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Characterizing brain connectivity between neural signals is key to understanding brain function. Current measures such as
coherence heavily rely on Fourier or wavelet transform, which inevitably assume the signal stationarity and place severe limits
on its time-frequency resolution. Here we addressed these issues by introducing a noise-assisted instantaneous coherence (NAIC)
measure based on multivariate mode empirical decomposition (MEMD) coupled with Hilbert transform to achieve high-
resolution time frequency representation of neural coherence. In our method, fully data-driven MEMD, together with Hilbert
transform, is first employed to provide time-frequency power spectra for neural data. Such power spectra are typically sparse and of
high resolution, that is, there usually exist many zero values, which result in numerical problems for directly computing coherence.
Hence, we propose to add random noise onto the spectra, making coherence calculation feasible. Furthermore, a statistical
randomization procedure is designed to cancel out the effect of the added noise. Computer simulations are first performed to verify
the effectiveness of NAIC. Local field potentials collected from visual cortex of macaque monkey while performing a generalized
flash suppression task are then used to demonstrate the usefulness of our NAIC method to provide highresolution time-frequency
coherence measure for connectivity analysis of neural data.

1. Introduction

To understand how brain networks process information, it is
crucial to accurately quantify their connectivity patterns. For
analysis of brain connectivity between two signals, current
measures such as coherence [1–3] rely upon spectral estimate
of each signal, which is routinely computed based on Fourier
or wavelet transform. Thus, the underlying nonstationary
nature of neural data presents a significant challenge for
the applications of current measures. Though short-time
sliding window approaches, for example, short-time Fourier
transform, have been used to alleviate this problem, this issue
is not completely resolved for a number of reasons. First, the
stationarity of neural data within each short-time window
cannot be guaranteed. Second, even though the data are
stationary within each time window, the resolution of time-
frequency representation is limited by Heisenberg uncer-
tainty principle [4]. Wavelet transform [4], albeit improved,
is still subject to time-frequency resolution tradeoff, that is,

frequency resolution is low at high frequencies and high at
low frequencies. Moreover, wavelet analysis depends on the
choice of mother wavelet, which is arbitrary and may not be
optimal for time series under scrutiny.

In contrast to the aforementioned spectral estimation
methods, empirical mode decomposition (EMD) method
[5] adaptively decomposes nonstationary time series into a
finite set of amplitude-frequency modulated components,
namely, intrinsic mode functions (IMFs), without assuming
any basis functions. These IMF components allow the cal-
culation of a meaningful instantaneous frequency by virtue
of Hilbert transform. As a result, a high-resolution time-
frequency spectral estimation, namely, Hilbert spectrum,
can be obtained, even with nonstationary time series. The
last decade has witnessed the remarkable success of EMD
in a large variety of applications; it is, however, limited to
univariate (single-channel) data analysis. The availability of
simultaneous multichannel data presents important analysis
challenges and calls for multivariate extension of EMD. So
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far, EMD has been extended to complex EMD [6], rotation-
invariant EMD [7], bivariate EMD [8], trivariate EMD [9],
multidimensional ensemble EMD [10], and multivariate
EMD (MEMD) [11] and its noise-assisted MEMD [12]. Of
particular note is the MEMD, which is a rather generic multi-
variate extension and has been shown very promising in mul-
tichannel neural data analysis [13, 14].

Hence, it is natural and straightforward in this study to
think of using MEMD together with Hilbert transform to
perform spectral estimate of nonstationary multichannel
neural data. In practice, the estimated spectra are readily
computable, yet its use for subsequent coherence estimate is
problematic because MEMD coupled with Hilbert transform
provides high-resolution time-frequency spectra typically
with many zero values, which therefore cause computational
problem for estimating coherence at those zero-value posi-
tions.

In this paper, we propose a noise-assisted instantane-
ous coherence (NAIC) measure based on the MEMD to-
gether with the Hilbert transform to circumvent the afore-
mentioned problems in providing high-resolution time-
frequency coherence measure. First, the MEMD, together
with Hilbert transform, is applied to estimate the spectra of
signals. Second, we add a noise into the estimated spectra to
alleviate the zero-value problem before coherence is derived.
Third, we design a statistical randomization procedure to
cancel out the effect of the added noise on the coherence of
mixed data. We note that our procedure is not just restricted
to the coherence measure demonstrated in this paper, but
it can also be applied to other forms of coherence such as
partial and multiple coherence as well as Granger causality
[15, 16].

The paper is organized as follows. In Section 2, we briefly
review the recently developed MEMD method and Hilbert
transform, followed by our proposed NAIC method. In
Section 3, we first conduct computer simulations to validate
our NAIC method and contrast it with both Fourier-based
and wavelet-based methods. Then, we apply the method to
real cortical filed potential data collected from a macaque
monkey while performing a generalized flash suppression
task [17]. Section 4 concludes with discussions.

2. Method

2.1. Background

2.1.1. Multivariate Empirical Mode Decomposition. MEMD
is a multivariate extension of EMD. The EMD [5] is a fully
adaptive data-driven method which decomposes a time series
into a finite set of amplitude-frequency-modulated IMFs,
which represent its inherent oscillatory modes. Specifically,
for a time series x(t), all the local extrema are first identified,
and then two envelopes emin(t) and emax(t) are obtained by
interpolating between local maxima (resp., minima), and
subsequently the local mean m(t) = (emin(t) + emax(t))/2 is
computed. The detail c(t) = x(t) − m(t) is finally iterated
until it becomes an IMF, which is defined as having the
symmetric envelopes and the same numbers of zero-crossing

and local extrema, differing at most by one. The residue
by removing IMFs from raw signal is subject to the above
procedure for the next IMF until the monotonic residue is
left. Hence, a time series x(t) can be expressed as: x(t) =
∑N

j=1 cj(t) + r(t), where cj(t), j = 1, . . ., N are the IMFs, and
r(t) is the residue.

Although the EMD has become an established tool
for analysis of single-time series, mode misalignment and
mode mixing are two serious problems that limit its further
application for multivariate time series. The mode misalign-
ment corresponds to a problem where the same-index IMFs
across multivariate data contain different frequency modes
so that the IMFs are not matched either in the scale or in
the number. The mode mixing occurs when a single IMF
contains multiple oscillatory modes and/or a single mode
resides in multiple IMFs, which in many cases may obscure
the physical meaning of IMFs.

Recently, MEMD has been proposed to alleviate the limi-
tations of EMD and to extend the application of EMD to
multivariate time series [11]. An important step in MEMD
method is that the calculation of local mean as the concept
of local extrema is not well defined for multivariate signals.
To deal with this problem, MEMD projects the multivari-
ate signal along different directions to generate multiple
multidimensional envelopes; these envelopes are then aver-
aged to obtain the local mean. For an n-variable signal, the
MEMD algorithm is briefly summarized as follows.

(i) Construct suitable point set (e.g., the Hammersley
sequence) for sampling on an (n−1)- sphere.

(ii) Compute a projection {pθk (t)}Tt=1 of multivariate
input data {v(t)}Tt=1 along a direction vector xθk for

all k giving {pθk (t)}Kk=1.

(iii) Locate the time points tθki according to maxima of the

set of projected signal {pθk (t)}Kk=1.

(iv) Interpolate [tθki ,v(tθki )] to acquire multivariate enve-

lope curves {eθk (t)}Kk=1.

(v) Calculate the mean m(t) of the envelope curves for a
set of K direction vectors, m(t) = (1/K)

∑K
k=1 e

θk (t).

(vi) Iterate on the detail c(t) = x(t) − m(t) until it
becomes an IMF. The above procedure is applied to
the residue r(t) = x(t)− c(t).

The stoppage criterion for multivariate IMF is similar to
that for univariate IMFs except that the equality constraint
for number of extrema and zero crossings is not imposed,
as the extrema cannot be properly defined for multivariate
signal.

2.1.2. Hilbert Transform. Hilbert transform [18] has been
widely used to obtain analytic (complex) signal associated
with a real signal x(t) and consequently, instantaneous enve-
lope, phase functions and instantaneous frequencies. Given
an arbitrary time series x(t), the corresponding analytic
signal is defined as: z(t) = x(t) + iH[x(t)] = a(t) exp[iθ(t)],
where a(t) and θ(t) are instantaneous amplitude and phase
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Figure 1: Schematic representation of the proposed noise-assisted instantaneous coherence (NAIC). A trivariate data [X Y Z] is used as an
example. The first step (A) consists of transforming each time series to the corresponding analytic matrix by virtue of the MEMD and Hilbert
transform. A random noise complex matrix is then added to the analytic matrix of data (B) to facilitate the calculation of coherence (C). Two
random noise complex matrices are independently generated to compute their coherence. The process is repeated for N (e.g., 1000) times
(D) to obtain a null distribution of the maximum coherence (E). Here, we set the P value as 0.01, thus the threshold “T” corresponds to the
10th value from the maximum of the null distribution (F). Finally, we use the “T” to threshold the coherence from (C) to be considered as
statistically significant from noise (G). The output of NAIC (H) provides high-resolution time-frequency coherence spectrum.

of the analytic signal z(t), and the imaginary part H[x(t)] is
Hilbert transform of x(t): H[x(t)] = (1/π)P[

∫∞
−∞ x(u)/(t −

u)du], where the notation P indicates the Cauchy principal
value of the integral. The instantaneous frequency can then
be obtained from instantaneous phase as: f (t) = dθ(t)/dt.

Direct application of Hilbert transform to an arbitrary
wide-band time series is of little practical value because it
could produce negative frequencies, which bear no relation-
ship to real oscillations in a time series [5, 19]. To obtain
meaningful and well-behaved instantaneous frequencies,
time series to be analyzed must have no riding waves and
must be locally symmetrical about its mean as defined by
the envelopes of local extrema. According to the definition
of IMF, the IMF is an ideal candidate to take full advantage
of Hilbert transform. Specifically, given an IMF cj(t), we first
compute its Hilbert transform H[cj(t)] and then find its
phase through the combination of cj(t) and H[cj(t)]. The
instantaneous frequency of IMF is finally obtained as the
derivative of the instantaneous phase with respect to time.
As such, we can apply Hilbert transform to the decomposed
IMFs from a time series and construct a time-frequency
analytic (complex) matrix, whose absolute value is the well-
known Hilbert spectrum [5]. The resulting time-frequency
analytic matrix makes it possible to calculate cross-spectrum
between signals and autospectra of individual signals, which
form the basis for coherence estimation.

2.2. Noise-Assisted Instantaneous Coherence. Conventional
coherence methods based on Fourier transform or autore-
gressive model assume that input signals are stationary,
and their time-frequency representations suffer from the

fundamental uncertainty principle. In this study, we propose
a noise-assisted instantaneous coherence, which is suited to
the analysis of nonstationary neural signals and offers high-
resolution time-frequency coherence estimate. A schematic
representation of the processing steps is shown in Figure 1.

In this method, we first employ the MEMD to adaptively
decompose raw neural data into IMFs. Before applying
MEMD, it should be noted that (1) neural data are often
collected over certain time period from multiple channels
across many trials, which can be represented as a three-
dimensional matrix, that is, TimePoints×Channels×Trials,
on which the MEMD cannot be directly applied, and (2)
neural recordings are usually of high degree of variability,
typically collected over many trials spanning from days to
months, or even years, which has significant detrimental
impact upon the final decomposition of MEMD when
projecting the data in multidimensional space. Therefore,
two important preprocessing steps [14] should be taken
before applying the MEMD to neural data. First, high-
dimensional neural data (e.g., TimePoints × Channels ×
Trials) is reshaped into such a two-dimensional time series
as TimePoints× [Channels×Trials] before submitted for the
MEMD analysis. It is an important step to make sure that all
the IMFs be aligned not only across channels but also across
trials. Second, in order to reduce the variability among neural
recordings, individual time series is normalized against its
temporal standard deviation before the MEMD is applied
and subsequently restores the standard deviations to the
corresponding IMFs after the MEMD.

Once Hilbert transform is applied to the obtained IMFs,
each signal of interest yields a time-frequency analytic
(complex) matrix. As described above, the analytic matrix
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Figure 2: Construction of the synthetic trivariate nonstationary signal [X Y Z] and their theoretic coherence between channels. In this
figure, the first three rows (C1, C2, and C3) show the components used to generate the synthetic data (the fourth row). The last row shows
theoretical coherence between different channels of the synthetic data.

typically exhibits many zero values due to its high resolution,
which thus cause the computational issue. As such, before
computing coherence, we add a random noise complex
matrix to the analytic matrix of raw data to eliminate the
zero values. The real and imaginary parts of the added
noise complex matrix are set to normally distributed random
noise. Coherence is then estimated based on the mixed time-
frequency analytic matrix. The coherence between signals i

and j is defined as [20]: Cij( f ) = |Si j( f )|/
√
Sii( f )Sj j( f ),

where Sii( f ) and Sj j( f ) are the autospectra of signals, and
Si j( f ) is the cross-spectrum between signals. In this noise-
assisted procedure, the added noise should be of small
magnitude so as to minimize the interaction between the
added noise and the original clean signal. To account for
the effect of the added noise on the estimated coherence, a
statistical randomization procedure is designed as follows.

(1) Time-frequency coherence of two random noise
complex matrices is estimated.

(2) The maximum value of coherence across all the time
and frequency in (1) is collected.

(3) Repeat Steps (1)-(2) many times, for example, 1000
times, to obtain a null distribution of the maximum
coherence.

(4) From the experimental value of the estimated coher-
ence and the aforementioned null distribution, cal-
culate the proportion of maximum coherence in the
null distribution that is larger than the experimen-
tally observed. This proportion is called the P value.

(5) The experimental value of the estimated coherence is
considered to be significant if the P value is smaller
than the critical alpha level, for example, 0.05.

This procedure is a nonparametric randomization test
[21], which does not need to perform statistical test at each
time-frequency location, thus bypasses multiple comparison
problems. By having followed all these steps, the NAIC
can provide a high-resolution time-frequency coherence
representation. Note that our proposed NAIC method can be
readily extended to other forms of coherence such as partial
and multiple coherence [20, 22] as well as Granger causality
measure [16].

3. Results

3.1. Simulations. In this simulation, we generated a non-
stationary three-channel signal [X, Y, Z] by concatenating
and superposing three sinusoid waves, each with differ-
ent frequency. Figure 2 showed how nonstationary three-
channel signal was constructed and its theoretical coherence
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Figure 3: Decomposition of a synthetic trivariate nonstationary signal [X Y Z] via MEMD. The decomposed three IMFs C1–C3 correctly
recover the designed components in the data (Figure 2).

between channels. We used this synthetic signal to verify the
effectiveness of our NAIC in offering a high-resolution time-
frequency coherence spectrum of nonstationary time series.

The MEMD was first performed to decompose the
synthetic nonstationary data. Figure 3 showed that the raw
data were decomposed into three IMFs, which correctly
recovered the designed components in the data (Figure 2),
and the common modes within the data were aligned in the
IMFs with the same index. By virtue of Hilbert transform,
each time series was represented by a time-frequency analytic
matrix. A random noise complex matrix with noise variance
of 10−4 was then superposed to the analytic matrix of clean
data so as to facilitate the calculation of coherence between
channels. Figure 4 showed time-frequency coherence based
on the mixed data. From this figure, we can see that
the obtained time-frequency coherence spectra reflect the
designed coupling between channels. We notice, however,
that the added noise induces some artifacts, shown as
the bright spots scattered in the spectra. We subsequently
performed the statistical randomization procedure in which
the noise variance is set to 10−4 to identify statistically
significant coherence. In Figure 5, we showed that significant
coherence (P < 0.01) in the simulation (Figure 2) was well
captured by our NAIC method. As comparisons, Fourier-
and wavelet-based coherence methods were, respectively,
performed to analyze the same synthetic data. For wavelet-
based coherence, we used the “Morlet” as the mother wavelet

(other wavelets yield very similar results). As an example,
time-frequency coherence spectra based on the Fourier and
wavelet transform between channel X and Z were shown in
Figure 6, in which we can see that both coherence spectra
exhibit poor time-frequency resolution relative to the pro-
posed NAIC.

In our NAIC approach, an important question is how
much noise is acceptable. To examine the effect of noise on
coherence estimation, we systematically varied the noise by
changing its variance relative to the signal and estimated the
coherence between channel X and Z in the above simulation.
We measured the root mean square error (RMSE) [23]
between the estimated coherence and its theoretical value as
a function of noise variance. We repeated the same analysis
procedure for 50 times to obtain error bars at each noise level.
The result is shown in Figure 7. We can see from the figure
that the RMSE declined as the noise variance decreased,
and stayed constant when the noise variance approaches
10−4. While the amount of noise derived from this particular
simulation is empirical, it indicates that the amount of noise
should be four orders of magnitude less than the signal. As
a rule of thumb, we suggest that the added noise should be
of infinitesimal magnitude so as to minimize the interaction
between the added noise and original clean signal.

3.2. Noise-Assisted Instantaneous Coherence Analysis of Corti-
cal Field Potential Data. In this section, we used local field
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Figure 4: Time-frequency coherence based on the mixed analytic matrix for X-Y (a), X-Z (b), and Y-Z (c). A random noise complex matrix
is superposed to the analytic matrix of data for facilitating the calculation of coherence. From these plots, we can see that the obtained
coherence reflects the designed coupling patterns in the synthetic signals but contains a lot of artifacts scattered in the spectra.

potentials (LFPs) collected from visual cortex of macaque
monkey while performing a visual illusion task as an example
to demonstrate the usefulness of our proposed NAIC ap-
proach in providing high-resolution time-frequency coher-
ence spectrum for nonstationary neural data.

The visual illusion task used here is called generalized
flash suppression (GFS), in which a salient visual stimulus
could be rendered invisible despite continuous retinal input.
It provides a rare opportunity to study neural mechanisms
directly related to perception [17]. In the GFS task, after the
monkey gained fixation, target stimulus was presented for
1400 msec and immediately followed by the surroundings
stimuli. With the presence of the surroundings, the target
could be rendered subjective invisible. The monkey was
trained to respond to the visibility conditions such that the

trial was classified as either “Visible” or “Invisible”. Note that
the stimuli in these two conditions were physically identical.
Multielectrode LFP recordings were simultaneously collected
from multiple cortical areas V1, V2, and V4 while monkeys
performed the GFS task. The data were obtained by band
pass filtering the full bandwidth signal between 1 and 500 Hz
and then resampled at 1 KHz [24]. In this study, two-channel
LFP from area V1 of one-second long after surrounding
onset over 65 trials was used for demonstration.

As described in Method part, the MEMD was first per-
formed on multichannel multitrial LFP data to produce the
IMFs, followed by Hilbert transform to obtain the analytic
matrix of data. A random noise matrix with noise variance
of 10−4 was then added to the analytic matrix of data to
facilitate the calculation of coherence. The high-resolution
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Figure 5: The noise-assisted instantaneous coherence (NAIC) for X-Y (a), X-Z (b), and Y-Z (c). From these plots, we can see that the
designed coupling patterns in the simulation (Figure 2) are well captured by our NAIC method.

time-frequency coherence spectrum was finally obtained by
applying the proposed statistical randomization procedure
in which the noise variance was set to 10−4. Figures 8(a)
and 8(b) showed the grand average of the NAIC spectra in
the Visible and Invisible conditions, respectively. From this
figure, we can see clearly that the 10 Hz coherence initially
appeared in both conditions for about 200 msec after the
surrounding onset. We then observed a slightly shift of
oscillatory frequency to 10–20 Hz with reduced coherence,
yet the Visible condition exhibited greater coherence than
the Invisible condition. As comparisons, we applied Fourier-
and wavelet-based coherence methods to the same neural
data, with results shown in Figures 9 and 10, respectively.
Based on these figures, we can see that Fourier- and
wavelet-based methods exhibited similar coherence patterns
but with poor time-frequency resolution. Furthermore, we

compared the NAIC spectra between Invisible and Visi-
ble conditions to reveal how neural connectivity reflected
perceptual suppression. We initially performed point-wise
significance test by applying t-test to every time-frequency
index between two conditions. As shown in Figure 11(a),
significant perceptual suppression effect was evident in
about 400 msec after the surrounding onset between 10
and 20 Hz, in which Visible condition showed significantly
larger coherence than Invisible condition (P < 0.05, uncor-
rected). To deal with multiple-comparison problem, for
which several methods have been proposed [21, 25, 26], we
adopted a clustered-based nonparametric method [21] and
found that the significant difference observed between two
conditions still survived (P < 0.05). For comparison, we
repeated the same statistical procedure to the wavelet-based
coherence between two conditions. The resulting significant
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Figure 6: Fourier- (a) and wavelet- (b) based coherence for X-Z in the simulation. The coherence between X and Z is used as an example
to demonstrate that our NAIC method (Figure 5) can provide better time-frequency resolution than Fourier- and wavelet-based coherence
estimations.
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Figure 7: Root mean square error (RMSE) between the estimated
coherence and its theoretical value as a function of the noise
variance. Error bars denote standard deviations over 50 repetitions.
Note that the RMSE declined as the noise variance decreased and
stayed constant once the noise variance approaches 10−4.

difference at both P < 0.05 and P < 0.01 is shown
in Figure 11(b). Both NAIC and wavelet methods show
general agreement about the concentration of significant
difference in frequency. However, the NAIC is more sensitive
in revealing significant difference of perceptual suppression
that occurred as early as 400 msec after surrounding onset.
These results together suggest that neural coherence reflects
perceptual suppression, and significantly reduced coherence
in Invisible condition may be associated with the reduction
of brain connectivity.

4. Discussion

In this paper, we introduced a noise-assisted instanta-
neous coherence (NAIC) to achieve high-resolution time-
frequency coherence measure. In our method, the fully
data-driven MEMD, together with Hilbert transform, was
first employed to provide high-resolution time-frequency
spectral representation for nonstationary neural data. We
then added random noise onto the spectra, which makes
the calculation of coherence measure feasible. Finally, a
statistical randomization procedure was designed to identify
the statistically significant coherence. Computer simulations
confirm that our NAIC is effective for coherence analysis of
nonstationary signal. Cortical LFP data further demonstrates
that our NAIC method indeed is able to provide a high-
resolution time-frequency coherence representation for con-
nectivity analysis of neural data.

The use of noise in data analysis has long been known.
There are only a few that are relevant to EMD analysis.
Broadly, there are two ways to utilize noise for EMD analysis.
One is to assign statistical significance of information content
for IMF components from any noisy data by exploiting
numerical observations that (1) EMD of white noise acts
essentially as a dyadic filter [27], and (2) all the IMFs of
white noise follow a normal distribution [28]. Another way
is to improve the EMD method by adding noise to the data.
Early attempt has been made to add noise of infinitesimal
amplitude to the data short of extrema in order to make
the EMD operable [29]. Wu and Huang [30] explored the
benefit of dyadic filter bank structure of EMD for white noise
and proposed ensemble EMD (EEMD) in which multiple
realizations of white noise are added to the data before
applying EMD. The effect of the added white noise is
to provide a uniformly distributed reference scale, which
enables EMD to preserve the dyadic property and hence
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Figure 8: Grand average of the smoothed NAIC spectra in Visible (a) and Invisible (b) conditions. In comparison of (a) with (b), we can see
that Visible condition exhibits larger coherence than Invisible condition at round 400 msec after surrounding onset.
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Figure 9: Grand average of Fourier-transform-based coherence in Visible (a) and Invisible (b) conditions. Note that the time-evolving
coherence was obtained using a moving window approach, in which the window size used was 500 msec long, with a step size of 10 msec. As
a result, coherence was only displayed between 250–750 msec.

reduce the chance of mode mixing. Given the random effect
of noise in multiple realizations, added noise is eventually
canceled out in the ensemble mean. Recently proposed noise-
assisted MEMD (NA-MEMD) [12], similar to EEMD, also
makes use of the dyadic property to reduce the mode-mixing
problem; however, unlike EEMD, it adds white noise as
separate channels and thus only a single sweep of MEMD is
applied.

Our NAIC method is radically different from the above
methods in that the noise is introduced after MEMD data
decomposition. In the procedure, the noise is added to the

Hilbert spectrum of data derived from MEMD to eliminate
the zero values in the spectral representation and thus make
the coherence estimation operable. The effect of the added
noise is eliminated via a statistical randomization procedure.
How much noise should be added is a crucial question in any
noise-assisted methods. In our method, as a rule of thumb,
we suggest that the added noise should be of infinitesimal
magnitude so as to minimize the interaction between the
added noise and original clean signal.

We note that our procedure is not just limited to the
coherence measure demonstrated in this paper, but it can
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Figure 10: Grand average of wavelet-transform-based coherence in Visible (a) and Invisible (b) conditions. Note that we used the “Morlet”
as the mother wavelet.
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Figure 11: Significance test of difference between two perceptual conditions revealed by the NAIC (a) and the wavelet-based method (b).
General agreement of two methods is evident, yet the NAIC is able to detect statistically significant difference of perceptual suppression
occurring as early as 400 msec after surrounding onset. Level lines are depicted at P < 0.05 (red) and P < 0.01 (blue), respectively.

also be used for other forms of coherence estimation such as
partial and multiple coherence as well as Granger causality
[15, 16]. In addition, it is conceivable that our procedure
could be applied to phase-based measures including phase
synchrony [31] and even phase-based causality measure [32,
33]. Phase synchrony based on EMD [31] has clear advan-
tage in adaptively extracting the narrow-band components
(IMF) of signal and thus avoiding arbitrary preselection of
frequency ranges. Importantly, phase synchrony could be
used to reveal potential nonlinear coupling between IMFs of
different scales, which makes the approach very attractive.
We should note that Hilbert transform is usually used to

estimate instantaneous phase, which can also be calculated
by alternative methods [34].

A significant strength of our coherence estimation is that
the data stationarity is not required. Despite its promise,
coherence is essentially a linear measure, which may fail
to capture underlying nonlinear relations. As such, phase
synchrony may offer a viable solution to circumvent this
issue. A detailed comparison of our method with phase
synchrony against well-characterized neural data would
serve to identify their relative strengths and weaknesses.
In addition, when signal-to-noise ratio is low, special care
should be taken to interpret the estimation of coherence
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which could become unreliable. Furthermore, while analyz-
ing large amount of neural data, there is a particular concern
about how to reduce the computational load. Nonetheless,
we have presented in the paper a noise-assisted data analysis
method to achieve high-resolution coherence estimation.
The analysis is supported by simulations on both synthetic
and real neural data.
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