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The cerebellum input stage has been known to perform combinatorial operations on input signals. In this paper, two types
of mathematical models were used to reproduce the role of feed-forward inhibition and computation in the granular layer
microcircuitry to investigate spike train processing. A simple spiking model and a biophysically-detailed model of the network
were used to study signal recoding in the granular layer and to test observations like center-surround organization and time-
window hypothesis in addition to effects of induced plasticity. Simulations suggest that simple neuron models may be used to
abstract timing phenomenon in large networks, however detailed models were needed to reconstruct population coding via evoked
local field potentials (LFP) and for simulating changes in synaptic plasticity. Our results also indicated that spatio-temporal code
of the granular network is mainly controlled by the feed-forward inhibition from the Golgi cell synapses. Spike amplitude and
total number of spikes were modulated by LTP and LTD. Reconstructing granular layer evoked-LFP suggests that granular layer
propagates the nonlinearities of individual neurons. Simulations indicate that granular layer network operates a robust population
code for a wide range of intervals, controlled by the Golgi cell inhibition and is regulated by the post-synaptic excitability.

1. Introduction

Decoding neural activity is the key to understand spa-
tiotemporal patterns that the brain receives as sensory
information regarding the world. Time-scale of operation
is closely correlated to the activity of the neural circuit
and decoding such activity reveals principles regarding the
function. One of the main circuits in the cerebellum is the
large input layer circuit formed of granule and Golgi cells.
Spatiotemporal information is one of the unique functional
characteristics observed in the cerebellar input layer network
[1, 2]. Cerebellar granular layer forms the input stage of the
cerebellum in which information coming from the periph-
eral and central systems converge through the mossy fibers.

The granular layer has by far the smallest (∼5 μm) and the
most numerous neurons (∼1011) in humans. Understanding
how the granular layer process information appears critical
to understand the cerebellar function, since signals coming
into upper cortical layers are provided by the granular layer.
The granule cells form the largest neuronal population in
the mammalian brain and regulate information transfer
along the major afferent systems to the cerebellum. The
granule layer receives excitatory input primarily from mossy
fibers and inhibition via synapses from interneurons like
Golgi cell. Mossy fiber input excites both the granule cell
and inhibitory interneurons like the Golgi cell. The granule
cell is a small neuron with 3–5 dendrites. Timing in the
cerebellar granular layer plays a key role via passage-of-time
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representation (POT), learning or adaptation to movements
[3, 4], modulation of information transfer to Purkinje cells
(activation of granule cell subsets with respect to time).
Knockout and lesion studies revealed that disruption of the
granular layer leads to abnormal functioning of the cerebellar
mossy fiber-granule cell relay [5], affects the learning-
dependent timing of conditioning eyelid responses [6], loss
of rapid spike processing in the cerebellum (results in ataxia)
[7] which in turn affects the plasticity of granule-Purkinje
cell synapses. Prion protein (PrP) knockout mice showed a
large proportion of granule cells (∼40%) with slow non-
overshooting nonrepetitive action potential, slow EPSPs, and
no inward rectification [5]. Likewise, FHF1-FHF4 mutants
showed impaired granule cell excitability which prevented
rapid burst transmission in the cerebellum [7].

The objective of the current paper is to study how
excitation operates in the granular layer network [1, 2, 8–
11]. The focus is also on understanding the modulatory role
of inhibition [1, 2] in the granule cells [12] and underlying
ensemble activity in terms of combinatorial operations on
granular layer network [8].

In order to estimate spiking behaviour and to test
reliability in modeling, we tried using detailed and simple
models of neurons in our network models. The use of
detailed multicompartmental models was focused towards
reproducing the spatiotemporal dynamics of normal cere-
bellar activity. The detailed models allow reconstructing
information including local field potentials [13], which
were not seen while using less detailed models. We also
used a spiking neuron model (modified from [14]) for
reconstructing network activity in order to understand the
contributions of individual spikes in the cerebellar cortex.
The necessity of these spiking models was to retain the
biologically plausibility of Hodgkin-Huxley-type dynamics,
while maintaining the low computational cost. It was also
an attempt to validate whether such simple spiking models
also allow us to create computationally simpler yet large-
scale models of cerebellum. Using properties of the granule
cell [9] and Golgi neuron [15, 16], we developed simple
spiking models [17] to represent the spiking behavior in a
network. Estimates of spiking and reproducibility of spiking
could be very useful for computationally efficient and large
network models. Spike modulation due to the effect of feed-
forward inhibition has been known to play an important role
in time-windows hypothesis [18]. The simulations quantify
how spikes pass through the granular layer network and the
role of feed-forward inhibition in the neuronal microcircuit.
This gives a new paradigm on the functional relevance of
patterns in the cerebellar granular layer circuitry. The main
objectives of the paper were also to reconstruct the center-
surround excitation patterns and observe role of combined
inhibition and excitation geometry in frequency-dependent
transmission of spike information.

The objective was also to understand the effect of
combinatorial operations on the granular layer network
[8]. Combinatorial operations included combined excitation
and inhibition which forms the spatiotemporal pattern in
granular layer network in vitro and in vivo. Another objective
behind the simulations was to understand information flow

in granule neurons via burst-burst transmission and feed-
forward inhibition [2]. Together they suggest the role of
granule cells in expansion recoding and sparse activation
via mossy fiber-granule cell synapses. The paper reports
potential reconstruction of network activity in the form of
center-surround structures [8], spike properties of underly-
ing cells, and modulation of spikes due to changes induced
by synaptic plasticity and due to inhibition. A special case
of NMDA receptor blocking was simulated since GABA
(γ-aminobutyric acid)-ergic inhibition is especially effective
in controlling NMDA (N-methyl-D-aspartate) receptor-
dependent depolarization in the granular layer [18]. Network
simulations predict specific computational roles of granule
cells in processing bursts and overall spike processing in the
cerebellar granular layer.

Understanding population code via comparisons of spa-
tiotemporal properties of simulated neural activity and with
experimental measurements using multielectrode recordings
[18] is useful to identify how information encoding happens
in microcircuits. Therefore, evoked local field potential
(LFP) responses from granular layer in vitro [19] were
reconstructed computationally [20]. The main intention of
local field reconstruction on the network in vitro was to study
the role of inhibition in generating the N2b wave [4, 20].
The paper also investigates the combined role of excitation-
inhibition affecting the granular layer clusters.

2. Methods

The study carried out in this paper involved the use of
computational models of neurons based on experimental
data from p17–23 Wistar rat cerebellum [9]. Mathematical
neuron models of granule cell (GrC) [9, 19] and Golgi cell
model (GoC) [15, 16] were used in this network study.
Modeling reliability for spiking models was based on the
extensive characterization of membrane currents and the
compact electrotonic structure of cerebellar granule cells
[9, 19]. The models used AMPA (2-amino-3-(5-methyl-3-
oxo-1,2-oxazol-4-yl) propanoic acid) and NMDA receptor
components as excitatory mossy fiber (MF)-GrC synapses
and GABAergic synapses for the GoC-GrC relay [1, 15, 19,
21]. On an average, each granule cell receives excitatory
connections from 4-5 mossy fibers [9].

2.1. Simple Neuronal Models. The objective of using simple
models in the study was to understand how spatiotemporal
patterns integrated over time to produce responses that
are selective to specific patterns and to reconstruct the
representation of spiking behavior in networks especially to
study how inhibition affects intrinsic electroresponsiveness.
We also wanted to see how the high variability in MF spike
trains affects firing behavior. A simple spiking model [14]
was used to study the neuronal spiking activity. A good
model should be feasible with Hodgkin-Huxley dynamics
and be computationally efficient [14] to reproduce the firing
behavior of biorealistic model. The simple spiking model
[14] of neuron primarily used two equations one regulating
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the membrane potential (V) and the other regulating
adaptation current (w)

C
dV

dt
= −gL(V − EL) + gLΔT exp

(
V −VT

ΔT

)
−w + I (1)

tw
dw

dt
= a(V − EL)−w, (2)

where C is the membrane capacitance, gL is the leak
conductance, VT is the voltage threshold, ΔT is the slope
factor which quantifies the sharpness of the spikes, w is
an adaptation current, and I is the injected current. The
membrane time constant is

tm = C

gL
. (3)

The reset values were activated when the membrane potential
reached the desired peak voltage:

if (V > 30 mV), then

V = Vr

w = w + b.

(4)

The change in parameters (as shown in (4)) allowed the
simple spiking model to replicate amplitude of granule cell
firing and Golgi cell firing (see Table 1). Capacitance values
of Golgi and granule cells were modelled to simulate sim-
ilar frequency and firing patterns matching experimentally
observed data, as observed in biophysical models [9, 15].

While replicating the basic firing behavior, the Adaptive
Exponential Integrate-and-fire (AdEx, see [14]) granule cell
model was tested with various combinations of synaptic
connections. AMPA [17, 22, 23] synaptic kinetics was used
as the excitatory synaptic dynamics and GABA [17, 24, 25] as
the inhibitory synaptic kinetics as observed via experiments
[19]:

gAMPA = gAMPA,max ∗ e−t/18 ∗ 1− e−t/2.2

0.68

IAMPA = (Vm − 0.0)∗ gAMPA.

(5)

Likewise, GABA synaptic kinetics was modeled using the
GABA-A equation [17]:

gGABA = gGABA,max ∗ e−t/25 ∗
(
1− e−t/1.0

)
0.84

IGABA = (Vm + 75)∗ gGABA.

(6)

The maximal conductance of AMPA and GABA was adjusted
to suit the observed biophysical firing pattern (see Table 2).
For simulating the case without inhibition, maximal conduc-
tance value of GABA synapses is set to zero (see Table 2).
To model inhibition, varying values of maximal conductance
for different number of inhibitory synapses were used. With
these two receptor kinetics, we were able to match the
number of spikes and amplitude to that of biophysical
model. The models also reproduced a close correlation to
the biophysical model while varying the intrinsic excitability
and release probability (data not shown). By changing
conductance and dynamic parameters, we simulated LTP and
LTD, matching to experimental and computational values
[26].

To understand network dynamics in terms of firing and
temporal processing, we used a simple spiking network with
1680 AdEx granule cell models and 1 AdEx Golgi cell model.
The properties of the network model were matched (see
Tables 1 and 2 and [9, 15, 16, 27, 28]) to experimental data.

2.2. Multicompartmental Models. A detailed multicompart-
mental GrC model [19] was used, and simulations were
performed by varying the excitatory (E) and inhibitory (I)
synaptic inputs. The model of the granule cell was based on
multicompartmental cable theory and included soma, axon,
hillock and dendritic compartments. The model consisted of
52 active compartments connected to each other via the 3/2-
power law [29]. For each of the compartments, membrane
voltage Vm had to be estimated separately:

dVm

dt
= 1

τm

⎛
⎝V −

∑
i gi(V −Vi) +

∑
syn gsyn

(
V −Vsyn

)
+
∑

br gbr(V −Vbr)

gtot

⎞
⎠, (7)

where g is the conductance corresponding to i (ion channel),
syn (synaptic dynamics), br (neighboring attached branch),
and tot (total). Here, τm = RmCm which is the time constant
of oscillation of the membrane based on its membrance
resistance, Rm and membrane capacitance, Cm. The calcium
current in the model was included as

d[Ca]
dt

= − ICa

(2F · A · d)
− (βCa([Ca]− [Ca]O)

)
, (8)

where d is the depth of a shell adjacent to the cell surface of
area A, βCa determines the loss of calcium ions from the shell
approximating the effect of fluxes, ionic pumps, diffusion,
and buffers, [Ca]O is resting [Ca], and F is the Faraday’s
constant. [Ca] is the calcium channel dynamics as reported
in [19].

The model GrC has 1–4 excitatory (one for each
dendrite) and 0 (no inhibition)–4 inhibitory connections
(one for each dendrite) [19]. The detailed explanations of
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Table 1: Parameter values used for AdEx spiking models.

Model C (pF) EL (mV) VT (mV) Vr (mV) b (pA) gL (nS) ΔT (mV) a (nS) tw (ms)

Granule spiking model 150 −70 −50 −64 250 10 4 9 13

Golgi spiking model 350 −58 −60 −50 1460 12 7 12 7

Table 2: Maximal synaptic conductance values used for AMPA and GABA receptor kinetics in the simple spiking network.

Number of
excitatory
connections

Number of
inhibitory
connections

Without inhibition With inhibition

Excitatory maximal
conductance (nS)

Inhibitory maximal
conductance (nS)

Excitatory maximal
conductance (nS)

Inhibitory maximal
conductance (nS)

1 4 0.14 0 0.1 0.05

2 3 0.25 0 0.11 0.1

3 2 0.256 0 0.256 0.11

4 1 0.27 0 0.3 0.18

ionic channel dynamics, compartmental localization of ion
channels and electronic structure of this granule neuron
model are described elsewhere [9, 19, 21]. Since granule cell
is one of the rarest neurons where the ionic channel densities
can be accurately determined using whole-cell patch clamp,
the ion channel dynamics that was modeled previously [7,
9, 21] is not repeated here. Also, excitatory and inhibitory
synaptic inputs to the dendrites were located in dendritic
tips although in neighboring dendritic compartments. Presy-
naptic dynamics for the MF-GrC was modeled separately
as in [19, 21] due to components such as facilitation and
depression. Excitatory postsynaptic mechanisms were shown
as AMPA and NMDA postsynaptic receptor components as
seen in granule neurons. AMPA receptor dynamics was mod-
eled using a three-state scheme and a 2D diffusion model,
whereas the NMDA receptors used Boltzmann equation as
seen in [30]. Both the excitatory presynaptic and excitatory
postsynaptic mechanisms are described in detail elsewhere
[21]. The GoC-GrC inhibitory synapse model was based
on the following presynaptic dynamics: release probability
= 0.35, τREC = 36 ms, τfacil = 58.5 ms, and τI = 0.1 ms,
respectively and as described in [31]. Effects of blocking
inhibition by adding gabazine were also simulated by setting
GABAergic conductance in inhibitory fibers to zero.

The Golgi neuron was adapted from [15, 16]. All
simulations were performed with NEURON environment
[32] running on HP Blade C3000 node. Timing and initial
time-window modulations are mainly affected by the role of
feed-forward inhibition as it happens with only a slight delay
from the mossy-fiber input and hence the role of feed-back
inhibition was not simulated.

2.3. Granular Layer Network. Granular layer spiking network
model consisted of 140 homogenous mossy fibers (MF)
rosettes, 1680 granule cells (GrC), and 1 Golgi cell (GoC).
In this network, about 48 GrC receive 1 excitatory input
from the same mossy fiber, and each granule cell receives
four excitatory connections from four different mossy fibers.
Along with these excitatory inputs given to GrC, mossy fibers
also provide excitatory input to GoC whose ratio was set

in this model to about 78 : 1 (see [15, 16], each dendrite
had 26 synapses in the GoC model and assuming a total
of 3 dendrites, we approximated to 78 synapses) providing
an overall glomeruli connectivity pattern [1]. The network
topology is illustrated in Figure 1(a).

Modeling responses in brain slices in vitro were simulated
by giving single spike as input via mossy fiber (MF)
terminals. Anaesthetized rat brain recordings in vivo showed
bursts as inputs through mossy fibers [33]. Therefore, in vivo
inputs to GrC were simulated as bursts of (5 or 9) spikes via
the MF input.

2.4. Center-Surround “Spot” Pattern. Stimulating mossy
fibers with an electrode at a particular point activates granule
cells in the network in a center-surround activation pattern
[8]. Within a “spot,” cells which are in close proximity to
the electrode will receive high excitation and the periphery
layer cells receive less excitation. In the network model, we
simulated the center-surround pattern (see Figure 4A in
[8]) defined as a “spot,” showing decreasing strengths of
excitation spreading from the center to the periphery. In each
spot, 48 cells in the center received 4 mossy fiber (MF) inputs,
144 cells received 3 MF inputs, 48 cells had 2 MF inputs, and
144 cells received 1 MF input.

2.5. Simulating LTP/LTD. The granule cell model was mod-
eled based on data from Wistar rats [9, 19]. By modifying
intrinsic excitability and release probability [34, 35], we sim-
ulated plasticity in the GrC. Intrinsic excitability was modi-
fied by changing ionic current channel gating dynamics. On-
off gating characteristics of sodium channel were altered to
modify sodium activation and inactivation parameters [13,
26] for higher and lower intrinsic excitability. Three cases
were studied where the intrinsic excitability of the GrC is low
(low intrinsic excitability), normal (control), and high (high
intrinsic excitability). The release probability (U) of MFs
varied from 0.1 to 0.4 for cells with low intrinsic excitability,
and from 0.5 to 0.8 for cells with high intrinsic excitability
while the control value remained as 0.416 in simulations for
normal cells [36].
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Figure 1: Granular layer network topology. (a) Network topology map. Granule cells (GrCs) receive 1–4 excitatory inputs from mossy fibers.
GrC receive 0 (no inhibition)–4 inhibitory inputs from GoC via the GABAergic synapses, one per granule neuron dendrite. The ratio is about
4000 : 1 [1]. Granular layer processing is fast and usually output spikes are seen in millisecond time intervals. (b) Detailed granule neuron
model adapted from [19]. (c) Extracellular mechanism to study extracellular current flow in compartmental models. This mechanism was
used to model LFP (see Section 2.6).

2.6. LFP Reconstruction. The extracellular potential of a
single granule neuron (see Figure 1(b)) was estimated using
NEURON [32] extracellular mechanism. The mechanism
adds two RC compartments (see Figure 1(c)). To understand
population code, we reconstructed network evoked LFP
response using Laplace equation (see (1)):

∇2∅ = 0, (9)

where ∅ is extracellular potential, at boundary condition
(1/ρ)∅ = Jm · Jm is the transmembrane current density
and ρ is the extracellular resistivity. Each cell generated
an extracellular response corresponding to the activation

pattern elicited by the mossy fibers. With the granular layer
network, an electrode was assumed to be placed at the
center. Temporal and spatial delays due to distance from
electrode were assumed to be 0–3 ms [37]. The electrode
could measure cells that generated extracellular currents that
came with a delay of 0–3 ms (see [20]). Methodology for
modeling the latencies used has been detailed elsewhere
[13]. Considering the extracellular activity from each granule
cell in the region of interest (number of cells = 700,
assuming measurements from a tungsten electrode [18]),
we reconstructed evoked LFP response using (10) and (11).
Equation (10) adds the delay by padding zeros to linearly
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Figure 2: Firing patterns observed with AdEx model. (A) and (B) shows the in vitro behavior receiving 1 spike through the MF synapses.
In vivo behavior (burst-burst transmission) is simulated (C) and (D) via bursts through the MF synapses. (A) and (C) show traces with
no inhibition while (B) and (D) show traces with inhibition. Responses from left to right indicate input activation patterns from 4 MF
excitations to 1 MF excitation. The AdEx model faithfully reproduced granule cell spiking behavior in vitro and in vivo [9, 19, 28].

time-shift the signal. Equation (11) denotes the process of
summing all shifted extracellular signals for all cells linearly.
Total signal obtained is the desired evoked LFP:

∅shifted,i(t) = ∅i(t − t′) (10)

∅evoked LFP(t) =
n∑
i=0

∅shifted,i(t), (11)

where ∅i(t) is the extracellular potential of ith cell in
the neuronal population within the region of interest.
∅shifted,i(t) represents the extracellular potential shifted by
time delay (0–3 ms) (see [33]). Equations (10) and (11)
were calculated separately. The detailed methodology for
reconstructing evoked local field potential (LFP) has been
described elsewhere [13].

3. Results

We were able to construct two models of granular layer
network microcircuit: one using computationally efficient
but physiologically limited spiking neurons and other using
biophysically detailed multicompartmental neurons and
reproduced activation patterns, burst-burst transmission,
role of inhibition, and combinatorial coding.

3.1. Time-Windowing Depends on the Feed-Forward Inhibi-
tion-Implications from Simple Spiking Network Model. The
objective of using a simple spiking model was to understand
input-output relationships in terms of firing dynamics in the
cerebellar granular layer.

The simulated single granule neuron responses were
modeled based on granule neuron electroresponsiveness
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[9, 28]. Both in vitro (see Figure 2(A)) like behavior
with single spike through mossy fibers and in vivo (See
Figure 2(C)) like response with burst inputs through mossy
fibers were simulated. The responses matched experimental
data [9, 19, 28]. The role of feed-forward inhibition [31, 38–
40] was also modeled. With inhibition, the granule neuron
model showed suppression (see Figure 2(B1)) of spike
doublet (see Figure 2(A1)). Synaptic inhibition, because of its
delayed activation, controlled generation of the second spike
in the doublet [18, 41]. In the in vivo case, the number of
spikes (see Figure 2(C)) was reduced due to inhibition (see
Figure 2(D)).

Using the spiking granule neuron model, the 1680
granule cell network was reconstructed. The synaptic input
in the mossy fibers were reproduced using either a single
pulse to mimic electrical stimulation for in vitro simulations
or short high-frequency trains mimicking punctuate sensory
stimulation for in vivo simulations The network model
showed 720 spikes (without inhibition) and reproduced the
synaptic activation of the granular layer.

The spiking neuron network model was activated with
a center-surround activation pattern [8], and the raster of
spikes were observed in individual cells. Among 1680 cells,
144 cells with 4 MF active, 432 cells with 3 MF, 144 with 2
MF, and 432 with 1 MF active. The configuration was based
on Voltage-Sensitive Dye (VSD) imaging [8] and results
matched our previous findings [42]. With LTP and LTD, the
numbers of spikes in the network change significantly (see
Table 3). The spiking neuron simulations supported a burst-
burst transmission modality (see Figure 3) in which high-
frequency spike trains are more reliably transmitted.

The time-windowing [1] depended on the feed-forward
inhibitory loop, regulated by the Golgi synapses impinging
on the granule neurons. In this model, inhibition was
modeled with a delay of 4 ms to account the MF-GoC-GrC
circuit. As expected, the feed-forward inhibition reduced the
number of spikes from 720 to 576 (see Table 3). The spike
raster in the simulations (see Figure 3) showed selective
inhibition of granule firing due to blocking of the second
input as reported in [1, 2, 18]. The increase in number
of spikes in vivo in the network supports the frequency-
modulated transition from LTP to LTD [43]. The model
also was computationally efficient in comparison to the
biophysical model (see Section 3.2) and took 3 s for a 100 ms
simulation.

3.2. Spike-Burst Generation and Bidirectional Plasticity.
Although simple spiking models allow reconstruction of fre-
quency and amplitude information in terms of firing of con-
stituent cells, role of plasticity and selective pharmacological
effects in population code could not be studied. As reported
in Section 2.2, we used detailed multicompartmental models
[15, 16, 19] to generate a 1680 granule cell network. A
detailed model allows to focus on understanding how specific
temporal dynamics and the geometry of connections will
eventually determine the circuit output, as indicated by
the evident anomalies in network functioning and behavior
caused by single-gene mutations altering the physiology

Table 3: Total number of spikes in the granular layer network with
biophysically detailed neuron models.

Condition
In vitro In vivo

Without
inhibition

With
inhibition

Without
inhibition

With
inhibition

LTP 2736 864 4032 2304

Control 720 576 3600 2160

LTD 0 0 2016 864

Total number of spikes observed in the network under different conditions
like LTP (high intrinsic excitability and higher release probability), control,
and LTD (lower intrinsic excitability and lower release probability). Observe
that there are no spikes in vitro during LTD. Golgi inhibition operates a time-
window causing a significant reduction in spikes.

of single molecules or neurons [2]. The simulations also
attempt to understand and indicate certain functional the-
ories of feed-forward inhibition, sparse recoding via, spikes
and long-term plasticity.

LTP in granule cells [21] comprises of variation in release
probability and intrinsic excitability. The network model
was modified with higher intrinsic excitability observed by
changes to sodium channel properties and release probabil-
ities of MF synapses, thereby simulating granule cell LTP.
LTD [43] was also simulated by combining lower intrin-
sic excitability and low release probability. With varying
amounts of excitation, cells generated different number of
spikes. In the simulations, granule cells generated repetitive
nonadapting spike discharge in response to a continuous
stimulus [27, 28, 45]. Simulations on single granule neurons
in vitro suggested that granule neurons allowed spike burst
generation and resonance in a low-frequency band (between
4 and 10 Hz) [9, 46]. High-frequency bursting [44, 47–49]
was simulated to characterize network properties of granule
cells in vivo [26, 33].

3.3. Network Excitability Changes with Varying Excitatory
Release Probabilities. During events such as in epileptic
seizures, heterogeneous spiking activity is noticed [50]. To
understand the nature of spiking, we simulated the role of
excitation via mossy fiber. We simulated single spikes (low
frequency) and bursts (high frequency) so as to understand
spiking behavior in vitro and in vivo.

In the case of simulating in vitro behavior (see Sec-
tion 2.3) in granular layer network, with release probability
0.416 (control) the cells with normal intrinsic excitability
receiving 4 excitatory inputs produced spike doublet and
cells receiving 3 excitatory inputs produced single spikes
(see granule neuron electroresponsiveness in [19]). Cells
receiving 2 excitatory and 1 excitatory inputs did not produce
any spikes [19].

Decreasing MF synapse release probability from 0.3 to
0.1, many granule cells in the network did not generate
spikes. With increased release probability of MF synapses
from 0.42 to 0.6, there was an increase in number of spikes
(the number of spiking cells increased from 192 to 432)
with no significant change in first spike latency and spike
amplitude [36].
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Figure 3: Spike raster plots for the network in vivo with AdEx models. Network model using AdEx [14] neurons reproduce the spike raster
for in vivo firing dynamics. A short burst of 5 spikes at 500 Hz was given as inputs through the MF. Feed-forward inhibition affected the
network by reducing number of spikes (b). Network without inhibition (a) shows 1–7 spikes and simulates the role of Gabazine that blocks
GABAergic synapse.

With the higher release probabilities like 0.7, 0.8 of
MF synapses, the number of spikes saturated and the
number of spiking cells remained the same (as seen in 0.6
release probability of MF synapses). Varying synaptic release
probabilities, it was possible to generate selective responses.

Increasing intrinsic excitability from normal to higher
excitability by modifying sodium gating properties (see
Section 2.5) showed a significant increase in the spike
amplitude (∼6%) for all spiking cells, and an increased
number of spikes was observed only for the cells with higher
release probability and number of active MF synapses. This
change corresponded to long-term potentiation in granule
neurons [21] confirming the mechanisms role in spiking and

bursting. The number of spiking cells varied from 192 to 432
in the network of 1680 granule cells.

With in vivo inputs, the number of cells showed a
greater sensitivity with LTP (see Table 3) and the number of
nonspiking cells decreased. LTD showed decrease in firing-
nonfiring [43] cell ratio. The ratio of firing cells did not
change with the length of the burst (see Table 4).

3.4. Inhibition and Spike-Count Modulation. Golgi cells can
control both the temporal dynamics and the spatial distri-
bution of information transmitted through the cerebellar
granular layer network [43]. The strength of the inhibition
depends on the number of inhibitory connections and
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Figure 4: Histogram showing the effect of LTP and LTD on spiking in the network built with detailed biophysical models. Under in vitro (a)
like spike input via MF, the number of spikes changed from 720 to 2736 (gray bars). Control refers to the excitatory release probability, U ,
which was set to 0.416. The presence of inhibition showed a sharp modulation, and the number of spikes seen in the network was 576 and
during LTP it increased to 874 (black bars). LTD showed no spikes. Under in vivo (b), the change in number of spikes from control to LTP
was 3600 to 4032 and during LTD was 2016 (gray bars). With inhibition (black bar), the number of spikes in the 1680 cell network decreased
to 2304 (LTP), 2160 (control), and 864 (LTD).

Table 4: Modulation of spiking cells in vivo with varying release probability in the detailed network model.

MF release probability
MF input, 5 spikes/burst MF input, 9 spikes/burst

Number of spiking cells Number of nonspiking cells Number of spiking cells Number of nonspiking cells

0.1 1416 264 1416 264

0.2 1416–840 840–264 1416–840 840–264

Control, 0.4 1416–840 840–264 1416–840 840–264

0.5–0.8 1416–840 840–264 1416–840 840–264

synaptic release probability. The dynamics of the granule
cells-Golgi cell circuit were explained by the simultane-
ous activation of both neurons through the mossy fibers,
followed by activation of the feed-forward and feed-back
inhibitory loops [18, 51]. The granule and Golgi cell received
excitatory inputs from mossy fiber (MF) at the same time.
There are two basic patterns of mossy fiber activity that
can activate the Golgi cells, namely, protracted frequency-
modulated discharges and short high-frequency bursts [48,
52]. The inhibitory input from Golgi cell reaches the granule
cell with a loop delay of approximately 4 ms [53] compared
to the mossy fiber input through GABAergic synapses [2].
The inhibition-based time-windowing in granule cells allow
one or more spikes and is seemingly regulated by varying
inhibitory inputs.

Golgi cells converging through lateral connections onto
some granule cell subsets could generate combined inhibi-
tion [2, 8]. The impact of the inhibition on granular layer
circuitry differs with respect to two different properties:
amount of inhibitory connections and the GABAergic release
probability. The variation in the number of spikes with and
without inhibition was significant in both cases in vitro (see
Figure 4(a)) and in vivo (see Figure 4(b)). As expected, LTP
showed increased number of spikes compared to control,

while LTD showed reduced number of spikes. In vitro LTD
suppressed spikes (see Figure 4(a)).

During simulations as seen in vitro (see Figure 4(a)),
increased inhibition regulated the spike count rather than
affecting the number of spiking cells. Short burst through MF
produced∼7 spikes in single neurons, but inhibition showed
a sharp modulation by regulating the time-window. A long
burst produced slower modulation of spikes in the network.

The increase in inhibitory connections (see Table 5 and
Figure 5) to granule cells in the underlying network model
decreased number of spikes (see spike count in Figure 5,
control refers to release probability being set at normal
condition, U = 0.416), spike amplitude (if the spike rises
after the 4 ms time-window when inhibitory inputs reaches
the granule cell) and decreased spike latency.

Changing inhibitory (GABAergic) synapse release prob-
ability (Uinh), spike amplitude, and first spike latency were
affected [42]. Spike amplitude decreases whereas spike
latency remains unchanged, when Uinh varied [42].

The increase of inhibitory input increases the number of
silent cells (visible by the blue plateau in Figure 4), therefore
reducing the number of active cells. The simulations indicate
that the response of those granule cells that are intensely
activated will favor with the generation of a burst, regulated
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Figure 5: Effect of inhibition on variation in number of spikes and spiking cells. With varying inhibition, the number of spiking cells and
total number of spikes varied. With 1 spike via MF as input ((a), in vitro behaviour), the total number of spiking cells varied from 200–600
cells and 1-2 spikes modulated by the inhibitory inputs (x-axis). Tactile stimulation induced two types of bursts in vivo [33]. (b) shows the
number of spiking cells in vivo (as short burst of 5 spikes at 500 Hz via MF) with respect to changes in number of spikes as inhibitory inputs
(x-axis) were changed. Variation in the number of spiking cells and number of spikes is shown. With a longer burst (9 spikes at 500 Hz via
MF) in vivo (c), there were more spikes and inhibition did not cause a sharp change in number of spikes or spiking cells in the network (see
also Table 5). The number of active cells can be observed also by looking at the increase of the number of “silent” cells. The granule cells
favour a better role as signal-to-noise enhancers in the network [44] and facilitate burst-burst transmission.

mainly by feed-forward Golgi cell inhibition (see Figure 5
and [48]).

3.5. Center-Surround Excitation in Populations of Granule
Cells. To understand combinatorial effects in the granular
network layer and impacts of double mossy fiber bundle
stimulation, combined excitation-inhibition in the network
was simulated. The “spots” are maps of excitatory activity as

seen in the cerebellar granular layer [8] when MF rosettes
were stimulated [8]. In the model configuration (see Table 6),
the center of the spot receives stronger excitatory inputs and
the consecutive peripheral neurons receive weaker excitatory
input, thereby expressing a center-surround configuration
(see Figure 6). Both network models could reproduce the
firing dynamics [8] as well as the center-surround structure
(see movie, Supplementary Material available online at
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Figure 6: Center-surround “spot” activation. Varying levels of synaptic excitation in the spot (a) as mossy fiber inputs to granule cells in the
network were reconstructed. Three spots of which each spot had 384 granule cells (see Section 2.4), and the excitation potential was indicated
by the colormap. In the model configuration (a), the center of the spot receives stronger excitatory inputs and the consecutive peripheral
neurons receive weaker excitatory input, thereby expressing a center-surround configuration. Compared to the surround, the center detects
burst on a broader band and emits bursts with shorter lag, higher frequency, and longer duration [1]. Network model using detailed granule
neuron models reproduces the spike raster for in vivo firing dynamics and was similar to Figure 2. A short burst of 5 spikes at 500 Hz is passed
through the MF as inputs. Inhibition (b) blocked the spikes. Network without inhibition (a) shows 1–7 spikes via granule cells (Grcs).
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Figure 7: “Spot” activation and evoked LFP with selective NMDA dysfunction. Population code via evoked LFP in vitro response was
reconstructed. Control (a) shows the clear reproducibility of N2a and N2b waves [18]. NR2A/NR2B knockouts show selective dysfunction of
NMDA receptors. 1% (b), 5% (c), and 10% (d) cells with NMDA receptor blocked do not show much difference in population code although
intracellular spiking remains altered (not shown). A small decrease in peak amplitudes was noticed. The robustness of the population
code during spiking in granule cells adds to the sparse recoding theory [4] and clearly granule neurons favour their role as signal-to-noise
enhancers for sensory and tactile information received via the mossy fibers (MFs).
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Table 5: Effect of inhibition on number of spikes in the detailed network model.

Number of inhibitory fiber synapses
In vitro In vivo (short burst) In vivo (long burst)

4 MF 3 MF 2 MF 1 MF 4 MF 3 MF 2 MF 1 MF 4 MF 3 MF 2 MF 1 MF

0 2 1 0 0 7 5 3 0 8 6 3 0

1 2 1 0 0 6 4 2 0 7 5 2 0

2 1 1 0 0 5 3 0 0 6 4 1 0

3 1 1 0 0 4 2 0 0 5 3 0 0

4 1 1 0 0 3 1 0 0 4 2 0 0

The table shows the effect of inhibitory synapses on the spikes under different conditions (in vitro, in vivo (short burst); in vivo (long burst)). Under each
condition, first row denotes increasing number (1–4) of excitatory synapses from right to left while increasing number of inhibitory synapses (0–4 in first
column). With increase in number of inhibitory synapses (0–4), the number of spikes observed in the cells decreases. A gradual decrease in number of spikes
with increased inhibition can be observed.

Table 6: Center-surround pattern and spiking cells of detailed
granular layer network.

Number
of cells

Number of
active MF
synapses

Number of spikes

Network without
inhibition

Network with
inhibition

144 4 7 spikes/burst 6 spikes/burst

432 3 5 spikes/burst 3 spikes/burst

144 2 2 spikes/burst EPSP

432 1 EPSP EPSP
aCells with 4 excitatory inputs produced 7 spikes/burst when inhibitory
synapse was switched off and produced 5 spikes/burst when it was switched
on.

doi: 10.115/2012/359529). Spiking activity was reconstructed
with the morphology (see Section 2.4). A single spike
through the mossy fiber activates the center followed by the
periphery and the Golgi-granule circuit.

Simulation of LTP and LTD induction in vitro and in
vivo on the center-surround spots was modeled by varying
release probabilities and intrinsic excitability. The cells in
the granular layer network receive GABAergic synaptic
inputs equal to the number of excitatory inputs given
to the cells in the granular layer network (see Table 5).
The high reproducibility indicates that the center-surround
organization was a consequence of alternating transitions
between burst and silent states at granule cells was not due
to the temporal jitter of MFs [54].

The center-surround structures have complex transmis-
sion properties: compared to the surround, the center detects
burst on a broader band and emits bursts with shorter lag,
higher frequency, and longer duration [1]. Purkinje cells
overlaying above these structures may be activated, at the
same time, enhance inhibition around them, explaining the
spot-like organization of molecular layer responses in vivo
[8].

3.6. Local Field Potential and Selective Blocking of NMDA.
Understanding population code through reconstructions
was essentially done to suggest how encoding of spike
information may happen in cerebellar cortex. Currently,
encoding of population activity is explored in microcircuits
via comparisons of spatiotemporal properties of simulated

neural activity and with experimental measurements using
multielectrode recordings [55, 56] or two-photon imaging of
activity in blocks of tissue [57, 58]. Evoked responses from
granular layer in vitro [19] have been reconstructed compu-
tationally [13, 26]. We used the “spot” to generate and test
nature of local field potentials. The postsynaptic evoked LFP
response varied as per input pattern and for a combination
of 3 MF and 4 MF synaptic activation, spikes were generated.
With 4 MF synapses active, a doublet was seen [19]. Corre-
spondingly the responses generated N2a wave and the doublet
caused the N2b wave. Inhibition at time = 24 ms via GABAer-
gic synapses suppressed the spike doublet and thereby
suppressed the N2b wave [8] in the evoked LFP response.

Different segments of the network generated varied
evoked LFP signals due to the nature of excitatory-inhibitory
balance in the network reflecting a relationship different
from the extracellular components of a single neuron (see
Figure 9 in [13]). We assumed extracellular space in granular
layer to be isopotential [26] due to close packing of granule
neurons. The simulations closely followed experimental
results [8], suggesting that electrotonic compactness of gran-
ule neurons contribute to the seemingly linear relationship
from granule cell clusters in the granular layer extracellular
space. The variations in the nature of spike with number
of spiking cells could suggest that sparse coding could be
preserved as suggested by Marr [4] and Albus [3].

Blocking NMDA receptors [59] in granule neurons
showed reduced excitation. Selective disabling of NMDA
receptors, as noticed in mice with NR2A/NR2B [59] muta-
tions, showed decreased number of spikes which is also
seen as a change in N2a amplitude compared to control
(Figure 7(a)). In order to predict on the nature of such
mutations affecting network computation (in addition to
affecting the number of spikes), we randomly disabled (1%,
5%, and 10% of total cells) NMDA receptors in the network
(see circles in Figures 7(b), 7(c), and 7(d)) and reconstructed
the local field response.

Disabling NMDA receptors in 1–10% of cells showed a
2.5% decrease in number of spikes in a spot (the number
of spiking neurons in a 720-cell “spot” changed from 240 to
234). The network model clearly showed a “seemingly linear”
outlook in propagating the nonlinearities of individual
neurons in population code (evoked LFP, see Figures 7(a)
to 7(d)). This “sense of linearity” in population code was
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observed also when the number of affected neurons was very
low (neurons with NMDA disabled were only 1–10% of total
cells). NMDA knockout mice show errors in cerebellar motor
learning [59]. Plasticity changes were also reflected in the
evoked LFP waves. As seen in reconstructions based on single
granule neuron simulations [26], the LFP simulations on the
network showed that LTP and LTD were accompanied by
changes in the proportion of discharging granule cells (data
not shown).

4. Discussion

Exploring the geometry of excitation and inhibition in
cerebellar granular layer, the simulations highlight the mod-
ulatory role of inhibitory inputs on the activities of granule
cells. The paper details the effects of combined excitation
and combined feed-forward inhibition [8] on spiking in
the granular layer. The study did not simulate feed-back
inhibition coming from Golgi cell since it did not affect the
modulation of 4 ms time-window that happens because of
the early mossy inputs.

The simulations varying inhibition suggest that granule
neurons can generate selective responses by varying synaptic
strengths. The increase in spikes and modulation during
plasticity indicates that the circuit is well adapted to generate
enhanced responses such as in theta-burst patterns [9].

Both in vitro and in vivo simulations indicate that
inhibitory input cannot completely block excitation in the
network. However, it acts as a modulator that regulates the
postsynaptic excitability. Both models support that burst-
burst transmission modality in granule neuron and the
granular layer through which high-frequency spike trains
are more reliably transmitted. The consequences of transfor-
mation of spike inputs from mossy fibers to corresponding
codes suggest the variable impulse response scheme indicated
by previous study [10] and suggest the granular layer
network also operates as an adaptive filter.

The variations of excitatory inputs (without combination
of inhibition) showed differences in number of spikes and
spike amplitude and did not show variations in first-spike
latency [60]. The most promising outcome in variation
of spikes and network spiking behavior was with the
induction of LTP/LTD where both intrinsic excitability and
excitatory release probabilities [21, 43] change the nature of
information flow.

Simple spiking neuron models can be tuned to function
as network models for accessing timing information. Spatial
information in network models [19] was not seen while using
spiking models. Synaptic functions in spiking models are
not very reliable. Artificial models have limitations unlike
biophysical models for understanding certain population
activities like generation of LFP [13].

The detailed model was used as a test bench to explore the
parameter space and induced plasticity. Epileptic seizure-like
symptoms seen in voltage-gated sodium channel binding-
related knockout mice granule neurons [7, 50] suggests that
sparse and asynchronous neuronal activity can evolve into a
single hypersynchronous cluster with elevated spiking rates
at seizure initiation. The detailed network model suggests

that LTP favors burst-burst transmission favoring high-
frequency spikes. The presynaptic mechanism coexisted with
postsynaptic regulation of ionic channels, which played a
major role in determining the granule cell output firing
frequency. Intrinsic bursting and modulatory effects of
inhibition can be seen by mechanistic control of number of
spikes in a granule cell.

With increased excitation, along with an increase in
spikes, first-spike latency also decreased. This will also impact
the local field potential and could probably explain the obser-
vations in vitro [18]. Both in vitro and in vivo simulations
indicate that the number of spikes was dependent on the
release probability of the synapses, while higher or lower
intrinsic excitability caused slight change in spike amplitude.

The key role of local circuit inhibition in determining
granular layer combinatorial operations was supported by
several model-based predictions. Increasing active inhibitory
connections saw lesser number of spikes in the network.
In vivo bursts along mossy fibers combined with inhibitory
input showed a consistent reduction of at least one spike
as inhibition increased. The simulations indicated that the
response of those granule cells that are intensely activated
will favor with the generation of a burst, whose duration
is limited by a brisk feed-forward inhibition in the Golgi
cell. Inhibition controlled the number of spikes, thereby
modulating spike transmission in the granular layer. The
simulations suggest that erratic spikes in the mossy fibers
will not be efficiently transmitted so that the burst-burst
mechanism would indeed play a role in secure transmission
along the mossy fiber pathway [48]. The studies also
show that excitation and inhibition may consequently allow
complex patterns to be processed [11].

The paper also shows population signals and effects
of mechanism changes on individual neuron affecting
population code generated by the network. Reconstructing
extracellular properties indicated that plasticity may have
similar mechanisms of burst regulation as granule cell burst
initiation and may implement an adaptable delay affecting
downstream activation into circuitry. The granular layer
model indicates a “seemingly linear” tendency to propagate
the nonlinearities of individual neurons via the population
code even when the variations are little (affected cells 1–
10% of total). The simulations suggest that a combined
mechanism of NMDA blocking the After-hyperpolarization
(AHP) and role of inhibition can help reconstruct transient
suppression of spikes in vitro reported during seizures.

The studies on intensity of mossy fiber synapses and
inhibitory synapses help to understand spatiotemporal
operations [8] in the cerebellar granular layer. Combining
granule neurons and Golgi cell, this study will help to
reveal coincidence detection properties and spatial pattern
separation [3]. This work is a preliminary start in modeling
to understanding long sought spatiotemporal filtering pre-
dicted by the motor learning theory [61].

5. Conclusion

Simulations suggest how cerebellum granular layer processes
spike information and how afferent information may reach
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cerebellar cortex and predict how spikes are processed as
indicated in the sparse recoding hypothesis [4]. The role of
inhibition and plasticity may help fine tune the “sparseness”
of the code as indicated in Marr’s theory [3, 4]. To evaluate
the exact role of firing, a closer view of cells in the region
of interest may be needed. The experimental testing of
these predictions will require further electrophysiological
and imaging investigations of granular layer activity and
computational modelling of the cerebellum [1] and of the
cerebro-cerebellar control loops [62, 63].
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