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Identifying peripheral biomarkers is an important noninvasive diagnosis method for coronary artery disease (CAD) which has
aroused the strong interest of researchers. Cuproptosis, a newly reported kind of programmed cell death, is closely related to
mitochondrial respiration, adenosine triphosphate (ATP) production, and the TCA cycle. Currently, no studies have been
published about the effects of cuproptosis-related genes (CRGs) on diagnosing CAD. To screen marker genes for CAD from
CRGs, we downloaded the whole blood cell gene expression profile of CAD patients and normal samples, i.e., the GSE20680
dataset, from the GEO database. By differential expression analysis, we obtained 10 differentially expressed CRGs (DE-CRGs),
which were associated with copper ion response, immune response, and material metabolism. Based on the 10 DE-CRGs, we
furtherly performed LASSO analysis and SVM-RFE analysis and identified 5 DE-CRGs as marker genes, including F5, MT4,
RNF7, S100A12, and SORD, which had an excellent diagnostic performance. Moreover, the expression of the marker genes
was validated in the GSE20681 and GSE42148 datasets, and consistent results were obtained. In mechanism, we conducted
gene set enrichment analyses (GSEA) based on the marker genes, and the results implied that they might participate in the
regulation of immune response. Therefore, we calculated the relative contents of 22 kinds of immune cells in CAD and normal
samples using the CIBERSORT algorithm, followed by differential analysis and correlation analysis of the immune
microenvironment, and found that regulatory T cell (Treg) significantly decreased and was negatively correlated with marker
gene S100A12. To further reveal the regulation mechanisms, a lncRNA-miRNA-mRNA ceRNA network based on the marker
genes was established. Finally, 13 potential therapeutic drugs targeting 2 marker genes (S100A12 and F5) were identified using
the Drug Gene Interaction Database (DGIdb). In summary, our findings indicated that some CRGs may be diagnostic
biomarkers and treatment targets for CAD and provided new ideas for further scientific research.

1. Introduction

Currently, coronary artery disease (CAD) is still the leading
cause of death, resulting in nearly 20 million deaths globally
every year, causing great harm to people’s life and health and
bringing a heavy burden to society [1, 2]. Unfortunately,
COVID-19 is making the situation even worse. CAD is an
inflammatory disease caused by atherosclerosis. Its patho-
genesis involves vascular endothelial cell dysfunction, lipid
deposition, macrophage activation, vascular smooth muscle
cell proliferation, and migration [3]. Although considerable
advance has been made in diagnosing CAD in the past 20

years, it is still urgent to explore better diagnostic markers
to guide clinical treatment better and improve clinical
prognosis.

Cuproptosis, a novel kind of programmed cell death, was
reported by Tsvetkov et al. in the Journal of Science in
March 2022. Different from the known apoptosis, pyropto-
sis, and ferroptosis, studies have indicated that, in the pro-
cess of cuproptosis, Cu2+ combines with the lipoylated
components of the tricarboxylic acid cycle in the mitochon-
drial respiratory chain, resulting in the aggregation of lipoy-
lated protein and downregulation of iron-sulfur cluster
protein, followed by proteotoxic stress as well as cell death
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[4]. In addition, the researchers preliminarily identified
some cuproptosis-related genes (CRGs) [4]. In the past six
months, diagnostic and prognostic biomarkers based on
CRGs have been published in some tumors [5–7]. Previous
studies have pointed out that abnormal copper levels in the
body may induce a series of heart diseases, such as ischemic
heart disease, arrhythmia, and heart hypertrophy. The
mechanisms may be related to abnormal serum lipid metab-
olism caused by abnormal serum copper levels [8]. A recent
study reported that a higher level of serum copper promotes
the formation of atherosclerotic plaque by regulating lipid
metabolism, low-density lipoprotein oxidation, and inflam-
matory response, thus increasing the risk of atherosclerotic
heart disease [9]. Therefore, cuproptosis, copper ion-
dependent programmed cell death, may be involved in the
pathogenesis of CAD, and the CRGs could serve as marker
genes for CAD.

In the present study, we obtained 10 differentially
expressed CRGs (DE-CRGs) between CAD patients and
normal samples by analyzing the GSE20680 dataset and
further screened out 5 disease-signature genes, including
F5, MT4, RNF7, S100A12, and SORD, by combining
LASSO analysis with SVM-RFE analysis, and validated in
the GSE20681 and GSE42148 datasets. According to the
results of functional enrichment analyses, we preliminarily
explored the relationship between marker genes and the
immune microenvironment. Moreover, a ceRNA network
was constructed according to the marker genes to reveal
the complicated regulation mechanism. Finally, the predic-
tion of some gene-targeted drugs was performed using
DGIdb. This research may provide a novel insight into
the diagnosis of CAD.

2. Materials and Methods

2.1. Data Collection. Gene expression profiles of CAD and
normal samples were downloaded from the GEO database.
The GSE20680 dataset (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE20680), as a training set, has 139
samples, including 87 CAD patients and 52 normal samples.
All patients in the cohort had signed informed consent, and
the study had obtained approval from the ethics committee
of Duke University. This cohort was derived from a single-
center retrospective research. Inclusion criteria for the
CAD patients are as follows: (1) patients with ≥70% stenosis
in >1 major vessel and (2) patients with ≥50% stenosis in >2
arteries. Exclusion criterion are as follows: patients with
luminal stenosis > 25% but less than 50%. The attrition
number of samples is 56. Demographics of age, sex, and
weight of the 139 subjects are not available. Information
about randomization of subjects, blinding of investigators,
power analysis for group size, and replication is not pro-
vided. The GSE20681 dataset (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE20681), as a testing set, has
a total of 198 samples, including 99 CAD patients and 99
normal samples. The GSE42148 dataset (https://www.ncbi
.nlm.nih.go-v/geo/query/acc.cgi?acc=GSE42148), as another
testing set, has a total of 24 samples, including 13 CAD
patients and 11 normal samples. The original files were

background adjusted and quantile normalized by the R
package “limma.” There are 215 CRGs, mainly collected
from literature reports and version 7.0 of the Molecular Sig-
nature Database (MsigDB) (http://www.gseamsigdb.org/
gsea/msigdb/in-dex.jsp).

2.2. Differential Expression Analysis. From the GSE20680
dataset, we extracted the CRG expression profiles of CAD
and normal samples. Using the R package “limma,” we con-
ducted differential analyses between CAD samples and nor-
mal samples and obtained the differentially expressed genes
(DEGs) with screening conditions of ∣log 2ðFCÞ ∣ >1:0 and
p < 0:05. The differential analyses were conducted using the
Wilcoxon nonparametric test. Moreover, the results of the
differential analyses were visualized using the R package
“pheatmap.”

2.3. GO and KEGG Enrichment Analyses. Gene Ontology
(GO) analysis, including biological processes, molecular
function, and cellular components, is a common method to
annotate genes. Kyoto Encyclopedia of Gene and Genomes
(KEGG) enrichment analysis is a common method to reveal
the functional information of target genes. Taking advantage
of R packages “enrichplot,” “org.Hs.eg.db,” “ggplot2,” and
“clusterProfiler,” we performed GO and KEGG enrichment
analyses of the DE-CRGs, respectively. p < 0:05 and q <
0:05 were regarded as significantly enriched. Bar plots and
bubble plots were used to visualize the results.

2.4. Identification and Validation of Diagnostic Genes for
CAD. A candidate diagnostic gene set was screened from
the DE-CRGs by the least absolute shrinkage and selection
operation (LASSO) analysis using the R package “glmnet.”
LASSO is a regression analysis algorithm that uses regulari-
zation to improve prediction accuracy. The penalty parame-
ter (λ) of the LASSO regression model was determined by
following a 10-fold cross-validation of the minimum crite-
rion (i.e., the value of λ corresponding to the lowest partial
likelihood deviation) [10]. Furthermore, another candidate
diagnostic gene set was screened from the DE-CRGs by the
support vector machine-recursive feature elimination
(SVM-RFE) analysis using the R package “e1071.” SVM-
RFE is an effective feature selection technique that finds
the best variables by deleting the feature vector generated
by SVM [11]. In this study, the SVM-RFE algorithm
screened the best variables based on a minimum 10x CV
error value. Using the R package “VennDiagram,” an inter-
section of the two gene sets was made, and the diagnostic
gene set was obtained. According to the expression profile
of the diagnostic gene set, the receiver operating characteris-
tic (ROC) curves of the diagnostic genes were generated
using the R package “pROC.” Furtherly, based on the diag-
nostic gene set, a logistic regression model was established,
and the ROC curve of this model was generated. The area
under the ROC curve (AUC) was obtained to judge the
diagnostic efficiency. In addition, the expression levels of
diagnostic genes were verified in the GSE20681 and
GSE42148 datasets.
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2.5. Gene Set Enrichment Analysis (GSEA).
“c2.cp.kegg.v2022.1.Hs.symbols.gmt” dataset as the annota-
tion gene set was downloaded from MsigDB, and GSEA soft-
ware of version 4.3.2 (https://www.gsea-msigdb.org/gsea/
index.jsp) was used for analysis. Based on the cutoff value of
the expression levels of marker genes, CAD samples were clas-
sified into high- and low-expression groups. The enriched
pathways were sequenced using a false discovery rate (FDR)
and normalized enrichment scores (NES). Moreover, p <
0:05 and FDR < 0:05 were considered significantly enriched.

2.6. Immune Infiltration Analysis. Taking advantage of the
CIBERSORT algorithm, the relative contents of 22 types of
infiltrating immune cells were calculated. Using the Wil-
coxon rank sum test, the contents of 22 immune cells were
compared between the CAD and normal samples. In addi-
tion, Spearman’s correlation analyses between the expres-
sion levels of marker genes, and the contents of 22
immune cells were conducted. Using “vioplot” and “ggplot2”
R packages, the results were visualized in a violin diagram
and correlation heat map, respectively.

2.7. Construction of the ceRNA Network. lncRNA could reg-
ulate the expression of mRNA through competitively bind-
ing with miRNA. The miRNAs that targeted mRNAs of
marker genes were predicted by miRanda, TargetScan, and
miRDB, respectively, and only the miRNAs predicted by
all three software were collected. According to the spongeS-
can database (https://spongescan.rc.ufl.edu), lncRNAs that
interact with the above-collected miRNAs are obtained.
Combining the miRNA-mRNA interactions with lncRNA-
miRNA interactions, the lncRNA-miRNA-mRNA ceRNA
regulatory network was obtained, and Cytoscape 3.9.1 soft-
ware (https://cytoscape.org/, RRID: SCR_003032) was used
to visualize the result.

2.8. Drug Gene Interaction Analysis of Hub Genes. The
potential predictive genes were supposed as the promising
drug targets for searching drugs through the Drug Gene
Interaction Database (DGIdb, version 4.2.0-sha1 afd9f30b,
https://dgidb.genome.wust-l.edu). The DGIdb consists of
the drug gene interaction data from the DrugBank,
ChEMBL, NCBI Entrez, Ensembl, PharmGKB, PubChem,
clinical trials, and literature in PubMed, which can help
researchers mine existing data and generate assumptions
about how genes may be targeted therapeutically or priori-
tized for drug development. The Cytoscape (version 3.9.1)
was applied to perform the drug gene interaction network.

2.9. Statistical Analysis. R of version 4.2.2 was used to con-
duct most statistical analyses in this study. In this study, var-
iables are mainly continuous variables with nonnormal
distribution, differential analysis was performed by the Wil-
coxon rank sum test, and correlation analysis was performed
by the Spearman correlation coefficient. For continuous var-
iables with normal distribution, differential analysis was per-
formed by Student’s T test, and correlation analysis was
performed by the Pearson correlation coefficient. In this
study, all p values were bilateral, and p < 0:05 was considered
statistical significance.

3. Results

3.1. Identification of 10 DE-CRGs in the GSE20680 Cohort.
Using the R package “limma,” we obtained the expression
profile of 199 CRGs in the GSE20680 dataset. By differential
expression analysis, 10 DE-CRGs between CAD patients and
normal samples were identified. Among the 10 DE-CRGs, 7
genes were upregulated, including F5, MTHFD2, NLRP3,
PGD, RNF7, S100A12, and SORD, and 3 genes were down-
regulated, including ACO2, MT4, and WWOX (Table 1).
The heat map illustrated the expression distribution of the
10 DE-CRGs in CAD patients and normal samples
(Figure 1(a)). In Figure 1(b), correlation analyses between
every two DE-CRGs showed significant correlations among
some DE-CRGs, F5 was positively correlated with PGD
and S100A12, RNF7 was positively correlated with
MTHFD2, and NLRP3 was positively correlated with PGD.

3.2. Functional Enrichment Analyses of the 10 DE-CRGs. To
detect the molecular biological functions of the DE-CRGs,
GO analysis and KEGG analysis were conducted. As shown
in the bar plot of GO analysis (Figure 2(a)), DE-CRGs were
mainly enriched in GO items related to copper ion response,
copper ion binding, cellular carbohydrate catabolic pro-
cess, and positive regulation of inflammatory response. In
addition, as shown in the bar plot of KEGG analysis
(Figure 2(b)), DE-CRGs were significantly enriched in sig-
naling pathways related to the citrate cycle (tricarboxylic
acid (TCA) cycle), 2-oxocarboxylic acid metabolism, and
carbon metabolism.

3.3. Five DE-CRGs Were Identified as Marker Genes for
CAD. To identify the marker genes for CAD from the 10
DE-CRGs, we combined LASSO analysis with SVM-RFE
analysis. Results of the LASSO analysis suggested that eight
DE-CRGs could be served as candidate marker genes,
including ACO2, F5, MT4, NLRP3, RNF7, S100A12, SORD,
and WWOX (Figures 3(a) and 3(b)). In Figures 3(c) and
3(d), the results of the SVM-RFE analysis suggested that
six DE-CRGs could be served as candidate marker genes,

Table 1: Ten of 199 CRGs were differentially expressed between
CAD and normal samples, including 7 upregulated and 3
downregulated genes.

Gene p value Expressing trend

ACO2 0.009907 DN

F5 0.000575 Up

MT4 0.017889 DN

MTHFD2 0.029526 Up

NLRP3 0.039715 Up

PGD 0.02555 Up

RNF7 0.021669 Up

S100A12 7.33E-05 Up

SORD 0.006961 Up

WWOX 0.045487 DN

DN: downregulated; Up: upregulated.

3Cardiovascular Therapeutics

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://spongescan.rc.ufl.edu
https://cytoscape.org/
https://dgidb.genome.wust-l.edu


including S100A12, SORD, F5, RNF7, PGD, and MT4. In
the Venn diagram, there were 5 overlapping DE-CRGs,
including F5, MT4, RNF7, S100A12, and SORD; thus, they
are potential marker genes for CAD patients (Figure 3(e)).
Moreover, a logistic regression model was established
according to the 5 marker genes. To determine the diagnos-
tic performance, ROC curves of each gene and the model
were generated, respectively. Results indicated that the
AUC value of the model was 0.760 (Figure 3(f)), and the
AUC values of F5, MT4, RNF7, S100A12, and SORD were
0.675, 0.620, 0.617, 0.701, and 0.637, respectively
(Figure 3(g)).

3.4. Marker Genes of CAD Were Correlated with Immune
Regulation. To further study the molecular biological func-
tions of the marker genes, GSEA was conducted. As shown
in Figures 4(a)–4(e), results of GSEA of each marker gene
showed that marker genes were mainly enriched in the
metabolism (retinol metabolism, drug metabolism cyto-
chrome p450, and glycerophospholipid metabolism),
immune response (T cell receptor signaling pathway and
chemokine signaling pathway), JAK-STAT signaling path-
way, Toll-like receptor signaling pathway, insulin signaling
pathway, ribosome, and lysosome.

3.5. Immune Microenvironment Analysis. To evaluate the
composition of immune cells in the microenvironment, the
relative contents of 22 immune cells in every CAD and nor-
mal sample were calculated using the CIBERSORT algo-
rithm. To verify immune microenvironment participates in
the pathogenesis of CAD, we conducted differential analyses
of immune cell contents between CAD samples and normal
samples, followed by correlation analyses between marker
genes and 22 immune cells. Results of differential analyses

showed that the relative content of Tregs in CAD samples
was lower than that in the normal samples (Figure 5(a)).
Moreover, the results of correlation analyses showed that
the relative content of Tregs was negatively correlated with
the expression level of S100A12 (p < 0:05) (Figure 5(b)).
Thus, S100A12 might participate in the pathogenesis of
CAD by regulating Tregs.

3.6. Established a lncRNA-miRNA-mRNA ceRNA Network
according to the Marker Genes. To further reveal the regula-
tion mechanisms, a lncRNA-miRNA-mRNA regulatory net-
work was established. The complex network included 139
nodes (64 lncRNAs, 71 miRNAs, and 4 marker genes) and
143 edges. As shown in Figure 6, the ceRNA network was
roughly divided into four clusters connected by several miR-
NAs. F5 was located in the center of a cluster and was
directly connected by 46 miRNAs, in which hsa-miR-185-
3p, hsa-miR-539-5p, and hsa-miR-1236-3p were competi-
tively bound by multiple lncRNAs, respectively. SORD was
located in the center of another cluster and was directly con-
nected by 17 miRNAs, in which hsa-miR-335-3p, hsa-miR-
326, and hsa-miR-491-5p were competitively bound by mul-
tiple lncRNAs, respectively. For S100A12, S100A12 was reg-
ulated by 2 miRNAs, including hsa-miR-1224-5p and hsa-
miR-574-5p, and the 2 miRNAs were competitively bound
with a total of 9 lncRNAs. These results revealed that these
marker genes might play core roles in CAD.

3.7. Prediction of Targeted Drugs or Compounds. To prelim-
inarily explore the treatment for CAD, potential gene-
targeted drugs were predicted using the DGIdb database.
As shown in Figure 7, 13 drugs or compounds targeting 2
marker genes were identified. Among the 13 drugs or com-
pounds mentioned above, thrombin is an activator for F5,
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Figure 1: Identified 10 DE-CRGs in the GSE20680 cohort by differential expression analysis. (a) Heat map of 10 DE-CRGs in CAD patients
and normal samples. Red represents high expression while blue represents low expression. (b) Spearman’s correlation analyses between
every two DE-CRGs. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the normal group.
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and drotrecogin alfa (activated) is an inhibitor for F5. As for
marker gene S100A12, there are 5 candidate gene-targeted
drugs or compounds, including atogepant, rimegepant,
methotrexate, eptinezumab, and ubrogepant (Figure 7).
However, we did not identify gene-targeted drugs or com-
pounds for SORD, RNF7, and MT4.

3.8. Validation of the Expression Levels of the Marker Genes.
To validate the expression levels of marker genes, differential
expression analyses of the 5 marker genes between CAD
patients and normal samples were performed in the

GSE20681 dataset and GSE42148 dataset, respectively. Con-
sistently, in the GSE20681 dataset, the expression level of F5
in CAD patients was higher than that in normal samples
(p = 0:034), while the expression level of MT4 in CAD
patients was lower than that in normal samples (p = 0:021).
Moreover, although it did not reach statistical significance,
the expression levels of RNF7, S100A12, and SORD in
CAD samples tended upregulation (Figures 8(a)–8(e)). Sim-
ilarly, in the GSE42148 dataset, the expression levels of F5,
SORD, and S100A12 in CAD patients were significantly
higher than in normal samples. The expression level of
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Figure 2: Functional enrichment analyses of the 10 DE-CRGs. (a, b) Bar plot and bubble plot of GO enrichment analysis of DE-CRGs. Top
10 GO terms enrichment in biological process (BP), cell composition (CC), and molecular function (MF). (c, d) Bar plot and bubble plot of
KEGG enrichment analysis of DE-CRGs. The bar color indicates the enrichment level of DE-CRGs. Bubble size represents the number of
enriched DE-CRGs, and bubble color represents the enrichment significance of DE-CRGs. p < 0:05 and q < 0:05 were considered
significantly enriched.
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Figure 3: Identified 5 DE-CRGs as marker genes for CAD. (a, b) Eight DE-CRGs were identified as candidate marker genes by LASSO analysis.
(c, d) Six DE-CRGs were identified as candidate marker genes by SVM-RFE analysis. (e) Venn diagram of intersection analysis. (f) ROC curve
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RNF7 in CAD patients tended to upregulation, while the
expression level of MT4 in CAD patients was significantly
lower than that in normal samples (Figures 8(f)–8(j)).

4. Discussion

CAD is a heart disease caused by atherosclerosis, and athero-
sclerosis is a progressive inflammatory disease [12]. The

endothelial cell dysfunction initiates atherosclerosis’ patho-
logical process [13]. Then, the macrophages abnormally
aggregate and release a lot of cytokines [14]. CAD is a
chronic disease and may last for decades. Currently, radio-
angiography is the gold standard for the diagnosis of CAD
[15]. However, this technique is not suitable for routine
use. Therefore, the identification of novel markers for early
diagnosis is urgently needed. In recent years, according to
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the gene expression profiles obtained from public databases,
researchers have identified various diagnostic biomarkers in
CAD through different bioinformatic analysis methods.

Among these biomarkers, the genes associated with cell
death are important. Research indicated that apoptosis,
pyroptosis, parthanatos, and autophagy could regulate the
risk of CAD [16]. Additionally, necroptosis and ferroptosis
are related to the pathogenesis of CAD [16]. Ferroptosis,
iron-dependent programmed cell death, is featured lipid
peroxidation of unsaturated fatty acids via Fe2+, ultimately

leads to cell death [17]. Ding et al. constructed and validated
a reliable diagnostic model for CAD based on the expression
profiles of 16 ferroptosis-related genes, including ZFP36,
VDAC2, TNFAIP3, SCP2, RPL8, PIK3CA, PCBP1, MTDH,
MIF, MAP1LC3B, HIF1A, FTH1, CASP8, BACH1,
ATP5MC3, and ACSL1, and its AUC value was 0.971 [18].
Similarly, Wu et al. identified 7 ferroptosis-related genes as
biomarkers for CAD via bioinformatics analysis, including
TRIB3, STMN1, SLC1A4, HSPB1, CEBPG, CBS, and CA9,
and its AUC value in the training set was 0.748 [19]. By
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combining ferroptosis with necroptosis, Liu et al. identified 4
ferroptosis- and necroptosis-related genes as marker genes
for the diagnosis of CAD, including TLR4, CBS, LONP1,
and HSPB1 [20]. However, there is no study on cuproptosis-
related biomarkers in CAD.

InMarch 2022, Tsvetkov et al. proposed for the first time a
copper ion-dependent and novel programmed cell death type,
namely, cuproptosis. Research indicated that Cu2+ combines
with the lipoylated components of the tricarboxylic acid cycle
in the mitochondrial respiratory chain, resulting in the aggre-
gation of lipoylated protein and downregulation of iron-sulfur
cluster protein, followed by proteotoxic stress as well as cell
death [4]. Here, we performed a differentially expressed anal-
ysis of 199 CRGs between the CAD and normal samples and
obtained 10 DE-CRGs. By combining LASSO analysis with

SVM-RFE analysis, we established a diagnostic signature con-
taining 5 DE-CRGs, and its AUC value was 0.760. Though this
AUC value is not the highest, it is still higher than most
reported studies [19, 21, 22]. The diagnostic performance of
these marker genes is superior to that of most reported bio-
markers. In addition, the expression levels of marker genes
were verified in the GSE20681 dataset and GSE42148 dataset,
respectively, and relatively consistent results were obtained.

The diagnostic signature established in this study
included the following 5 DE-CRGs: F5, MT4, RNF7,
S100A12, and SORD. F5 (coagulation factor V), a circulating
procofactor, participates in the process of blood coagulation
[23]. A study has reported that 1628 G → A polymorphism
of F5 is associated with CAD and may be a risk factor for
CAD in the Chinese population [24]. Similarly, in our study,
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F5 is upregulated in CAD patients and serves as a marker
gene for CAD. MT4 (also named MMP17), a new member
of the matrix metalloproteinase family, locates at the plasma
membrane [25]. A study has reported that MT4 deficiency
promotes the recruitment of monocytes and thus promotes
atherosclerosis [26]. Consistently, in this diagnostic signa-
ture established, MT4 serves as a protective factor and is
downregulated in CAD patients. S100A12/calgranulin C, a
member of the S100 calcium-binding proteins family, is
mainly expressed and secreted by granulocytes [27]. Studies
suggested that S100A12 could promote the occurrence and
development of atherosclerosis by inducing the production
of inflammatory factors [28–31]. Zhao et al. reported that
the serum level of S100A12 is independently related to the
risk of CAD [30]. Consistently, our results showed that
S100A12 is significantly upregulated in CAD patients and
may serve as a marker gene for CAD. RNF7, also known
as SAG, was initially identified as an antioxidant protein.
RNF7 is also a component of E3 ubiquitin ligases [32].
SORD, a member of the dehydrogenase/reductase protein
family, could participate in glucose metabolism [33]. How-
ever, relatively few studies have been conducted on RNF7
and SORD, and their relationship with CAD is poorly
understood. The biological functions of most marker genes
are consistent with that reported previously, which also
reflects the reliability of our results.

CAD is caused by coronary atherosclerosis, a progressive
inflammatory disease [34]. Researchers pointed out that the
immune microenvironment plays an important role in the
initiation and progression of CAD [35]. Regulatory T cells
are a unique T cell subset known as Foxp3+CD25highCD4+-

CD127low Treg cells. Tregs weaken immune responses by
inhibiting the proliferation of other T cells. Many studies
have indicated that Tregs could inhibit the occurrence of
atherogenesis [36–40]. Emoto et al. reported that the relative
content of Tregs was lower in CAD samples than that in
healthy people [41]. Wang et al. also reported a significant
decrease in the absolute number of Tregs in rheumatoid
arthritis patients with CAD (RA-CAD group) compared to
the pure RA group [42]. Consistently, our research indicated
that the relative content of Tregs was lower in CAD patients
compared with that in normal samples. Therefore, it might
be a promising therapeutic approach for CAD to promote
Treg response. Moreover, results of GSEA indicated that
marker genes were also enriched in metabolism, such as
glycerophospholipid metabolism. Consistently, Chen et al.
reported that glycerophospholipid metabolism appeared to
be a predominant alteration in CAD progression by metabo-
lomics analysis [43]. Abnormal lipid metabolism and
immune inflammation have been proven to participate in
the development and progression of CAD. Abnormal blood
lipid metabolism, especially low-density lipoprotein (LDL),
is an important risk factor for CAD [12]. In addition, Kunut-
sor et al. reported that a higher level of serum copper pro-
motes the formation of atherosclerotic plaque by regulating
lipid metabolism and LDL oxidation, thus increasing the risk
of atherosclerotic heart disease [9]. Therefore, cuproptosis-
related genes might participate in the pathogenesis of CAD
by regulating lipid metabolism.

Finally, we preliminarily explored the potential regula-
tory mechanisms and predicted some therapeutic targets
and drugs. However, these are still in the prediction stage
and need further verification by experiments.

5. Conclusions

In this research, we obtained 10 DE-CRGs between CAD
patients and normal samples by analyzing the gene expres-
sion profiles of the GSE20680 dataset, followed by combin-
ing LASSO analysis with SVM-RFE analysis, and identified
5 DE-CRGs as marker genes, including F5, MT4, RNF7,
S100A12, and SORD. Then, we validated their expression
levels in the GSE20681 and GSE42148 datasets. After GO,
KEGG, and GSEA analyses, we conducted a differential anal-
ysis of the immune microenvironment between CAD
patients and healthy people, followed by correlation analysis
between marker genes and 22 immune cells, and results
indicated that Treg is the main alteration in the immune
microenvironment which may be related to marker gene
S100A12. Moreover, we constructed a ceRNA network and
predicted the gene-targeted drugs. This study may provide
a novel insight into the early diagnosis of CAD.
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