if their cardiac output
increased by a predetermined threshold. Studies which did
not include an assessment of fuid responsiveness were
excluded.

Te primary outcome was the predictive value of ca-
rotid ultrasound measures to determine fuid re-
sponsiveness, expressed as an area under the receiver
operating characteristics curve (AUROC). Studies which
did not include AUROC, sensitivity, and specifcity or
studies in which these values could not be calculated were
excluded.

2.1.5. Study Design and Report Characteristics. Only pro-
spective studies were included. Animal studies were ex-
cluded, as were the following publication types: books,
chapters, conference abstracts, comments, dissertations,
editorials, guidelines, letters, news, notes, policy state-
ments, and study protocols. Papers in languages other than
English were excluded.

2.2. Information Sources. Publications were identifed
through searches of the following six bibliographic data-
bases, all run on 1 December 2023: Ovid Medline(R) ALL
1946–December 01, 2023; Embase 1974–2023 December 01
(Ovid); Ovid Emcare 1995–2022week 43; APA PsycInfo
1806–December week 1, 2023 (Ovid); CINAHL (EBSCO-
host); and Cochrane Library (Wiley). Two trial registries
were searched on 1 December 2023, namely,
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Clinicaltrials.gov and Australia New Zealand Clinical Trials
Registry (ANZCTR). Reference lists of included studies were
examined for additional publications.

2.3. Search Strategy. Search strategies were developed by
a medical librarian (HW) in consultation with a topic expert
(SW), who provided a “gold set” of 10 relevant publications
identifed during scoping searches. Tese were checked for
search terms and used to validate search strategies. Further
search terms were identifed through text mining in PubMed
PubReminer [16] using the query “ultrasonography AND
carotid AND fuid.” Search terms retrieved through text
mining were extensively tested for usefulness and relevance
in Ovid Medline to develop the fnal search strategy.

Final search strategies combined the general concepts of
ultrasonography AND carotid velocity time integral AND
fuid responsiveness using a combination of subject headings
and text words. An initial search was developed for Ovid
Medline and then adapted for other databases adjusting
subject headings and syntax as appropriate (Figure 1).
Search syntax used in the Ovid databases was adapted for
CINAHL (EBSCOhost) and Cochrane (Wiley) using the
Polyglot Search Translator [17]. Trial registries were
searched using the strategy “ultrasound AND carotid AND
fuid.”

2.4. Study Selection. Database search results were exported
to EndNote bibliographic management software (Clarivate
Ltd, U.S.) and duplicates removed. In accordance with el-
igibility criteria records, these were screened on the publi-
cation type by HW within EndNote and book sections,
comments, dissertations, and letters were excluded. All
remaining records were loaded into Covidence systematic
review software (Veritas Health Innovation Ltd) for
screening on title and abstract. Records were independently
screened on title and abstract in Covidence by two reviewers,
SW and AL, and conficts were resolved by HA. Full text
records were retrieved for the remaining records.

2.5. Data Collection, Management, and Defnitions. Data
from all relevant studies were collected in the following
domains: (1) study characteristics including author, year of
publish, mean age, setting, sampling, percentage of fuid
responders, percentage mechanically ventilated, type of fuid
challenge, reference standard and threshold, carotid mea-
sure, and equipment used; (2) diagnostic performance, in-
cluding sensitivity, specifcity, true positives (TPs), true
negatives (TNs), false positives (FPs) and false negatives
(FNs), and AUROC and 95% confdence interval (CI).
Where studies performed more than one carotid measure or
more than one cohort of fuid challenges, these results were
independently used for their relevant analysis. A true pos-
itive was defned as a signifcant change in carotid US
measure in response to a fuid challenge as well a positive
change in cardiac output or equivalent as per the pre-
determined reference standard. A true negative was deemed
a nonresponder by the reference standard and

a nonsignifcant carotid US measure. A false positive was
considered diagnosis of fuid responsive for the carotid US
measure that was not confrmed by the reference standard. A
false negative was considered not a fuid responder by ca-
rotid US which was diagnosed by the reference standard.

2.6. Assessment of Bias and Evaluation of Evidence Quality.
Te quality of the studies included in the review was assessed
using the QUADAS-2 [18]; this was independently un-
dertaken by two authors (SW and AL) with disagreements
(12%) settled by consensus. Te overall certainty was
assessed using the Grading of Recommendations, Assess-
ment, Development, and Evaluations guidelines [19, 20].
Overall certainty in the pooled sensitivity and specifcity
were categorised as high, moderate, low, or very low using
the GRADEpro guideline development tool [21].

2.7. Statistical Analysis. Te statistical analysis was un-
dertaken using STATA 17.0 (StataCorp LLP, U.S.). Pooled
sensitivity and specifcity were calculated for each carotid
measure. In instances where the TP, TN, FP, or FN values
were not published or available in supplemental data, these
were calculated using a 2-way contingency table analysis
[22]. Meta-analysis was conducted in line with current
standards [23] and side-by-side forest plots were used to
examine variability between studies. Te hierarchical sum-
mary receiver operator characteristic curve (HSROC) was
plotted for carotid US measures in cases where fve or more
cohorts were available for analysis.Te following values were
pooled using a bivariate random efects model: sensitivity,
specifcity, positive likelihood ratio, negative likelihood ra-
tio, and diagnostic odds ratio (DOR). Heterogeneity was also
examined using the I2 statistic (whereby ≧75% suggested
signifcant statistical heterogeneity between studies) in
complement with inspection of forest plots and the HSROC
models where applicable. Te contribution of threshold
efect was evaluated by Spearman’s coefcient (for which
a value≥ 0.6 suggested a threshold efect) and review of the
HSROCmodel shape. Deek’s funnel plot asymmetry test was
used to assess for publication bias. A metaregression was
utilized to assess subgroup bias; this could only be per-
formed for pooled carotid US due to insufcient numbers
within the subgroups. Metaregression was used to assess the
efects of the following dichotomous variables: index test
threshold (10% vs 15%), reference measurement (“gold
standard”-LVOT VTI/PAC thermodilution vs. “non-gold
standard”-pulse contour cardiac output (PiCCO),
FloTrac™, noninvasive cardiac output monitor (NICOM)),
type of fuid challenge (IV fuid vs. PLR), and severity of
sepsis (septic shock vs. sepsis).

3. Results

3.1. Study Selection and Study Characteristics. Te study
selection methodology is summarised in Figure 2. 7947
records were identifed from database and register
searches, 3453 duplicates were removed, and 6 records
excluded based on publication type. 4568 records were
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FIGURE 1: Continued.
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FIGURE 1: Continued.
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screened on title and abstract and 4501 excluded as ir-
relevant. 67 full-text reports were retrieved, assessed for
eligibility, and 51 reports were excluded. 17 studies were

included in the review and meta-analysis. In total, 860
patients underwent 1092 fuid challenges, of which 460
(42.1%) were fuid responsive.

Figure 1: Search strategies.
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Table 1 shows the characteristics of the 17 included
studies. Temajority of studies were conducted in ICU, with
one study conducted in an emergency department [34].
Tere were multiple reasons for hemodynamic instability.
Te majority were unspecifed/heterogeneous
[9, 25, 29, 32, 34, 35, 37, 39] or septic shock
[26, 30, 31, 33, 36, 40], with a minority of studies having
cohorts of patients with haemorrhagic shock [27] or car-
diogenic shock [38]. A fuid challenge was administered
either by crystalloid bolus [27–31, 34, 37, 40], passive leg
raise (PLR) [25, 26, 32, 38, 39], or a combination of the two
[9, 33, 35, 36]. Crystalloid volume was determined by weight
(6-7ml/kg) or a predetermined value (200ml–500ml). Te
reference standards most commonly used were left ven-
tricular outfow tract (LVOT) velocity time integral (VTI)
[26, 27, 31, 33, 34, 37, 38] and noninvasive cardiac output
monitor (NICOM) (Cheetah Medical, Inc) [9, 25, 28, 29],
with some studies used pulmonary artery catheter (PAC)
[32, 36, 40], pulse contour cardiac output (PiCCO)

(PULSION Medical Systems AG, Munich, Germany)
[30, 35], and FloTrac (Edwards Lifesciences, Irvine, CA,
USA) [39].

Te threshold for fuid responsiveness measured against
the reference standard was measured by a 10–15% increase
of reference standard after a fuid challenge for all studies.Te
severity of illness of patient cohorts was poorly documented.
Patient cohorts who were mechanically ventilated varied
signifcantly, ranging between 0% and 100%. Four diferent
carotid measures were used including change in carotid
doppler peak velocity (∆CDPV) [27, 29–31, 36, 37, 40], ca-
rotid blood fow (CBF) [9, 28, 33, 34, 38], change in carotid
artery velocity time integral (∆CAVTI) [9, 26, 33, 35, 37], and
carotid fow time (CFT) [25, 28, 32, 39, 40]. One study used
carotid time-averaged mean velocity (TAMEAN) [35]. Two
studies performed two subgroup analysis with two carotid
measures [28, 37], and one study ran two cohorts one with
PLR and one with IVF [33]. Table 2 details the US equipment
used for included studies.

Identification of studies via databases and registers
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Figure 2: PRISMA 2020 fow diagram (as at 1 December 2023) [24].
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3.2. Risk of Bias and Quality of Evidence. Quality assessment
of included studies was performed using the QUADAS-2
(Figure 3). Generally, the risk of bias of studies was sig-
nifcant. Most studies performed convenience recruitment,
citing the impracticalities of continuous or random re-
cruitment in busy, unpredictable critical care environments.
Most studies had similar exclusion criteria (unable to tol-
erate PLR and carotid stenosis); however, some studies
excluded common comorbidities which may have led to
a skewed cohort. For example, Chowan et al. [26] excluded
all patients with a body mass index (BMI)> 30 or if patients
had any valvular heart disease or “cardiac stenosis.” Another
common issue was the lack of blinding between the index
and the reference scans. No studies set a predetermined
threshold for the index test which would be deemed as
a “positive test;” these were all established post hoc. Te
quality of the reference standard was generally high (Fig-
ure 3). Te GRADE evidence is provided in Table 3, and it
found that for ∆CDPV and CBF had low accuracy for
sensitivity and specifcity.

3.3. Performance of Carotid Ultrasound in Predicting Fluid
Responsiveness. Seventeen studies were considered for the
meta-analysis. Te primary outcome was the efcacy of
carotid ultrasound in predicting fuid responsiveness in
critically unwell patients. Figure 4(a) shows a twin forest
plot, illustrating the pooled carotid ultrasound fgures as
follows: sensitivity and specifcity of 0.73 (95% CI 0.66–0.78)
and 0.83 (95% CI 0.72–0.90), respectively. Figure 4(b) shows
a pooled AUROC of 0.81 (95% CI 0.78–0.85) and a HSROC
model for pooled US measures. It had a positive likelihood
ratio of 4.24 (2.49 and 7.23) and a negative likelihood ratio of
0.33 (0.25 and 0.43).

Two carotid index parameters were amenable to ad-hoc
meta-analysis (∆CDPV and CBF) which are shown in
Figures 5 and 6. ∆CDPV had a pooled sensitivity of 0.72
(95% CI: 0.64–0.80) and specifcity of 0.87 (95% CI:
0.73–0.94) (Figure 5(a)). ∆CDPV had a pooled AUROC of

0.82 (95% CI: 0.78–0.85) (Figure 5(b)). It had a positive
likelihood ratio of 5.48 with wide confdence intervals
(2.52–11.90) and a negative likelihood ratio of 0.31 (0.23 and
0.43) as shown in Table 4.

CBF demonstrated a pooled sensitivity of 0.70 (95% CI:
0.56–0.80), specifcity of 0.80 (95% CI: 0.50–0.94)
(Figure 6(a)), and an AUROC of 0.77 (95% CI: 0.73–0.81)
(Figure 6(b)). It had positive likelihood ratio of 2.00 (1.56
and 2.56) and negative likelihood ratio of 0.45 (0.34 and
0.60). Table 4 also shows data for the remaining carotid US
measures, including pooled sensitivities, specifcities,
positive likelihood ratios, and negative likelihood ratios.
Unfortunately, ∆CAVTI and CFT did not have enough
studies to perform a regression analysis; however, their
pooled sensitivities and specifcities can be viewed in
Table 5 and their paired forest plots in Figures 7 and 8.
Given TAMEAN was only used in one study, no further
analysis was performed.

Table 6 details the subgroup metaregression analysis
performed. Taking a signifcant p value to be≤ 0.05, several
variables found signifcance. Specifcally, it was found that
studies which used the reference gold standard measures
(LVOT VTI and PAC) had signifcantly higher specifcities in
detecting fuid responsiveness than studies which used less
widely validated measures of CO. Passive leg raise had sig-
nifcantly higher specifcity than IV crystalloid, and studies
which investigated sepsis/septic shock cohorts had a statisti-
cally signifcant higher sensitivity although this appears to be
an insignifcant number practically with sensitivities only
difering by 0.01. Table 6 shows data for each carotid US
measure, including pooled sensitivities, specifcities, positive
likelihood ratios, and negative likelihood ratios.

3.4. Heterogeneity. I2 values for pooled sensitivity and
specifcity were 48.6% and 68.0%, respectively. Tis in-
dicates that there may be moderate to substantial hetero-
geneity between studies. Within the studies which
examined, only ∆CAVTI and CBF heterogeneity was as

Table 2: US equipment for the included studies.

Study Equipment Probe Frequency (MHz)
Barjaktarevic et al. [25] LOGIQ e, GE Healthcare Linear —
Chowhan et al. [26] IMAGIC Agile, Kontron Medical Phase —
Zhang et al. [27] Mindray M9 Diagnostic, US Linear 8–12
Abbasi et al. [28] Sonosite edge ultrasound Linear 6–13
Abassi et al. [29] Sonosite edge ultrasound Linear 6–13
Lu et al. [30] Sonosite — 12
Marik et al. [9] LOGIQ e; GE Healthcare Linear 7–12
Soliman et al. [31] GE LOGIQ™ P9- South Korea, FUJIFILM SonoSite M-Turbo®- Malaysia Linear 5–10
Jelic et al. [32] — — —
Efat et al. [33] P4–2 siemens acuson ×300, siemens medical system Linear —
McGregor et al. [34] Sonosite EDGE — —
Girotto et al. [35] CX50 (Philips Healthcare) Linear 5–12
Ibarra-Estrada et al. [36] Sonosite micromaxx system Linear 5–10
Pace et al. [37] MyLab60 Linar 5–10
Helmy et al. [38] Phillips HD11 XE Phased 2.5
Jalil et al. [39] FujuFilm sonosite Linear —
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follows: ∆CAVTI I2 values for sensitivity and specifcity
were 35.6% and 59.7%, respectively, and CBF I2 values for
sensitivity and specifcity were 55.2% and 72.4%, re-
spectively; this represents high heterogeneity. Figure 9 il-
lustrates a statistically signifcant asymmetric Deek’s funnel
plot with a p value of 0.05, indicating high likelihood of
publication bias.

4. Discussion

Tis novel systematic review and meta-analysis reviewed the
literature aiming to assess the diagnostic accuracy of carotid
US in predicting fuid responsiveness in critically unwell
patients. Seventeen studies were included in the review. We
conclude that carotid US measures shows a moderate

studyname

Chowhan, 2021
Marik, 2013
Girotto (ΔCAVTI), 2018
Pace (ΔCAVTI), 2021
Zhang, 2021
Abbasi , 2021
Lu, 2017
Soliman, 2022
Ibarra−Estrada, 2015
Pace (ΔCDPV), 2021
Abbasi (CBF), 2020
Efat 1, 2021
Efat 2, 2021
McGregor, 2020
Helmy, 2022
Barjaktarevic, 2018
Abbasi (CFT), 2020
Jelic, 2015
Jalil, 2018
Girotto (TAMEAN), 2018
D’Arrigo, 2023
Overall
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0.71 (0.29, 0.96)
0.94 (0.71, 1.00)
0.90 (0.70, 0.99)
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0.70 (0.51, 0.85)
0.72 (0.58, 0.84)
0.78 (0.58, 0.91)
0.52 (0.30, 0.74)
0.87 (0.69, 0.96)
0.82 (0.63, 0.94)
0.61 (0.47, 0.74)
0.80 (0.56, 0.94)
0.70 (0.46, 0.88)
0.45 (0.23, 0.68)
0.83 (0.65, 0.94)
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0.95 (0.77, 1.00)
0.54 (0.40, 0.67)
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0.46 (0.19, 0.75)
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Figure 4: (a) Twin forest plots for pooled carotid US measures when assessing fuid responsiveness in hemodynamically unstable patients.
(b) AUROC and HSROC model for pooled carotid US measures.
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Figure 5: (a) Twin forest plots for ∆CDPV when assessing fuid responsiveness in hemodynamically unstable patients. (b) HSROC and
AUROC graph for ∆CDPV.
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sensitivity and a high specifcity in predicting fuid re-
sponsiveness in critically unwell patients. However, these
results should be interpreted with caution due to the high
heterogeneity among the existing studies and the low
confdence in the accuracy fndings based on the GRADE
assessment.

Previous reviews investigating carotid ultrasound in well
patients and surgical patients have shown promising results,
with pooled sensitivities of 0.83–0.85 and specifcities of
0.86–0.89 with a AUROC of 0.894–0.927 for ∆CDPV in
predicting fuid responsiveness [10, 11]. However, our re-
view of critically unwell patient demonstrates that carotid
US measures are less reliable in this population compared to
these prior fndings. Notably, the sensitivity of ∆CDPV in
our review was signifcantly lower at 0.72, indicating a de-
creased ability to accurately identify fuid responders among
critically ill patients. Whilst specifcity of 0.87, the positive
likelihood ratio of 5.48 and negative likelihood ratio of 0.31
for ∆CDPV were similar to previous reviews; the lower
sensitivity represents a key diference in the diagnostic
performance of carotid US in this specifc patient
population.

In comparison to other ultrasound measures, carotid US
was midrange in its ability to diagnose fuid responsiveness
in critically unwell patients. Carotid US was signifcantly
inferior to LVOTVTI which has sensitivity and specifcity of
0.88 and 0.95, respectively, in septic shock patients [41]. It
was also outperformed by internal jugular vein US in acutely
unwell patients which had pooled sensitivities and speci-
fcities of 0.82 and 0.78, respectively [42]. It performed
similarly in sensitivity to IVC diameter, 0.71, which was

deemed unreliable as a measure of fuid responsiveness.
Carotid US did have, however, a more favourable sensitivity
to IVC diameter (0.71) [43].

Authors have hypothesized as to why carotid artery may
be suboptimal when compared to the left ventricular outfow
tract in acutely unwell patients. Tere has been a suggestion
that the carotid artery may play an important part of cerebral
blood fow autoregulation [44], meaning that changes in
cardiac output are not accurately identifed at the level of the
carotid artery. Tis efect may be further exacerbated in
shocked and critically unwell patients refecting the de-
creased diagnostic utility of our review when compared to
other measures of fuid responsiveness.

Most patient cohorts within this review were based in
ICU. Tis in unsurprising as it has the highest density of
hemodynamically unstable patients with clinicians having
more time with the patient allowing serial carotid US
measurements. Interestingly, the only emergency de-
partment study (McGregor et al. [34]) demonstrated the
lowest sensitivity and specifcities among included studies,
0.45 and 0.46, respectively. Tis group of patients had re-
ceived less intravenous fuid (compared to ICU patients);
intuitively, this would suggest they would be more likely to
be on the descending portion of the Frank–Starling curve
and theoretically be more sensitive to fuid therapy when
compared to ICU patients; however, this was not seen.
Further studies are needed in emergency department set-
tings to test carotid US diagnostic utility in this context.

A recent meta-analysis investigating factors afecting
fuid responsiveness and how they are related to operative
performance demonstrated that variables such as the volume
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Figure 6: (a) Twin forest plots for CBF when assessing fuid responsiveness in hemodynamically unstable patients. (b) HSROC and AUROC
graph for CBF.
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of intravenous fuid, choice of hemodynamic variable,
noradrenaline dosing, and duration of end expiratory hold
can signifcantly impact operative performance [45]. Tese
results have important clinical implications as failing to
account for such factors could lead to inaccurate assessment
of fuid responsiveness and inappropriate administration or
withholding of fuid therapy. Our review compliments the
fndings of this review by illustrating that carotid US’s ability

to detect fuid responsiveness requires a nuanced application
and caution in critically unwell patients.

One of the most signifcant variabilities between the
studies was the threshold which deemed a carotid US
measure to be “fuid responsive.” None of the studies set
a predetermined value, rather the cutof was decided post
hoc. Fluid responders according to the index test ranged
from a 7% to a 23% increase, making it very difcult for

Table 5: Fluid responsiveness for included studies.

Study
Number of patients

Cutof value Sensitivity (%) Specifcity (%) AUROC (95%
CI)TP FP FN TN

Barjaktarevic et al. [25] 37 1 17 22 7mSec 69 96 0.88 (0.80, 0.96)
Chowhan et al. [26] 5 4 2 9 15.8% 71 69 0.69
Zhang et al. [27] 21 6 9 24 11.2 cm/sec 70 80 0.80 (0.69, 0.91)
Abbasi et al. [29] 36 18 14 18 8% 72 50 0.61 (0.48, 0.73)
Abbassi et al. [28] (CBF) 34 26 22 30 >19ml/min 61 54 0.58 (0.47–0.68)
Abbasi et al. [28] (CFT) 30 25 26 31 6mSec 54 55 0.59 (0.46–0.65)
Lu et al. [30] 21 2 6 20 13% 78 91 0.91 (0.817, 1.0)
Marik et al. [9] 16 2 1 15 20% 94 88 Not provided
Soliman et al. [31] 11 1 10 8 20% 52 89 0.73 (0.53, 0.93)
Jelic et al. [32] 5 0 1 11 10% 83 100 Not provided
Efat et al. [33] (post PLR) 16 6 4 18 23% 80 75 0.99 (0.98, 1)
Efat et al. [33] (post FC) 14 1 6 23 23% 70 96 0.99 (0.99, 1)
McGregor et al. [34] 9 7 11 6 10% 45 46 Not provided
Girotto et al. [35] 13 4 9 13 8% 90 24 0.68
Ibarra-Estrada et al. [36] 12 5 9 12 14% 87 86 0.88 (0.77, 0.95)
Pace et al. [37] (∆CDPV) 26 4 4 25 >12 82 95 0.91 (0.79, 0.97)
Pace et al. [37] (∆CVTI) 23 1 5 21 >10 89 86 0.92 (0.80, 0.98)
Helmy et al. [38] 25 3 3 19 >17.3 83 100 0.883 (0.78, 0.99)
Jalil et al. [39] 25 0 5 10 >24.6 60 92 0.75 (0.54, 0.96)
D’Arrigo et al. [40] 10 1 8 24 >10.5 53 96.2 0.74 (0.58, 0.91)
∆CDPV� change in carotid Doppler peak velocity, CBF� carotid blood fow, ∆CAVTI� change in carotid artery velocity time integral, CFT�carotid fow
time, CI� confdence interval, PLR� passive leg raise, FC� fuid challenge, TP� true positive, FP� false positive, FN� false negative, TN� true negative,
AUROC� area under receiver operator curve.
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Figure 7: CAVTI paired forest plots.
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Table 6: Subgroup metaregression for pooled carotid US measures.

Parameter Category Studies Sensitivity (C.I.) p. value Specifcity p. value

Index test threshold 10% 10 0.74 (0.65, 0.83) 0.06 0.89 (0.81, 0.97) 0.92
15% 11 0.71 (0.63–0.80) 0.74 (0.61–0.88)

Reference measurement Gold standard 15 0.74 (0.68, 0.81) 0.01 0.85 (0.76, 0.95) 0.12
Not gold standard 6 0.68 (0.57, 0.79) 0.76 (0.57, 95)

Type of fuid challenge IV fuid 16 0.72 (0.65, 0.79) 0.10 0.78 (0.68, 0.89) 0.02
PLR 5 0.74 (0.60, 0.87) 0.94 (0.87, 1.0)

Sepsis/septic shock Yes 7 0.72 (0.61, 0.83) 0.05 0.89 (0.79, 0.99) 0.94
No 14 0.73 (0.65) 0.79 (0.67, 0.90)

Gold standard� left ventricular outfow tract velocity time integral or pulmonary artery catheters, PLR� passive leg raise, CI� confdence interval.
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clinicians to determine where fuid responsiveness lies with
carotid US. Another area of variability between studies was
the choice of reference standard. Most studies used either
LVOT VTI or PAC to identify fuid responders, widely
accepted as accurate ways of assessing cardiac output.
Girotto et al. [35] and Lu et al. [30] used PiCCO™ which is
a device that utilizes transpulmonary thermodilution. Sev-
eral studies have shown PiCCO™ to be reliable when
compared to PAC [46, 47]. Jalil et al. [39] used FloTrac™
which is a noninvasive device and has shown variable results
in its ability to accurately identify changes in cardiac output.
Tree studies [28, 29, 39] used NiCOM, a noninvasive
monitor which estimates cardiac output. Some studies
showed that it can be a reliable measure [48], whilst others
have shown that NiCOM cannot be used to estimate cardiac
output, notably in critically ill patients [49].

4.1. Limitations. Tis study had several limitations. One
limitation was that only two carotid US measures were
amenable to meta-analysis. Unfortunately, CFT, ∆CAVTI,
and carotid TAMEAN did not have enough data to perform
the meta-analysis. Another limitation was the heterogeneity
between the studies. Our analysis showed that there was
a moderate interstudy heterogeneity. Te absence of a uni-
form cut-of for carotid US measures limits clinical
applicability.

Tere is an opportunity for future research investigating
the use of carotid ultrasound in hemodynamically unstable
patients.

Prospective investigators should consider using ∆CDPV
as their carotid ultrasound measure, in a homogeneous
patient population (for example septic shock), with a pre-
defned cutof for their carotid US measure.

5. Conclusion

We conclude that the available data from existing literature
carotid US is moderately efective at diagnosing fuid re-
sponsiveness in critically unwell patients. However, our
results suggest that carotid US is less accurate acutely
unwell patients compared to surgical cohorts. Our study
showed moderate to high heterogeneity within the litera-
ture and low accuracy confdence when applying the
GRADE framework. Clinicians should use carotid US in
critically unwell patients with caution. Despite the limi-
tations, this systematic review and meta-analysis ofers the
most rigorous and comprehensive evaluations of the
existing literature.
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Te data used to support the fndings of this study are
available from the corresponding author upon reasonable
request.
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