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Objective. We demonstrated that circulating microparticles (MPs) are increased in patients with coronary heart disease (both
chronic coronary syndrome (CCS) and acute coronary syndrome). Whether thrombolysis affects MPs in patients with ST-
segment elevation myocardial infarction (STEMI) with or without percutaneous coronary intervention (PCI) is unknown.
Methods. This study was divided into three groups: STEMI patients with thrombolysis (n = 18) were group T, patients with
chronic coronary syndrome (n = 20) were group CCS, and healthy volunteers (n = 20) were the control group. Fasting venous
blood was extracted from patients in the CCS and control groups, and venous blood was extracted from patients in the T
group before (pre-T) and 2 hours after (post-T) thrombolysis. MPs from each group were obtained by centrifugation. After
determining the concentration, the effects of MPs on endothelial nitric oxide synthase (eNOS) and inducible nitric oxide
synthase (iNOS) in rat myocardial tissue in vitro were detected by immunohistochemistry and western blotting. Changes in
nitric oxide (NO) and oxygen free radicals (O2

•–) were also detected. The effect of MPs on vasodilation in isolated rat thoracic
aortae was detected. Results. Compared with that in the control group (2 60 ± 0 38mg/ml), the concentration of MPs was
increased in patients with CCS (3 49 ± 0 72mg/ml) and in STEMI patients before thrombolysis (4 17 ± 0 58mg/ml). However,
thrombolysis did not further increase MP levels (post-T, 4 23 ± 1 01mg/ml) compared with those in STEMI patients before
thrombolysis. Compared with those in the control group, MPs in both CCS and STEMI patients before thrombolysis inhibited
the expression of eNOS (both immunohistochemistry and western blot analysis of phosphorylation at Ser1177), NO
production in the isolated myocardium and vasodilation in vitro and stimulated the expression of iNOS
(immunohistochemistry and western blot analysis of phosphorylation at Thr495), and the generation of O2

•– in the isolated
myocardium. The effects of MPs were further enhanced by MPs from STEMI patients 2 hours after thrombolysis. Conclusion.
Changes in MP function after thrombolysis may be one of the mechanisms leading to ischemia–reperfusion after thrombolysis.

1. Introduction

ST-segment elevation myocardial infarction (STEMI), which
is mainly manifested as myocardial necrosis consequent to
an ischemic injury with persistent ST-segment elevation on
the electrocardiogram, is the most common acute cardiovas-
cular disease and also the major causes of mortality world-
wide [1]. Percutaneous coronary intervention (PCI) is an
effective treatment for STEMI revascularization, but many
primary hospitals have no conditions for PCI (or patients
refuse PCI). Thrombolysis, especially the immediate effect

of early and timely thrombolysis, has a therapeutic effect that
is similar to that of direct PCI [2, 3]. However, complications
after thrombolysis, especially ischemia–reperfusion injury
(IRI), seriously affect the prognosis of STEMI. Circulating
microparticles (MPs) are nanoscale particles released by
endothelial cells, monocytes, and platelets in response to
various stimuli. Originally, MPs were considered useless
“cell garbage.” Both we and other researchers [4–8] found
that MPs have multiple molecular functions and participate
in a variety of biological processes of cardiovascular disease
related to endothelial function, coagulation, oxidative stress,
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and inflammation. The main mechanism of IRI is the mas-
sive production of reactive oxygen free radicals [9], which
is one of the functions of MPs. However, it has not been
reported whether the function and quantity of MPs are
affected by thrombolysis or whether MPs participate in IRI
after thrombolysis. In the present study, we examined the
function and quantity of MPs in STEMI patients before
and after thrombolysis and explored the mechanism by
which MPs participate in IRI after thrombolysis.

2. Materials and Methods

2.1. Study Population. STEMI patients (PCI was refused by
them or their families, n = 18) receiving thrombolytic ther-
apy and patients with chronic coronary syndrome (CCS, n
= 20) in the Department of Cardiology, Affiliated Hospital
of Shaanxi University of Traditional Chinese Medicine, from
2021/01 to 2021/12 were recruited. Patients with diseases
that may affect MPs were excluded, including diabetes,
severe trauma, infectious disease, hypertension, renal failure,
multiple sclerosis, lupus anticoagulant, or acute rheumatic
diseases. Twenty age- and sex-matched healthy subjects were
recruited as a control group. All subjects signed informed
consent forms, and our study was approved by the Ethics
Committee of the Affiliated Hospital of Shaanxi University
of Traditional Chinese Medicine.

2.2. MP Isolation. Venous blood samples (fasting venous
blood from patients in the CCS and control groups, venous
blood from STEMI patients before (pre-T) and 2 hours after
(post-T) thrombolysis) were collected, and MPs were
obtained by centrifugation (Beckman, CA, USA) as follows
[7]. After centrifugation (11 000 g, 4°C, 2min), the upper
plasma (platelet-poor plasma) was obtained. Then, MPs
(precipitate in the bottom of the centrifuge tube) were col-
lected from platelet-poor plasma by centrifugation (13 000
g, 4°C, 45min). Finally, the MPs were resuspended in RPMI
1640 (Gibco, Invitrogen, Carlsbad, CA, 100μl) and con-
sumed within 3 weeks (stored at -80°C). Because the MPs
were largely consumed in follow-up experiments and the
blood samples were limited, we pooled MPs from patients
within the same group.

2.3. Immunohistochemistry. Immunohistochemistry was
performed [10]. MPs (3mg) from each group or RPMI were
injected into male Sprague-Dawley (SD) rats through the
dorsal vein of the penis. Six hours later, the heart was fixed,
dehydrated, paraffin-embedded, and sectioned. The expres-
sion of endothelial nitric oxide synthase (eNOS, United
States, Abcam) and inducible nitric oxide synthase (iNOS,
United States, Abcam) was detected by immunohistochem-
istry (streptavidin peroxidase (SP) method) using a DBA
kit (China, Shanghai Yaji Biotechnology).

2.4. Superoxide (O2
•–) Detection. MPs (3mg) from each

group or RPMI were injected into male SD rats through
the dorsal vein of the penis. Six hours later, the thoracic
aorta was separated and washed with the Krebs buffer
(Sigma-Aldrich, 131mM NaCl, 5.6mM KCl, 25mM
NaHCO3, 1mM NaH2PO4H2O, 1mM HEPES, 5mM glu-
cose, 2.5mM CaCl2, 1mM MgCl2, 100μM L-arginine, and
pH7.4). Then, the Krebs buffer with lucigenin (5μM,
Sigma-Aldrich) was added and incubated in the dark for 5
minutes at room temperature. Finally, O2

•– was detected
with a SpectraMax M5/M5e multidetection reader (Molecu-
lar Devices, CA, USA). The dry weight of aortic samples was
obtained to determine O2

•– levels (μg/mg protein).

2.5. Nitric Oxide (NO) Detection. MPs (3mg) from each
group or RPMI were injected into male SD rats through

Table 1: Clinical characteristics of control (n = 20), CCS (n = 20),
and AMI (n = 18).

Control
(n = 20)

CCS
(n = 20)

AMI
(n = 18)

Age (yr) 48 66 ± 7 41 46 58 ± 9 39 46 58 ± 9 39
Sex (male/female) 10/10 11/9 10/8

TC (mmol/l) 3 32 ± 0 34 3 52 ± 0 63 3 86 ± 0 81∗

TG (mmol/l) 1 13 ± 0 37 1 24 ± 0 55 1 77 ± 0 83
HDL (mmol/l) 1 03 ± 0 26 1 11 ± 0 57 1 01 ± 0 66
LDL (mmol/l) 2 38 ± 0 42 2 24 ± 0 96 3 31 ± 0 97∗

BMI (kg/m2) 20 63 ± 1 25 21 31 ± 1 63 21 19 ± 1 34
Medication antiplatelet 5 20 14∗

Statin 8 18 10∗

Values are listed as the means ± SDs. TC: total cholesterol; TG: triglyceride;
HDL: high-density lipoprotein; LDL: low-density lipoprotein; BMI: body
mass index. ∗ vs. control and CCS, P < 0 05.
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Figure 1: Microparticles (MPs) are increased in STEMI patients
with or without thrombolysis. MPs were increased in both CCS
patients (3 49 ± 0 72mg/ml, n = 20) and STEMI patients before
thrombolysis (pre-T, 4 17 ± 0 58mg/ml, n = 18) compared with
those in the control group (2 60 ± 0 38mg/ml, n = 20).
Thrombolysis did not further increase MP levels (post-T, 4 23 ±
1 01mg/ml, n = 18). The data are means ± SDs; ∗ vs. control; # vs.
CCS, P < 0 05.
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Figure 2: Effects of MPs from STEMI patients with or without thrombolysis on eNOS and iNOS expressions, as determined by
immunohistochemistry. (a) Compared with those in the controls, MPs from CCS patients and STEMI patients before thrombolysis (pre-
T) decreased the expression of eNOS in rat hearts. MPs from STEMI patients 2 hours after thrombolysis (post-T) further decreased the
expression of eNOS in rat hearts. (b) Compared with those in the controls, MPs from both CCS patients and STEMI patients before
thrombolysis (pre-T) increased the expression of iNOS in rat hearts. MPs from STEMI patients 2 hours after thrombolysis (post-T)
further increased the expression of iNOS in rat hearts. The data are means ± SDs; ∗ vs. control; # vs. CCS; λ vs. pre-T, P < 0 05.

3Cardiovascular Therapeutics



the dorsal vein of the penis. Six hours later, the heart was
harvested. Then, NO levels were detected according to the
nitric oxide kit instructions (China, Nanjing Jiancheng Bio-
technology). The dry weight of aortic samples was obtained
to determine NO levels (μmol/g protein).

2.6. Western Blot Analysis. MPs (3mg) from each group or
RPMI were injected into male SD rats through the dorsal
vein of the penis. Six hours later, the heart proteins were har-
vested to detect the expression of iNOS and eNOS and their
phosphorylation by western blotting.

2.7. Vasodilatation Testing. MPs (3mg) from each group or
RPMI were injected into male SD rats through the dorsal
vein of the penis. Six hours later, the thoracic aorta was
isolated and placed in precooled Krebs buffer. After adipose
tissue was removed, the thoracic aorta was cut into 3-5mm
thick vascular rings. Then, the rings were connected to an
isometric force transducer (ADInstruments Co, Australia)
and placed in the Krebs solution containing 5% CO2 and
95% O2 at 37°C for 30min. Then, aortic ring stabilization
was tested with KCl (60mmol/l) at least three times. After
being incubated with MPs for 30min, the rings were precon-
stricted with phenylephrine (PE, Sigma-Aldrich, 10−6mol/l).
Immediately, acetylcholine (Ach: 10−8–10−4mol/l, Sigma-
Aldrich) was added to detect endothelium-dependent
relaxation.

2.8. Statistical Analysis. All data were analyzed by SPSS
22.0 software and graphed with GraphPad Prism 5.0 soft-
ware. All data are listed as the mean ± standard deviation.
Independent-sample t-tests were used for comparisons
between two groups, and one-way analysis of variance
was used for multigroup comparisons. Differences were
considered significant when P < 0 05.

3. Results

3.1. Clinical Data. All clinical characteristics of the controls
and patients with CCS or STEMI are listed in Table 1.

3.2. Plasma MP Concentrations. Compared with those in the
control group (2 60 ± 0 38mg/ml, n = 20), plasma MP
concentrations were slightly elevated in CCS patients
(3 49 ± 0 72mg/ml, n = 20). While plasma MP concentra-
tions were significantly increased in STEMI patients before
thrombolysis (pre-T, 4 17 ± 0 58mg/ml, n = 18), thromboly-
sis did not further increase MP levels (post-T, 4 23 ± 1 01
mg/ml, n = 18) (Figure 1).

3.3. Effect of the MPs on eNOS and iNOS, as Determined by
Immunohistochemistry. Compared with that in the control
group (Figure 2(a)), MPs from CCS patients slightly
decreased the expression of eNOS in the rat heart, as deter-
mined by immunohistochemistry (Figure 2(a)). MPs from
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Figure 3: Effects of MPs from STEMI patients with or without thrombolysis on NO and O2•− generation. (a) Compared with those in the
controls, MPs from CCS patients and STEMI patients before thrombolysis (pre-T) decreased the generation of NO in rat hearts. MPs from
STEMI patients 2 hours after thrombolysis (post-T) further decreased the generation of NO in rat hearts. (b) Compared with those in
controls, MPs from CCS patients and STEMI patients before thrombolysis (pre-T) increased the production of O2•− in rat hearts. MPs
from STEMI patients 2 hours after thrombolysis (post-T) further increase the production of O2•− in rat hearts. The data are means ±
SDs; ∗ vs. control; # vs. CCS; λ vs. pre-T, P < 0 05.
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Figure 4: Continued.
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STEMI patients before thrombolysis (pre-T, Figure 2(a))
decreased the expression of eNOS in the rat heart, as deter-
mined by immunohistochemistry, and the expression of
eNOS in the rat heart was further decreased by MPs from
STEMI patients 2 hours after thrombolysis (post-T,
Figure 2(a)). The change in the expression of iNOS
(Figure 2(b)) was the opposite to that of eNOS.

3.4. Effects of MPs on NO and O2
•− Generation. The effects of

MPs on NO and O2
•− generation were detected to investi-

gate whether oxidative stress was activated. Compared with
MPs from the control group, MPs from CCS and STEMI
patients before thrombolysis slightly decreased NO
(Figure 3(a)) production but increased O2

•− generation
(Figure 3(b)). Moreover, the effect on NO and O2

•− genera-
tion was enhanced by MPs from STEMI patients 2 hours
after thrombolysis (Figure 3).

3.5. Effects of MPs on eNOS and iNOS Expressions. The
expression of eNOS and iNOS and their phosphorylation
were detected by western blotting to investigate the mecha-
nism by which MPs affect vascular function. Compared with
MPs from the control group, MPs from CCS and STEMI
patients before thrombolysis slightly decreased the level of
eNOS phosphorylation at Ser1177 (Figure 4(a)) but
increased eNOS phosphorylation at Thr495 (Figure 4(b))

and iNOS expression (Figure 4(c)). Furthermore, the effects
on iNOS, eNOS, and its phosphorylation were enhanced by
MPs from STEMI patients 2 hours after thrombolysis
(Figure 4).

3.6. Effects of MPs on Endothelium-Dependent Vasodilatation.
Compared with those in the control group, MPs from
CCS and STEMI patients before thrombolysis slightly
inhibited endothelium-dependent vasodilatation in isolated
aortae (Figure 5). Moreover, the inhibition of endothelium-
dependent vasodilatation was enhanced by MPs from STEMI
patients 2 hours after thrombolysis (Figure 5). Ach-induced
vasodilatation induced by MPs was completely blocked by
NG-nitro-L-arginine methyl ester, hydrochloride (L-NAME,
a specific inhibitor of eNOS, Sigma-Aldrich) in all groups
(data not shown).

4. Discussion

This study demonstrated that compared with that in the
control group, the concentration of MPs was increased in
patients with CCS and STEMI patients with or without
thrombolysis (thrombolysis did not further increase MP
levels compared with those in STEMI patients before throm-
bolysis). MPs from patients with CCS and STEMI patients
before thrombolysis, especially those from STEMI patients
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Figure 4: Effects of MPs from STEMI patients with or without thrombolysis on eNOS and iNOS expressions. (a) Compared with those in
the controls, MPs from CCS patients and STEMI patients before thrombolysis (pre-T) decreased eNOS phosphorylation at Ser1177. MPs
from STEMI patients 2 hours after thrombolysis (post-T) further decreased eNOS phosphorylation at Ser1177. (b) Compared with those
in the controls, MPs from CCS patients and STEMI patients before thrombolysis (pre-T) increased eNOS phosphorylation at Thr495.
MPs from STEMI patients 2 hours after thrombolysis (post-T) further increased eNOS phosphorylation at Thr495. (c) Compared with
those in the controls, MPs from CCS patients and STEMI patients before thrombolysis (pre-T) increased the expression of iNOS. MPs
from STEMI patients 2 hours after thrombolysis (post-T) further increased the expression of iNOS. The data are means ± SDs; ∗ vs.
control; # vs. CCS; λ vs. pre-T, P < 0 05.
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2 hours after thrombolysis, inhibited the expression of eNOS
(immunohistochemistry and western blot analysis of phos-
phorylation at Ser1177) and the production of NO in the
isolated myocardium and vasodilation in vitro and stimu-
lated the expression of iNOS (immunohistochemistry and
western blot analysis of phosphorylation at Thr495) and
the generation of O2

•− in the isolated myocardium.
STEMI is feared and valued by medical staff and the gen-

eral public due to its high mortality rate. Currently, the most
effective revascularization method for STEMI patients is
PCI. Thrombolysis remains an indispensable measure for
effectively improving prognosis and reducing mortality for
in STEMI patients who cannot undergo or reject PCI
[1–3]. However, ischemia–reperfusion injury after thrombo-
lysis remains a major problem that troubles medical workers
[11–13]. The number and function of MPs may be affected
by various free radicals (such as alkyl radicals and alkoxy
radicals), vasoactive substances (such as leukotrienes and
platelet-activating factors), endothelin, and angiotensin pro-
duced in response to ischemia–reperfusion [14–16]. MPs
can lead to endothelial dysfunction and free radical imbal-
ance, which in turn can stimulate the production of MPs
[6–8, 17, 18]. This study showed that compared with those
in healthy volunteers (control), the levels of MPs in CCS
and STEMI were significantly increased. The increase in

MPs may be involved in the occurrence and development
of ischemia–reperfusion injury after thrombolysis.

iNOS, which is not expressed in normal tissues, can be
stimulated in various pathological states. Overexpression of
iNOS results in the production of a large amount of nitric
oxide (NO), and excessive NO can combine with free radi-
cals to produce hydroxyl ions and nitrite ions, which can
damage endothelial cells and endothelial function [19–21].
Phosphorylation of eNOS at Ser1177, not Thr495, indicates
that eNOS is more active, and the activation of eNOS pro-
moted NO generation [22]. Our previous study [23] showed
that endothelium-derived microparticles (EMPs) could
impair endothelial-dependent relaxation by inhibiting the
expression of eNOS and the production of NO. Endothelial
cell damage and dysfunction are related to a decrease in
NO levels or inactivity, as well as an increase in O2

•−

[24–26], which is also one of the main mechanisms of ische-
mia–reperfusion injury [14–16]. Our present study showed
that MPs from both CCS and STEMI patients decreased
NO production and inhibited eNOS phosphorylation at
Ser1177 and endothelial-dependent vasodilation. However,
the increase in eNOS phosphorylation at Thr495 and O2

•−

generation stimulated iNOS expression in rat myocardial tis-
sue. Moreover, MPs from STEMI patients 2 hours after
thrombolysis further enhance these effects compared to
those before thrombolysis. The effects of MPs after throm-
bolysis may lead to the generation of a large number of
hydroxyl ions and nitrite ion ions and further damage endo-
thelial function, which may be one of the mechanisms of
ischemia–reperfusion injury after thrombolysis.

4.1. Limitations of Study. It will be better to collect samples
from the distal coronary bed, but the STEMI patients we
recruited refused PCI (themselves or by their families); this
is one of our limitations. Whether these MPs affect no reflow
or increase major adverse cardiovascular events (MACE)
was not investigated, and we will continue this research to
investigate these indicators.

In summary, changes in the function but not the levels of
MPs after thrombolysis may be one of the mechanisms of
ischemia–reperfusion injury after thrombolysis. However,
since we injected human MPs into rats, there are still immune
factors caused by species differences that may affect the reli-
ability of our research results. Therefore, more basic and clin-
ical studies are needed to further validate our research results.

Data Availability

All data were listed in the manuscript.
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