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Aiming at the phenomenon of slow convergence rate and low accuracy of bat algorithm, a novel bat algorithm based on differential
operator and Lévy flights trajectory is proposed. In this paper, a differential operator is introduced to accelerate the convergence
speed of proposed algorithm, which is similar to mutation strategy “DE/best/2” in differential algorithm. Lévy flights trajectory
can ensure the diversity of the population against premature convergence and make the algorithm effectively jump out of local
minima. 14 typical benchmark functions and an instance of nonlinear equations are tested; the simulation results not only show
that the proposed algorithm is feasible and effective, but also demonstrate that this proposed algorithm has superior approximation
capabilities in high-dimensional space.

1. Introduction

Nowadays, since the evolutionary algorithm can solve some
problem that the traditional optimization algorithm cannot
do easy, the evolutionary algorithms are widely applied in
different fields, such as the management science, engineering
optimization, scientific computing. More and more mod-
ern metaheuristic algorithms inspired by nature or social
phenomenon are emerging and they become increasingly
popular, for example, particles swarms optimization (PSO)
[1], firefly algorithm (FA) [2, 3], artificial chemical reaction
optimization algorithm (ACROA) [4], glowworm swarms
optimization (GSO) [5], invasive weed optimization (IWO)
[6], differential evolution (DE) [7–9], bat algorithm (BA)
[2, 10], and so on [11–15]. Some researchers have proposed
their hybrid versions by combining two or more algorithms.

Bat Algorithm (BA) is a novel metaheuristic optimization
algorithm based on the echolocation behaviour of microbats,
which was proposed by Yang in 2010 [2, 10]. This algorithm
gradually aroused people’s close attention, and which is
increasingly applied to different areas. Tsai et al. (2011)

proposed an improved EBA to solve numerical optimization
problems [16]. A multiobjective bat algorithm (MOBA) is
proposed by Yang (2011) [17], which is first validated against
a subset of test functions, and then applied to solve multi-
objective design problems such as welded beam design. In
2012, Bora et al. applied BA to solve the Brushless DCWheel
Motor Problem [18]. Although the basic BA has remarkable
property compared against several traditional optimization
methods, the phenomenon of slow convergence rate and
low accuracy still exists. Therefore, in this paper, we put
forward an improved bat algorithm based on differential
operator and Lévy flights trajectory (DLBA), the purpose is to
improve the convergence rate and precision of bat algorithm.
At the end of this paper, we tested 14 typical benchmark
functions and applied them to solve nonlinear equations;
the simulation results not only showed that the proposed
algorithm is feasible and effective, which is more robust, but
also demonstrated the superior approximation capabilities in
high-dimensional space.

The rest of this study is organized as follows. In Section 2,
the basic bat algorithm and Lévy flights were described.
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In Section 3, we gave the design framework of DLBA. The
implementation and comparison of improved algorithm are
presented in Section 4. Finally, we concluded this paper in
Section 5.

2. Bat Algorithm, Lévy Flights, and
Nonlinear Equations

2.1. Behaviour of Microbats. Most of microbats have ad-
vanced capability of echolocation. These bats can emit a very
loud and short sound pulse; the echo that reflects back from
the surrounding objects is received by their extraordinary big
auricle. Then, this feedback information of echo is analyzed
in their subtle brain.They not only can discriminate direction
for their own flight pathway according to the echo, but also
can distinguish different insects and obstacles to hunt prey
and avoid a collision effectively in the day or night.

2.2. Bat Algorithm (see [10]). First of all, let us briefly review
the basics of the BA for single-objective optimization. In the
basic BA developed by Yang in 2010, in order to propose the
bat algorithm inspired by the echolocation characteristics of
microbats, the following approximate or idealised rules were
used.

IR1. All bats use echolocation to sense distance, and they also
“know” the difference between food/prey and background
barriers in some magical way.

IR2. Bats fly randomly with velocity V
𝑖
at position 𝑥

𝑖
with

a fixed frequency 𝑓min, varying wavelength 𝜆, and loudness
𝐴
0
to search for prey. They can automatically adjust the

wavelength (or frequency) of their emitted pulses and adjust
the rate of pulse emission 𝑟 ∈ [0, 1], depending on the
proximity of their target.

IR3. Although the loudness can vary in many ways, we
assume that the loudness varies from a large (positive) 𝐴

0
to

a minimum constant value 𝐴min.
In addition, for simplicity, they also use the follow-

ing approximations: in general, the frequency 𝑓 in a
range [𝑓min, 𝑓max] corresponds to a range of wavelengths
[𝜆min, 𝜆max]. In fact, they just vary in the frequency while
fixed in the wavelength 𝜆 and assume 𝑓 ∈ [0, 𝑓max] in their
implementation.This is because 𝜆 and𝑓 are related due to the
fact that 𝜆𝑓 = V is constant.

In simulations, they use virtual bats naturally to define the
updated rules of their positions 𝑥

𝑖
and velocities V

𝑖
in a D-

dimensional search space.The new solutions 𝑥𝑡
𝑖
and velocities

V𝑡
𝑖
at time step 𝑡 are given by

𝑓
𝑖
= 𝑓min + (𝑓max − 𝑓min) 𝛽,

V
𝑡

𝑖
= V
𝑡−1

𝑖
+ (𝑥
𝑡

𝑖
− 𝑥
∗
) 𝑓
𝑖
,

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ V
𝑡

𝑖
,

(1)

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform
distribution. Here, 𝑥

∗
is the current global best location

(solution) which is located after comparing all the solutions
among all the 𝑛 bats.

For the local search part, once a solution is selected
among the current best solutions, a new solution for each bat
is generated locally using random walk:

𝑥new = 𝑥old + 𝜀𝐴 𝑡, (2)

where 𝜀 ∈ [−1, 1] is a random number, while𝐴
𝑡
= ⟨𝐴
𝑡

𝑖
⟩ is the

average loudness of all the bats at this time step.
Furthermore, the loudness 𝐴

𝑖
and the rate 𝑟

𝑖
of pulse

emission have to be updated accordingly as the iterations
proceed. These formulas are

𝐴
𝑡+1

𝑖
= 𝛼𝐴
𝑡

𝑖
, (3)

𝑟
𝑡+1

𝑖
= 𝑟
0

𝑖
[1 − exp (−𝛾𝑡)] , (4)

where 𝛼 and 𝛾 are constants.
Based on these approximations and idealization, the

basic steps of the bat algorithm can be summarized in the
Pseudocode 1.

2.3. Lévy Flights. Lévy flights are Markov processes, which
differ from regular Brownian motion, whose individual
jumps have lengths that are distributed with the probability
density function (PDF) 𝜆(𝑥) decaying at large 𝑥 as 𝜆(𝑥) =
|𝑥|
−1−𝛼 with 0 < 𝛼 < 2. Due to the divergence of their var-

iance, 𝜆(𝑥) ≃ 𝑥|−1−𝛼, extremely long jumps may occur, and
typical trajectories are self-similar, on all scales showing
clusters of shorter jumps interspersed by long excursions [19].
Lévy flight has the following properties [20]:

(1) Stability: distribution of the sum of independent
identically distributed stable random variables equal
to distribution of each variable.

(2) Power law asymptotics (“heavy tails”).
(3) Generalized Central Limit Theorem: The central limit

theorem states that the sum of a number of inde-
pendent and identically distributed (i.i.d.) random
variables with finite variances will tend to a normal
distribution as the number of variables grows.

(4) Which has an infinite variance with an infinite mean
value.

Due to the these remarkable properties of stable distri-
butions, it is now believed that the Lévy statistics provide a
framework for the description ofmany natural phenomena in
physical, chemical, biological, and economical systems from
a general common point of view.

Furthermore, various studies have shown that the flight
behaviour of many animals and insects has demonstrated
the typical characteristics of Lévy lights. A recent study
by Reynolds and Frye shows that fruit flies, or Drosophila
melanogaster, explore their landscape using a series of straight
flight paths punctuated by a sudden 90∘ turn, leading to a
Lévy flight-style intermittent scale-free search pattern [21].
Studies on human behaviour such as the Ju/’hoansi hunter-
gatherer foraging patterns also show the typical feature of
Lévy flights [22]. The conclusion that light is related to Lévy
flights is proposed by Barthelemy et al. (2008) [23]. The
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Objective function 𝑓(𝑥), 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
]
𝑇

Initialize the bat population 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) and V

𝑖

Define pulse frequency 𝑓
𝑖
at 𝑥
𝑖
initialize pulse rates 𝑟

𝑖
and the loudness 𝐴

𝑖

While (𝑡 <Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions (1)
if (rand > 𝑟

𝑖
)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < 𝐴

𝑖
& 𝑓(𝑥

𝑖
) < 𝑓(𝑥

∗
))

Accept the new solutions
Increase 𝑟

𝑖
and reduce 𝐴

𝑖

end if
Rank the bats and find the current best 𝑥

∗

end while
Postprocess results and visualization

Pseudocode 1

study by Mercadier et al. shows that the Lévy flights of
photons in hot atomic vapours (2009) [24]. Subsequently,
such behaviour has been applied to optimization and optimal
search, and preliminary results show its promising capability.

2.4. Description of the Nonlinear Equations (see [25]). The
general form of nonlinear equations with real variables is
described as follows:

𝑔
𝑖 (
𝑋) = 0, 𝑖 = 1, 2, . . . , 𝑛, (5)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐷 ⊂ 𝑅

𝑛, 𝐷 = {(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) |

𝑎
𝑖
≤ 𝑥
𝑖
≤ 𝑏
𝑖
, 𝑖 = 1, 2, . . . , 𝑛}.

In solving nonlinear equations process for DLBA, the
fitness function can be constructed by

𝐺 (𝑋) =

𝑛

∑

𝑖=1





𝑔
𝑖 (
𝑥)




. (6)

So, the solving of nonlinear equations can be translated into
an optimization problem in domain𝐷:

min 𝐺 (𝑋)

s.t (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐷.

(7)

Consequently, the optimal value of (7) is exactly the solution
of (5).

3. DLBA

Inspired by Yang’s method, we propose an improved bat
algorithm based on differential operator and Lévy-flights
trajectory (DLBA) based on the basic structure of BA and
re-estimate the characters used in the original BA. In DLBA,
not only the movement of the bat is quite different from the
original BA, but also the local search process is different.

In DLBA, the frequency fluctuates up and down, which
can change self-adaptively, and the differential operator is
introduced, which is similar to themutation operation of DE,
the frequency 𝑓 is similar to the scale factor 𝐹 of DE/best/2.
So, the frequency updated formulae of a bat are defined as
follows:

𝑓
𝑡

1𝑖
= ((𝑓

1,min − 𝑓1,max)
𝑡

𝑛
𝑡

+ 𝑓
1,max)𝛽1, (8)

𝑓
𝑡

2𝑖
= ((𝑓

2,max − 𝑓2,min)
𝑡

𝑛
𝑡

+ 𝑓
2,min)𝛽2, (9)

where 𝛽
1
, 𝛽
2
∈ [0, 1] is a random vector drawn from a uni-

form distribution, 𝑓
1,max = 𝑓

2,max, 𝑓1,min = 𝑓
2,min, 𝑛𝑡 is a

fixed parameter. In DLBA, the position 𝑥𝑡
𝑖
of each bat indi-

vidual are updated with (10), which is different from original
BA.This can preferably incorporate the echolocation charac-
teristics of microbats:

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

best + 𝑓
𝑡

1𝑖
(𝑥
𝑡

𝑟1
− 𝑥
𝑡

𝑟2
) + 𝑓
𝑡

2𝑖
(𝑥
𝑡

𝑟3
− 𝑥
𝑡

𝑟4
) , (10)

where 𝑥𝑡best is the current global best location (solution)
which is located after comparing all the solutions among all
the 𝑛 bats in 𝑡 generation, 𝑥𝑡

𝑟𝑖
is the bat individual in the bat

swarm, and this can be achieved by randomization.
In addition, Lévy flight haves the prominent properties

increase the diversity of population, sequentially, which can
make the algorithmeffectively jumpout of the local optimum.
So, we let these bats perform the Lévy flights with (11) before
the position updating:

𝑥
𝑡

𝑖
= �̂�
𝑡−1

𝑖
+ 𝜇 sign [rand − 0.5] ⊕ Levy, (11)

where 𝜇 is a random parameter drawn from a uniform
distribution, sign ⊕means entrywise multiplications, rand ∈
[0, 1], and random step length Levy obeys Lévy distribution:

Levy ∼ 𝑢 = 𝑡−𝜆, (1 < 𝜆 ≤ 3) . (12)
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Input:Objective function 𝑓(𝑥), 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
]
𝑇; algorithm’s parameters 𝑛, 𝑓min, 𝑓max, 𝛼, 𝑛𝑡;

BEGIN
For 𝑖 = 1 To 𝑛 do

Initialize 𝑥𝑡
𝑖
, 𝑟0
𝑖
, 𝐴0
𝑖
;

Calculating the initial fitness;
End For
While (𝑡 < itermax)

Update position use formula (8)∼(12);
Evaluate fitness 𝑓(𝑥

𝑖
) to find 𝑥best ;

For 𝑖 = 1 To 𝑛 do
If (rand > 𝑟

𝑖
)

Generate a 𝑥new around the selected best solution use formula (2);
End If

End For
Evaluate fitness 𝑓(𝑥new);
For 𝑖 = 1 To 𝑛 do

If (rand < 𝐴
𝑖
)

Generate a 𝑥new around the selected best solution use formula (13);
End If

End For
Evaluate fitness 𝑓(𝑥new);
If (𝑓(𝑥𝑡+1best) < 𝑓(𝑥

𝑡

best))
Update 𝑟𝑡

𝑖
, 𝐴𝑡
𝑖
use formula (3), (14);

End If
𝑡 = 𝑡 + 1;

EndWhile
END
Output: 𝑥best , fitnessmin;

Pseudocode 2

On the other hand, each bat should have different values
of loudness and pulse emission rate, while the rate of pulse
emission is relatively low and the loudness is relatively high.
During the search process, the loudness usually decreases,
while the rate of pulse emission increases. Bats’ position
variation is influenced by the pulse emission rate and loud-
ness as well. Firstly, pulse emission rate 𝑟

𝑖
causes fluctuation

of position using (2); sequentially, more and more new
position can be explored. Secondly, loudness𝐴

𝑖
is designed to

strengthen local search and to guide bats find better solutions:

𝑥new = 𝑥best + 𝜂𝑟𝑡, (13)

where 𝜂 ∈ [−1, 1] is a random parameter, and 𝑥best is the
current global best location (solution) in whole bats swarm.
While 𝑟

𝑡
= ⟨𝑟
𝑡

𝑖
⟩ is the average pulse emission rate of all the

bats at this generation.
The new rate of pulse emission 𝑟𝑡

𝑖
and loudness𝐴𝑡

𝑖
at time

step 𝑡 are given by

𝑟
𝑡+1

𝑖
= 𝑟
𝑡

𝑖
(

𝑡

𝑛
𝑡

)

3

, (14)

where 𝑟𝑡
𝑖
is time varying; their loudness and emission rates

will be updated only if the best solution of the current
generation is better than the best solution of last generation,
which means that these bats are moving towards the optimal
solution. The pseudocode of DLBA can be depicted as in
Pseudocode 2.

4. The Simulation and Analysis

4.1. Parametric Studies. The proposed DLBA is imple-
mented in MATLAB, simulation platform: CPU Intel Xeon
E5405@2.00GHz; OS: Microsoft Windows Server 2003
Enterprise Edition SP2; RAM: 1GHz; Matlab Version:
R2009a. The parameter setting for BA and DLBA are listed
in Table 1, the parameters of BA are recommended in the
original article.

The stopping criterion can be defined in many ways. We
adopt two terminated criteria: we can use a given tolerance
(Tol = 1.0𝑒 − 5) for a test function that have certain mini-
mum value in theory; on the contrary, each simulation run
terminates when a certain number of function evaluations
(FEs) have been reached. In this paper, FEs could be obtained
by population size multiplied by the number of iteration. In
our experiment, FEs = 24000, BA (= 300∗40∗2); DLBA (=
200∗40∗3).

4.2. BenchmarkTest Function. In order to validate the validity
of DLBA, we selected the 14 benchmark functions to experi-
mentize. The benchmark set include unimodal, multimodal,
high-dimensional, and low-dimensional unconstrained opti-
mization benchmark functions, where 𝑓

1
–𝑓
3
are unimodal

functions, 𝑓
4
–𝑓
14

are multimodal functions; 𝑓
1
–𝑓
9
have

certain theoretical minimum and 𝑓
10
–𝑓
14

have uncertain
theoretical minimum.
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Table 1: The parameter set of BA and DLBA.

Algorithms 𝑛 𝑓min 𝑓max 𝐴
0

𝑖
𝑟
0

𝑖
𝛼 𝛾 𝑛

𝑡

BA 40 0 100 (1, 2) (0, 0.1) 0.9 0.9 —
DLBA 40 0 1 (1, 2) (0, 0.1) 0.9 — 5000

(1) 𝑓
1
: sphere function (the first function of De Jong’s test

set),

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
, −10 ≤ 𝑥

𝑖
≤ 10. (15)

Here, 𝑛 is dimensionality; this function has a globalminimum
𝑓min = 0 at 𝑥∗ = (0, 0, . . . , 0).

(2) 𝑓
2
: Schwegel’s problem 2.22,

𝑓 (𝑥) =

𝑛

∑

𝑖=1





𝑥
𝑖





+

𝑛

∏

𝑖=1





𝑥
𝑖





, −10 ≤ 𝑥

𝑖
≤ 10, (16)

whose global minimum is obviously 𝑓min = 0 at 𝑥
∗
= (0,

0, . . . , 0).
(3) 𝑓
3
: Rosenbrock function,

𝑓 (𝑥) =

𝑛−1

∑

𝑖=1

[(𝑥
𝑖
− 1)
2
+ 100(𝑥

𝑖+1
− 𝑥
𝑖

2
)

2

] ,

−2.408 ≤ 𝑥
𝑖
≤ 2.408,

(17)

which has a global minimum 𝑓min = 0 at 𝑥∗ = (1, 1, . . . , 1).
(4) 𝑓
4
: Eggcrate function,

𝑓 (𝑥, 𝑦) = 𝑥
2
+ 𝑦
2
+ 25 (sin2𝑥 + sin2𝑦) ,

(𝑥, 𝑦) ∈ [−2𝜋, 2𝜋] .

(18)

This 2-dimensional test function obviously gets the global
minimum 𝑓min = 0 at (0, 0).

(5) 𝑓
5
: Ackley’s function,

𝑓 (𝑥) = −20 exp[

[

−

1

5

√

1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
]

]

− exp[1
𝑛

𝑛

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)] + 20 + 𝑒,

− 30 ≤ 𝑥 ≤ 30.

(19)

This function has a global minimum 𝑓min = 0 at 𝑥
∗
=

(0, 0, . . . , 0), which is a multimodal function.
(6) 𝑓
6
: Griewangk’s function,

𝑓 (𝑥) =

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1, −600 ≤ 𝑥
𝑖
≤ 600.

(20)

Its global minimum equal 𝑓min = 0 is obtainable for 𝑥
∗
=

(0, 0, . . . , 0), the number of local minima for arbitrary 𝑛 is

unknown, but in the two-dimensional case there are some
500 local minima.

(7) 𝑓
7
: Salomon’s function,

𝑓 (𝑥) = − cos(2𝜋√
𝑛

∑

𝑖=1

𝑥
2

𝑖
) + 0.1√

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ 1, −5 ≤ 𝑥

𝑖
≤ 5,

(21)

which has a global minimum 𝑓min = 0 at 𝑥∗ = (0, 0, . . . , 0),
and is a multimodal function.

(8) 𝑓
8
: Rastrigin’s function.

𝑓 (𝑥) = 10𝑛 +

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
)] , −5.12 ≤ 𝑥

𝑖
≤ 5.12,

(22)

whose global minimum is 𝑓min = 0 at 𝑥
∗
= (0, 0, . . . , 0);

for 𝑛 = 2, there are about 50 local minimizers arranged in
a lattice-like configuration.

(9) 𝑓
9
: Zakharov’s function,

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ (

1

2

𝑛

∑

𝑖=1

𝑖𝑥
𝑖
)

2

+ (

1

2

𝑛

∑

𝑖=1

𝑖𝑥
𝑖
)

4

, −10 ≤ 𝑥
𝑖
≤ 10,

(23)

whose global minimum is 𝑓min = 0 at 𝑥∗ = (0, 0, . . . , 0); it is
a multimodal function as well.

(10) 𝑓
10
: Easom’s function,

𝑓 (𝑥, 𝑦)=−cos (𝑥) cos (𝑦) exp [−(𝑥−𝜋)2+(𝑦−𝜋)2] ,

−10 ≤ 𝑥, 𝑦 ≤ 10,

(24)

whose global minimum is 𝑓min = −1 at (𝜋, 𝜋); it has many
local minima.

(11) 𝑓
11
: Schwegel’s function,

𝑓 (𝑥) = −

𝑛

∑

𝑖=1

𝑥
𝑖
sin(√


𝑥
𝑖





) , −500 ≤ 𝑥

𝑖
≤ 500, (25)

whose global minimum is 𝑓min ≈ −418.9829𝑛 occuring at
𝑥
∗
≈ (420.9687, . . . , 420.9687).
(12) 𝑓

12
: Shubert’s function,

𝑓 (𝑥, 𝑦)=[

5

∑

𝑖=1

𝑖 cos (𝑖+(𝑖+1) 𝑥)] ⋅ [
5

∑

𝑖=1

𝑖 cos (𝑖+(𝑖+1) 𝑦)] ,

−10 ≤ 𝑥, 𝑦 ≤ 10.

(26)

The number of local minima for this problem is not known
but for 𝑛 = 2, the function has 760 local minima, 18 of which
are global with 𝑓min ≈ −186.7309.
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(13) 𝑓
13
: Xin-She Yang’s function,

𝑓 (𝑥) = −(

𝑛

∑

𝑖=1





𝑥
𝑖





) exp(−

𝑛

∑

𝑖=1

𝑥
2

𝑖
) , −10 ≤ 𝑥

𝑖
≤ 10, (27)

which has multiple global minima, for example, for 𝑛 = 2, it
has 4 equal minima 𝑓min = −1/√𝑒 ≈ −0.6065 at (0.5, 0.5),
(0.5-0.5), (−0.5, 0.5), and (−0.5, −0.5).

(14) 𝑓
14
: “Drop Wave” function,

𝑓 (𝑥) = −

1 + cos(12√∑𝑛
𝑖=1
𝑥
2

𝑖
)

(1/2) (∑
𝑛

𝑖=1
𝑥
2

𝑖
) + 2

, −5.12 ≤ 𝑥
𝑖
≤ 5.12.

(28)

This two-variable function is a multimodal test function,
whose global minimum is 𝑓min = −1 occurs at 𝑥

∗
=

(0, 0, . . . , 0).

4.3. Comparison of Experimental Results. The 2D landscape
of Schwegel’s function is shown in Figure 1, and this global
minimum can be found after about 720 FEs for 40 bats after
6 iterations as shown in Figures 2, 3, and 4.

We adopt different terminated criteria aiming at different
benchmark function, we perform 100 times independently
for each test function, and the record is given in Tables 2 and
3.

From Table 2, we can see that the DLBA performs much
better than the basic bat algorithm, which converges much
faster than BA under the fixed accuracy Tol = 1.0𝑒 − 5. In
our experiment, for the function 𝑓

4
, we proposed that an

algorithm only costs 6 generations under the best situation,
and the average generations is 10. Furthermore, for the first
group of test functions 𝑓

1
–𝑓
9
, the DLBA averagely expend

43.9 generations when each function attains its terminated
criteria; however, the BA needs 200 generations invariably,
and the convergence speed of DLBA advances 298.57% times.
On other hand, the DLBAwhich obtained the accuracy of the
solution is much superior to BA, which is more approximate
to the theoretical value. In aword, it demonstrated thatDLBA
has fast convergence rate and high precision of the solutions.

In Table 3, the five functions (𝑓
10
–𝑓
14
) independently

runs 100 times under the 24000 Fes; we can clearly see
the precision of DLBA is obviously superior to the bat
algorithm. Some benchmark functions can easily attain the
theoretical optimal value. In addition, the standard deviation
of DLBA is relatively low. It shows that DLBA has superior
approximation ability.

Observe Tables 2 and 3, no matter high-dimensional
or low-dimensional, we can find that DLBA can quickly
converge to the global minima. Furthermore, Figures 5, 6,
7, 8, and 9 show the convergence curves for some of the
functions from a particular run of DLBA and BA, which end
at 200 generations. The adaptive scheme generally converges
faster than the basic scheme. Here, we select 𝑓

2
(D = 20), 𝑓

4

(D = 2), 𝑓
7
(D = 5), 𝑓

11
(D = 2), and 𝑓

13
(D = 2).

DLBAnot only has superior approximation ability in low-
dimensional space, but also has excellent global search ability
in high-dimensional situation. Table 4 is the experimental

result that DLBA performs 50 times independently under the
high-dimensional situation. As shown in Table 4, we can be
conscious that the DLBA is effective under the multidimen-
sional condition, and acquired solution has higher accuracy,
even approximate the theoretical value.

Figures 10, 11, 12, 13, and 14 are the distribution map of
optimal fitness; that is the selected functions independently
perform 50 times under the multidimensional situation.
Figure 13 show that two “straight line”, we can see in the figure
that DLBA reaches the global optimum(−1), however, BA
fluctuates around 0. In order to display the fact of fluctuation,
we magnify the two “straight line”, and the amplifying
effect are depicted in Figures 15 and 16. According to the
experimental results which are obtained from selected test
functions, DLBA presents higher precision than the original
BA on minimizing the outcome as the optimization goal.

4.4. An Application for Solving Nonlinear Equations

Interval Arithmetic Benchmark (IAB). We consider one
benchmark problem proposed from interval arithmetic, the
benchmark consists of the following system of [25]:

0 = 𝑥
1
− 0.25428722 − 0.18324757𝑥

4
𝑥
3
𝑥
9
,

0 = 𝑥
2
− 0.37842197 − 0.16275449𝑥

1
𝑥
10
𝑥
6
,

0 = 𝑥
3
− 0.27162577 − 0.16955071𝑥

1
𝑥
2
𝑥
10
,

0 = 𝑥
4
− 0.19807914 − 0.15585316𝑥

7
𝑥
1
𝑥
6
,

0 = 𝑥
5
− 0.44166728 − 0.19950920𝑥

7
𝑥
6
𝑥
3
,

0 = 𝑥
6
− 0.14654113 − 0.18922793𝑥

8
𝑥
5
𝑥
10
,

0 = 𝑥
7
− 0.42937161 − 0.21180486𝑥

2
𝑥
5
𝑥
8
,

0 = 𝑥
8
− 0.07056438 − 0.17081208𝑥

1
𝑥
7
𝑥
6
,

0 = 𝑥
9
− 0.34504906 − 0.19612740𝑥

10
𝑥
6
𝑥
8
,

0 = 𝑥
10
− 0.42651102 − 0.21466544𝑥

4
𝑥
8
𝑥
1
.

(29)

Some of the solutions obtained as well as the function
values (which represent the values of the system’s equations
obtained by replacing the variable values) are presented in
Table 5. From Table 5, we can obviously observe that the
function value of each equation solved byDLBA is superior to
which solved by EA [25], depending on the statistics of the 40
function values, the precision of function values is enhanced
5.199820E + 06 times by DLBA. The convergence curve of
DLBA is depicted in Figure 17. Figure 17 show that DLBA
has fast convergence rate for solving nonlinear equations.
The achieved optimal fitness (the sum of function value
with absolute value) in 50 times independent run is depicted
in Figure 18. In order to reflect the precision of fitness, we
magnify Figure 18, these optimal fitness that less than or equal
to 0.001 are plotted in Figure 19. We can found that there are
32 times optimal fitness is less than 0.001.
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Table 2: Comparison of BA and DLBA for several test functions under the first terminated criteria.

TC BF Method Fitness Iteration
Min Mean Max Std Min Mean Max

Tol = 1.0𝑒 − 5,
itermax = 200

𝑓
1
(𝐷 = 30) DLBA 4.30568008𝐸−08 4.80356915𝐸−06 9.96163402𝐸−06 3.02060716𝐸−06 10 17.6 26

BA 56.81732462 130.61959271 223.82694528 37.22960351 200 200 200

𝑓
2
(𝐷 = 20) DLBA 5.66761254𝐸−07 6.33091639𝐸−06 9.88929757𝐸−06 2.48867687𝐸−06 21 29.4 37

BA 22.77136624 93.35062167 2733.46090499 269.41410301 200 200 200

𝑓
3
(𝐷 = 10) DLBA 5.66716240 7.39029403 8.28857171 0.37001430 200 200 200

BA 82.24908050 294.95948479 640.76052284 109.67161818 200 200 200

𝑓
4
(𝐷 = 2) DLBA 6.23475433𝐸−09 3.93352701𝐸−06 9.97022879𝐸−06 2.77208752𝐸−06 6 10 20

BA 1.05265280𝐸−04 0.20705750 1.00771980 0.23116047 200 200 200

𝑓
5
(𝐷 = 5) DLBA 4.71737180𝐸−07 6.40969812𝐸−06 9.96088247𝐸−06 2.71187009𝐸−06 16 25.6 39

BA 1.15883977 3.02092450 5.86431360 0.69052427 200 200 200

𝑓
6
(𝐷 = 5) DLBA 1.38176777𝐸−07 5.01027883𝐸−06 9.92998256𝐸−06 2.77338474𝐸−06 11 18.4 56

BA 0.06234957 8.42851961 29.90707979 6.12812390 200 200 200

𝑓
7
(𝐷 = 5) DLBA 7.78490674𝐸−07 6.57288799𝐸−06 9.97486019𝐸−06 2.36637154𝐸−06 18 46 114

BA 0.09987344 0.15318115 0.30215065 0.04923496 200 200 200

𝑓
8
(𝐷 = 5) DLBA 5.99983281𝐸−08 4.47052788𝐸−06 9.85695441𝐸−06 2.81442645𝐸−06 15 33 87

BA 7.24547772 17.11077150 25.90638177 4.37190073 200 200 200

𝑓
9
(𝐷 = 5) DLBA 6.65070016𝐸−09 3.88692603𝐸−06 9.69841027𝐸−06 2.75444981𝐸−06 10 15.1 23

BA 0.11106843 1.75623424 8.48211975 1.41343722 200 200 200

Table 3: Comparison of BA and DLBA for several test functions under the second terminated condition.

TC BF Method Fitness
Min Mean Max Std

FEs

𝑓
10
(𝐷 = 2) DLBA −1 −1 −1 9.06493304𝐸 − 17

BA −0.99964845 −0.98245546 −0.90221232 0.01759602

𝑓
11
(𝐷 = 2) DLBA −418.98288727 −415.83523725 −300.54455266 15.53948263

BA −418.98287874 −406.98044144 −328.10751671 22.54615132

𝑓
12
(𝐷 = 5) DLBA −186.73090883 −186.73090883 −186.73090883 4.31613544𝐸 − 13

BA −186.67541533 −184.01677767 −174.95599301 2.26333511

𝑓
13
(𝐷 = 2) DLBA −0.60653066 −0.60653066 −0.60653066 8.63947249𝐸 − 16

BA −0.60652631 −0.60411559 −0.59656608 2.18888608𝐸 − 03

𝑓
14
(𝐷 = 5) DLBA −1 −1 −1 0

BA −0.93624514 −0.80454167 −0.56977584 0.10270830

Table 4: Comparison of DLBA and BA under the high-dimensional situation.

BF Method Fitness
Min Mean Max Std

𝑓
6
(𝐷 = 128) DLBA 0 0 0 0

BA 2587.38759264 2811.40649000 2966.56723398 93.96861133

𝑓
9
(𝐷 = 256) DLBA 2.66885939𝐸 − 94 5.12093542𝐸 − 69 2.56023720𝐸 − 67 3.62071553𝐸 − 68

BA 7503.39306546 8256.61302714 11506.79192998 613.37556609

𝑓
8
(𝐷 = 320) DLBA 0 0 0 0

BA 4468.59039467 4723.44624200 5008.57109760 131.18818777

𝑓
14
(𝐷 = 512) DLBA −1 −1 −1 0

BA −1.48358700𝐸 − 03 −1.31084173𝐸 − 03 −1.20435493𝐸 − 03 5.99288716𝐸 − 05

𝑓
1
(𝐷 = 1024) DLBA 2.63790469𝐸 − 109 4.73742970𝐸 − 87 2.03861481𝐸 − 85 2.89031313𝐸 − 86

BA 18463.48950157 19752.26686813 21239.23111285 567.27878361
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Figure 1: The landscape of Schwegel’s function.
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Figure 2: The locations of 40 bats in the initial phase.

5. Conclusions

Aiming at the phenomenon of slow convergence rate and
low accuracy of bat algorithm, we put forward animproved
bat algorithm with differential operator and Lévy flights
trajectory (DLBA) based on the basic framework of bat
algorithm (BA), the purpose is to improve the convergence
rate and precision of bat algorithm. In this paper, we define
the frequency fluctuations up and down when the bat
tracking prey, which influence the bats’ location problem;
it is more graphic to simulate the bat’s behavior. Moreover,
it can make the algorithm effectively jump out of the local
optimum to add Lévy flights and differential operator, the
main reason is because Lévy flight has prominent properties
in the previously mentioned and the differential operator
can guide bats find better solutions, sequentially, increase the
convergent speed.

−500 −400 −300 −200 −100 0 100 200 300 400 500
−500
−400
−300
−200
−100

0
100
200
300
400
500

Figure 3: The locations of 40 bats after six iterations.

In addition, bats’ position variation is influenced by
the pulse emission rate and loudness as well. Firstly, pulse
emission rate causes update of position, and more and more
new position can be explored, consequently, increasing the
diversity of population. Secondly, loudness is designed to
strengthen local search and to guide bats find better solutions.

In this paper, we tested 14 typical benchmark functions
and applied them to solve nonlinear equations, the simulation
results not only showed that the proposed algorithm is feasi-
ble and effective, which ismore robust, but also demonstrated
the superior approximation capabilities in high-dimensional
space.This is not surprising as the aim of developing the new
algorithm was to try to use the advantages of existing algo-
rithms and other interesting feature inspired by the fantastic
behavior of echolocation ofmicrobats.Numerically speaking,
these can be translated into two crucial characteristics of the
modern metaheuristics: intensification and diversification.
Intensification intends to search around the current best
solutions and select the best candidates or solutions, while
diversification makes sure that the algorithm can explore the
search space efficiently.
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Figure 4: The locations of 40 bats after fifteen iterations.
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Figure 10: Distribution of optimal fitness for 𝑓
6
(D = 128).
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Figure 11: Distribution of optimal fitness for 𝑓
9
(D = 256).
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Figure 12: Distribution of optimal fitness for 𝑓
8
(D = 320).
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Figure 13: Distribution of optimal fitness for 𝑓
14
(D = 512).
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Figure 14: Distribution of optimal fitness for 𝑓
1
(D = 1024).

This potentially powerful optimization strategy can easily
be extended to study multiobjective optimization applica-
tions with various constraints, even to NP-hard problems.
Further studies can focus on the sensitivity and parameter
studies and their possible relationships with the convergence
rate of the algorithm.
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