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The application of genetic algorithms in automatically generating test data has aroused broad concerns and obtained delightful
achievements in recent years. However, the efficiency of genetic algorithm-based test data generation for path testing needs to be
further improved. In this paper, we establish a mathematical model of generating test data for multiple paths coverage. Then, a
multipopulation genetic algorithm with individual sharing is presented to solve the established model. We not only analyzed the
performance of the proposed method theoretically, but also applied it to various programs under test. The experimental results
show that the proposed method can improve the efficiency of generating test data for many paths’ coverage significantly.

1. Introduction

One of the approaches to improve the quality of software is
to do a large number of tests before delivery and usage in
order to detect bugs or faults in software. Software testing is
an expensive, tedious, and labor-intensive task and requires
significant human effort [1]. If the process of testing can be
automated, it will undoubtedly shorten the period of software
development and improve the quality of software, so as to
enhance themarket competitiveness. One of themost impor-
tant issues in automated software testing is the generation of
effective test data satisfying the selected test adequacy criteria.

It has been proved that many software test problems can
come down to those of generating test data for paths coverage
[2, 3], which can be described as follows: for a given path of
a program under test, search for a test datum in the input
domain of the program, such that the traversed path of the
test datum is just the desired one.

In recent years, it is becoming a promising direction to
generate test data for complex software using the genetic
algorithm (for short, GA) and has achieved many research
results [4]. But most GA-based test data generation methods
for path coverage intend to cover target paths one by one,
which make the process of test data generation inefficient.

In this study, we established a mathematical model of
generating test data for multiple paths coverage, which takes
each optimization problem corresponding to one target path
as a subproblem, and a number of subproblems form an
overall optimization problem. This model is different from
those existing multiobjective problems due to the specificity
of generating test data.

On this basis, we proposed a multipopulation genetic
algorithm to solve the proposed optimization problem. In our
algorithm, each subpopulation optimizes one subproblem,
so the fitness functions of different subpopulations differ
from each other. All subpopulations evolve in parallel. A
very key step of our algorithm is the individual sharing of
different subpopulations; specifically, every time when the
evolutionary operations of a generation finish, the algorithm
not only determines whether an individual is an optimal
solution of the subpopulation it belongs to, but also does that
for the other subpopulations. By this way, the efficiency of
finding optimal solutions for each subproblem improves with
the complexity of the algorithm not increasing obviously.

We not only analyzed the performance of the proposed
method theoretically, but also applied it to different programs
under test for evaluation. The experimental results show that
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the proposedmethod can significantly improve the efficiency
of generating test data for many paths’ coverage.

This paper is divided into nine sections, and the remain-
der is organized as follows: Section 2 briefly reviews the
related works; Section 3 gives a model of generating test data
for multiple path coverage; a multipopulation genetic algo-
rithm is proposed to solve the model in Section 4; Section 5
analyzes the performance of the proposed algorithm theoret-
ically; the experiments are presented in Section 6; Section 7
discusses possible threats to the validity of the proposed
method; finally, conclusion is presented in Section 8.

2. Related Work

This section provides a survey on GA-based software testing.
First, some basic methods of automatic software testing are
introduced. Then, we review the main works on GA-based
test data generation. Finally, we talk about the challenges of
path coverage testing.

2.1. Automatic Software Testing. Since the process of soft-
ware testing is highly time and resource consuming, many
automatic approaches have been developed to facilitate the
process and decrease its cost, which can be divided into four
categories, namely, random method, static method, dynamic
method, and heuristics method.

Random method generates test data by randomly sam-
pling the input space of a program under test [5]. This
approach is simple but has certain blindness in generating
test data. Some improved methods have been proposed to
heighten the diversity of test data [6, 7].

Static method only needs static analysis and transfor-
mation, without involving actual execution of the program
under test, such as symbolic execution [2, 8], and domain
reduction [9]. But this method usually requires a significant
amount of algebra and (or) interval arithmetic [10].

Dynamic structural method of generating test data was
firstly proposed by Miller and Spooner [11], which needs real
execution of the program under test, in order to obtain useful
information [3].

Different from dynamic method, the process of gen-
erating test data by heuristics method is not completely
determined. Heuristics method usually recurs to some sort of
heuristic algorithms, such as the genetic algorithm, simulated
annealing, tabu search, and scatter algorithm, of which the
GA is the most widely used [12].

2.2. GA-Based Test Data Generation. As an efficient search-
based optimization algorithm, the GA shows special advan-
tage and efficiency in solving problems with high complexity,
such as the problems of large space,multipeak, and nonlinear.
Therefore it has become a research hotspot to automatically
generate test data with GAs and produced encouraging
results [13].

Gong and Yao [14] used a GA to generate test data for
statement coverage based on testability transformation. Yao
et al. [15] proposed an approach to reduce target statements
according to their dominant relations and the test suite

covering the reduced set of target statements was generated
by a GA.

Miller et al. [16] used GAs to generate test data satisfying
branch coverage criterion. The experimental results show
that the test suite obtained by GAs can achieve or be very
close to branch coverage. Baars et al. [17] presented an
algorithm for constructing fitness functions that improve the
efficiency of search-based testing when trying to generate
branch adequate test data. Alshraideh et al. [18] proposed
a multiple-population algorithm to improve the efficiency
of branch coverage testing. The experimental results showed
that the proposedmethod outperforms the single-population
algorithm significantly.

Michael et al. [19] used a GA to generate test data satisfy-
ing condition coverage criterion. In their work, the problem
of test data generation is reduced to a functionminimization,
and the function is minimized using one of two genetic
algorithms in place of the local minimization techniques.

As for the works of GA-based software testing for path
coverage criterion, we will introduce them individually in
Section 2.3.

Besides traditional structural software testing, Bühler and
Wegener [20] applied an evolutionary algorithm to functional
testing. Watkins and Hufnagel [21] used two GAs to generate
a couple of test data pieces and then trained a decision
tree using them, in order to obtain an agent model which
distinguishes themerit of test data. Ferrer et al. [22] presented
amethod of automatically generating test data by considering
multiple objectives: maximizing the coverage and minimiz-
ing the oracle cost.

2.3. GA-Based Path Testing. Path coverage testing is the
strongest sufficiency criterion in white box testing. Automati-
cally generating data for paths coverage remains a challenging
problem [23].

Bueno and Jino [24] andWatkins and Hufnagel [25] used
a GA to obtain test data fulfilling path coverage, respectively.
Mei andWang [26] proposed amethod that can automatically
generate test cases for selected paths using a special genetic
algorithm. In their algorithm, the best chromosome called
queen crosses with the selected drones, which enhances the
exploitation of global optimal solutions.

Hermadi and Ahmed [27] have observed that existing
GA-based test data generators can generate only one test
datum for one test goal at a time.When there are many target
paths to be covered, the generator has to be run many times.
In fact, the generated individuals when trying to find test data
covering a path may be just test data covering other target
paths. This, hence, makes those existing test data generators
inefficient in trying to generate test data for multiple paths.

Wegener et al. [28] developed a fully automatic GA-
based test data generator for structural software testing. In
their approach, all generated individuals are evaluated with
regard to all unachieved partial aims. Partial aims reached by
chance are identified, and the individuals with good fitness
values for one or more partial aims are noted and stored for
seeding the subsequent testing of uncovered targets. But they
only considered one partial aim for optimization at a time,
which means that they solved the problems of generating test



Computational Intelligence and Neuroscience 3

data one by one. Furthermore, they did not discuss whether
multiple targets can be covered in one run. Besides, they
reported that full coverage of some programs is achieved but
not for all programs though.

Bueno and Jino [24] looked after methods to improve the
performance of test data generation by using past input data
to compose the initial population for the search. Although
these methods can improve the performance of the initial
population by reusing test data, they still cannot make full
use of the test data generated in the evolutionary process.

Ahmed and Hermadi [29] proposed a GA-based test data
generator for multiple paths. In their work, the problem
of generating test data for multiple paths is regarded as
a multiobjective optimization problem and solved by a
multiobjective evolutionary algorithm. In fact, the problemof
generating test data formultiple paths is strictly different from
traditional multiobjective optimization problems. Therefore,
it is necessary to establish an appropriatemathematicalmodel
for the problem of generating test data for multiple paths
coverage according to its specificity and give a corresponding
evolutionary solution.

Gong and Zhang [30] also proposed a test data generation
method for multipath coverage. They represent a target path
using Huffman encoding method and designed the fitness
function according to the Huffman codes of target paths.
Their method is simple and has better performance than
Ahmed’s method, but the fitness function cannot distinguish
individuals well.

In order to stop searching as soon as all feasible paths
have been covered, Hermadi et al. [31] proposed method for
determining when it is no longer worthwhile to continue
searching for test data to cover uncovered target paths.
Compared to searching for a standard number of generations,
an average of 30–75%of total computationwas avoided in test
programs with infeasible paths, and no feasible paths were
missed due to early termination. The extra computation in
programs with no infeasible paths was negligible.

3. Mathematical Model of Test Data
Generation for Multiple Paths

In order to illustrate conveniently, we first introduce several
concepts. Then, an objective function is constructed in order
to transform the problem of generating test data into an
optimization one. On this basis, the optimization model of
generating test data formultiple paths coverage is established.

3.1. Basic Concepts

Control Flow Graph (CFG) [1]. The CFG of a program Φ is a
directed graph 𝐺 = (𝑁, 𝐸, 𝑠, 𝑒), where 𝑁 is the set of nodes,
𝐸 is the set of edges, and 𝑠 and 𝑒 are unique entry and exit
nodes of the graph, respectively. Each node 𝑛 is a statement in
the program; each edge (𝑛

𝑖
, 𝑛
𝑗
) represents a transfer of control

from node 𝑛
𝑖
to node 𝑛

𝑗
.

Path [1]. A path of a CFG is a sequence𝑃 = 𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑘
, such

that there exists an edge fromnode 𝑛
𝑖
to 𝑛
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑘−1.

For large-scale programs, the sequence of a path may
be very long. We represent a path using a (0, 1)-string for
simplicity. Suppose that there are 𝑚 conditional statements
in path 𝑃, denoted asC

1
,C
2
, . . . ,C

𝑚
. Define

𝛾
𝑖
= {

0, 𝑃 inludes the false branch of C
𝑖

1, 𝑃 inludes the true branch of C
𝑖
.

(1)

Thus we obtain a (0-1)-string 𝛾
1
𝛾
2
⋅ ⋅ ⋅ 𝛾
𝑚

of length 𝑚. In
program Φ, the mapping between a path and such a (0, 1)-
string is one to one. Without special illustration, a path is
represented by such a (0, 1)-string in this study.

Let the input vector of programΦ be𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑠
),

and let the domain of 𝑥
𝑖
be𝐷
𝑖
; then the input domain of Φ is

𝐷(Φ) = 𝐷
1
×𝐷
2
× ⋅ ⋅ ⋅ ×𝐷

𝑠
. When programΦ adopts𝑋 as an

input, the traversed path is denoted by 𝑃(𝑋). We call the first
dissimilar character of 𝑃 and 𝑃(𝑋) their bifurcation.

3.2. Structure of Objective Function. The key problem of
applying GAs to test data generation is the construction of a
suitable objective function. The goodness of a candidate test
datum is often expressed in terms of the closeness that the
test datum fulfills the test goal. The approach to forming an
objective function typically involves two parts: approach level
(AL) and branch distance (BD) [3, 24, 25].

The approach level assesses how close an execution comes
to reaching the predicate which controls the test object. If
𝑃 ̸= 𝑃(𝑋), we define the approach level of input𝑋 to a target
path𝑃 as the number of characters between the bifurcation of
𝑃 and 𝑃(𝑋) to the last character of 𝑃, denoted by AL

𝑃
(𝑋);

otherwise, we define AL
𝑃
(𝑋) = 0. 𝑋 covers path 𝑃 if and

only ifAL
𝑃
(𝑋) = 0.

For example, suppose that 𝑃 = 1001001 is a target path,
𝑃(𝑋
1
) = 1001110, and𝑃(𝑋

2
) = 1001001; thenAL

𝑃
(𝑋
1
) = 3

andAL
𝑃
(𝑋
2
) = 0.

The branch distance assesses how close the predicate
comes to evaluating either true or false branch. For example,
suppose that a conditional statement is “if 𝑎 ≥ 12,” and the
aim is to execute the true branch. Suppose that the value of
𝑎 is 𝑎(𝑋) after the execution of this statement with input 𝑋;
then the branch distance of 𝑋 for branch condition 𝑎 ≥ 12 is
defined as follows:

BD (𝑋, 𝑎 ≥ 12) = {
0 if 𝑎 (𝑋) ≥ 12,
12 − 𝑎 (𝑋) others.

(2)

Branch distances of different kinds of simple branch
conditions are listed in Table 1. For a complex branch con-
dition, branch distance is the composite of those of all simple
conditions included in it, which is listed in Table 2.

We define the general objective function 𝑓
𝑃
(𝑋) of input

𝑋 to target path 𝑃 as follows:
𝑓
𝑃 (𝑋) = AL

𝑃 (𝑋) + normalized (BD
𝑃 (𝑋)) , (3)

where BD
𝑃
(𝑋) refers to the branch distance of 𝑋 to the

conditional statement corresponding to the bifurcation of 𝑃
and 𝑃(𝑋), and function

normalized (𝑥) = 1 − 1.01−𝑥. (4)

Function normalized maps the value ofBD
𝑃
(𝑋) to interval

[0, 1).
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Table 1: Branch distances of simple branch conditions [3].

Branch condition 𝑎 ≥ 𝑏 𝑎 > 𝑏 𝑎 = 𝑏 𝑎 ̸= 𝑏

True 0 0 0 0
False 𝑏 − 𝑎 𝑏 − 𝑎 + 0.1 |𝑏 − 𝑎| 1

Table 2: Branch distances of complex branch conditions [3].

Connection Branch distance
𝛼 && 𝛽 BD(𝛼) +BD(𝛽)

𝛼‖𝛽 min(BD(𝛼),BD(𝛽))

A sufficient and necessary condition of 𝑓
𝑃
(𝑋) = 0 is that

the traversed path of 𝑋 is 𝑃; that is, 𝑃(𝑋) = 𝑃; furthermore,
the smaller the value of 𝑓

𝑃
(𝑋), the nearer the 𝑋 to the data

covering 𝑃. So the problem of generating test data for path 𝑃
can be transformed into that of minimizing 𝑓

𝑃
(𝑋).

For example, see the program in Figure 1. Suppose that
the target path is 𝑃 = 𝑠 1 2 3 4 5 𝑒 . There are three
conditional statements in 𝑃, that is, statements 1, 2, and
4, respectively. 𝑃 traverses the true branches of all these
statements. So we also write 𝑃 = 111. Suppose that 𝑋

1
=

(−10, 5, 10), 𝑋
2
= (2, 5, 10), and 𝑋

3
= (2, 1, 10). We obtain

𝑃(𝑋
1
) = 01, 𝑃(𝑋

2
) = 101, and 𝑃(𝑋

3
) = 101. Thus

AL
𝑃
(𝑋
1
) = 3 − 0 = 3, AL

𝑃
(𝑋
2
) = 3 − 1 = 2, and

AL
𝑃
(𝑋
3
) = 3 − 1 = 2.

In addition, 𝑃(𝑋
1
) deviates 𝑃 from the first conditional

statement, so the branch distance of 𝑋
1
to 𝑃 is BD

𝑃
(𝑋
1
) =

11; similarly, we getBD
𝑃
(𝑋
2
) = 5 andBD

𝑃
(𝑋
3
) = 1. Thus

𝑓
𝑃
(𝑋
1
) = 3 + 1 − 1.01

−11
= 3.1037,

𝑓
𝑃
(𝑋
2
) = 2 + 1 − 1.01

−5
= 2.0485,

𝑓
𝑃
(𝑋
3
) = 2 + 1 − 1.01

−1
= 2.0099.

(5)

Although the traversed paths of 𝑋
2
and 𝑋

3
are the same,

the branch distance of𝑋
3
is smaller than that of𝑋

3
. Thus𝑋

3

obtains a better objective value than𝑋
2
.

3.3. Mathematical Model of Generating Test Data for Mul-
tiple Paths Coverage. Let the set of target paths be Γ =

{𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
}; then the problem of generating test data for Γ

can be described as follows: find a test suite {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
},

such that 𝑃(𝑋
𝑖
) = 𝑃

𝑖
. Let the objective function for path

𝑃
𝑖
using the method proposed in Section 3.2 be 𝑓

𝑖
(𝑋); then

the problem of generating test data for {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
} can be

transformed into an optimization one described as follows:

min 𝑓
1 (𝑋)

s.t. 𝑋 ∈ 𝐷 (Φ)

min 𝑓
2 (𝑋)

s.t. 𝑋 ∈ 𝐷 (Φ)

.

.

.

min 𝑓
𝑛 (𝑋)

s.t. 𝑋 ∈ 𝐷 (Φ) .

(6)

Most existing GA-based test data generation methods
take the above problem as 𝑛 self-governed optimization ones
and solve them one by one. Specifically, for each optimization
problem min𝑓

𝑖
(𝑋), run a GA in order to find an optimal

solution of 𝑓
𝑖
(𝑋), which is just a test datum traversing target

path𝑃
𝑖
. Repeat above process, until all optimization problems

have been solved. If the number of target paths is 𝑛, the GA
has to be run 𝑛 times.

This approach, however, does not take advantage of the
fact that some of the required test data can be readily
available as by-products when trying to find other test data,
because different target paths have similarities. Therefore the
efficiency of these methods is low when 𝑛 is large.

Ahmed et al. gave an algorithm of generating test data for
multiple paths coverage, but they regarded this problem as a
multiobjective optimization one.Thus, their model should be

min 𝐹 (𝑋) = (𝑓1 (𝑋) , 𝑓2 (𝑋) , . . . , 𝑓𝑛 (𝑋))

s.t. 𝑋 ∈ 𝐷 (Φ) .

(7)

In fact, the problem of generating test data for multiple
paths is strictly different from traditional multiobjective
optimization ones. In traditional multiobjective optimization
problems, the aim is to find one solution which satisfies
all objectives well. In a multiobjective environment, we
often encounter conflicting objectives with some trade-off
among them. But for the problem of generating test data for
paths 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
, what we need is to obtain a test suite

{𝑋
1
, . . . , 𝑋

𝑛
}, where 𝑋

𝑖
is an optimal solution of 𝑓

𝑖
(𝑋), 𝑖 =

1, . . . , 𝑛.
In addition, the number of objective functions in

traditional multiobjective optimization problems remains
unchanged, while that in the proposed model gradually
reduces.Therefore, there is much limitation to take the prob-
lem of generating test data as a multiobjective optimization
one.

Different from existing methods, we consider the prob-
lem of generating test data for 𝑛 paths coverage as a uniform
problem, in which each optimization problem corresponding
to one target path is a subproblem. We solve all subproblems
at the same time.Thus the problem corresponding to the test
data generation for multiple paths coverage can be described
as follows:

min 𝑓
1
(𝑋
1
)

min 𝑓
2
(𝑋
2
)

⋅ ⋅ ⋅

min 𝑓
𝑛
(𝑋
𝑛
)

s.t. 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
∈ 𝐷 (Φ) .

(8)

This model includes 𝑛 subproblems, each of which is
a minimization problem, and all objective functions have
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%input A, B, X
1

2

3

4

5

X = X/A;

X = X + 1

if (A > 1)

if (B == 0)

if (X ≥ 1)

Figure 1: An example program and its CFG.

the same domain. We will seek an algorithm to solve these
𝑛 problems simultaneously, rather than solve them indepen-
dently. So problem (8) strictly differs from (6) and (7), and we
should seek a suitable method to solve it.

4. Multipopulation GA for Test Data
Generation of Multiple Paths

In this section we will give a multipopulation GA to solve
problem (8), which is different from traditional multipopu-
lation GAs. The main purpose of our strategy is to expand
the search range of each population by individual sharing, so
as to improve the efficiency of the algorithm.

4.1. Initialization of Populations. For the 𝑖th optimization
problemmin𝑓

𝑖
(𝑋
𝑖
), randomly generating a subpopulation of

size 𝑚, that is, ℵ(1)(𝑃
𝑖
) = {𝑋

(1)

𝑖1
, 𝑋
(1)

𝑖2
, . . . , 𝑋

(1)

𝑖𝑚
}, 𝑖 = 1, . . . , 𝑛,

where𝑋(1)
𝑖𝑗

refers to the 𝑗th individual in the 𝑖th population of
the first generation. An individual corresponds to a string by
proper encoding. Population size might have some influence
on the performance of the algorithms, but this is not a focus
of this study, so we just give an appropriate value for it.

4.2. Genetic Operations. As a typical GA, our method main-
ly includes three kinds of operations, that is, selection,
crossover, and mutation.

Individuals are selected according to their fitness, so
that good gens have more chances to be copied to the next
generation.We adopt objective function𝑓

𝑖
(𝑋
(1)

𝑖𝑗
) as the fitness

of individual𝑋(1)
𝑖𝑗
. Because what we are solving areminimiza-

tion problems, the smaller the fitness of an individual is, the
better we consider it.

Crossover operation exchanges parts of two gene strings
in a certain probability to produce two new chromosomes,
while mutation operation modifies some of the genes in a
string, resulting in a new chromosome. The crossover and
mutation rates are denoted by𝑃

𝑐
and𝑃
𝑚
, respectively. Because

parameter setting is not the focus of this work, we just give the
value of the parameters based on experience.

Each subpopulation implements these operations inde-
pendently. By this way, individuals of the 𝑡th generation are
evolved to the (𝑖 + 1)th generation, which can be shown as
Figure 2.

4.3. Individual Sharing among Different Subpopulations. The
biggest difference between traditional multipopulation GAs

and the proposed one lies in the following: in traditionalmul-
tipopulation GAs, subpopulations communicate by means of
individual migration, while in our method, subpopulations
communicate through individual sharing among subpopu-
lations. Specifically, every time when the evolutionary oper-
ations of a generation finish, the algorithm not only deter-
mines whether an individual is an optimal solution of the
subpopulation it belongs to, but also does that for the other
subpopulations. In this way, the individuals of one subpopu-
lation are shared by all other subpopulations, and the proba-
bility of finding optimal solutions significantly increases.The
implementation of individual sharing is shown as Figure 3.

BecauseAL
𝑝
(𝑋) = 0 if and only if the traversed path of

𝑋 is just 𝑃, we determine whether 𝑋 is a desired test datum
covering 𝑃 according to the value ofAL

𝑃
(𝑋). Suppose that

there are 𝑛 target paths 𝑃
1
, . . . , 𝑃

𝑛
. In our algorithm, we can

obtain the values of AL
𝑃
1

(𝑋), . . . ,AL
𝑃
𝑛

(𝑋) in one run of
the instrumented program with input𝑋. Thus the individual
sharing can be realized with the computation complexity not
increasing too much.

4.4. Steps of theAlgorithm. Based on the above discussion, the
main steps of the proposed algorithm are shown as follows.

Step 1. Set the values of the number of subpopulations 𝑛,
maximum termination generation 𝑇, crossover probability
𝑃
𝑐
, and mutation probability 𝑃

𝑚
, where 𝑛 is equal to the

number of target paths.

Step 2. Suppose that the set of target paths is {𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑛
}.

For 𝑃
𝑖
, randomly generate a subpopulation ℵ(1)(𝑃

𝑖
) = {𝑋

(1)

𝑖1
,

𝑋
(1)

𝑖2
, . . . , 𝑋

(1)

𝑖𝑚
}, 𝑖 = 1, 2, . . . , 𝑛. The value of generation 𝑡 = 1.

Step 3. For subpopulation ℵ(𝑡)(𝑃
𝑖
) in the 𝑡th generation,

calculate the values of

AL
𝑃
1

(𝑋
(𝑡)

𝑖𝑗
) , . . . ,AL

𝑃
𝑛

(𝑋
(𝑡)

𝑖𝑗
) (9)

for individual𝑋(𝑡)
𝑖𝑗
to all target paths and those ofBD

𝑃
𝑖

(𝑋
(𝑡)

𝑖𝑗
)

for individual𝑋(𝑡)
𝑖𝑗

to path 𝑃
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

Step 4. 𝑓
𝑖
(𝑋
(𝑡)

𝑖𝑗
) = AL

𝑃
𝑖

(𝑋
(𝑡)

𝑖𝑗
) + normalized(BD

𝑃
𝑖

(𝑋
(𝑡)

𝑖𝑗
))

is used as the fitness of individual 𝑋(𝑡)
𝑖𝑗

for subpopulation
ℵ
(𝑡)
(𝑃
𝑖
) to guide the evolution.
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Selection Crossover Mutation

Figure 2: Evolution of individuals in our multipopulation genetic algorithm.
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Figure 3: Individual sharing among subpopulations.

Step 5. If there is a AL
𝑃
𝑘

(𝑋
(𝑡)

𝑖𝑗
) = 0, which means that

𝑋
(𝑡)

𝑖𝑗
covers 𝑃

𝑘
, then 𝑋(𝑡)

𝑖𝑗
is an optimal solution of the 𝑘th

optimization subproblem. In this case, save 𝑋(𝑡)
𝑖𝑗
, delete 𝑃

𝑘

from the target path set, and terminate the evolution of the
𝑘th subpopulation.

Step 6. If the number of subpopulations becomes 0, or
the number of generations is larger than 𝑇, then stop the
evolution and output the test data; otherwise, go to Step 7.

Step 7. Perform genetic operations onℵ(𝑡)(𝑃
𝑖
) to generate off-

spring population ℵ(𝑡+1)(𝑃
𝑖
). let 𝑡 = 𝑡 + 1 and go to Step 3.

5. Performance Analysis

We will illustrate the performance of the proposed algorithm
by analyzing its efficiency and computational complexity.

5.1. Efficiency of Algorithm. Suppose that the set of target
paths is {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
} (𝑛 > 1) and ℵ(𝑃

𝑖
) is the subpopu-

lation used to optimize the 𝑖th subproblem, which is related
to the problem of generating test data for 𝑃

𝑖
. Let 𝑇

𝑖
be the

number of generations in which the 𝑖th subpopulation finds
the test datum covering path 𝑃

𝑖
; thus 𝑇

𝑖
is a random variable.

From experiences, we can suppose that 𝑇
𝑖
∼ 𝑁(𝜇

𝑖
, 𝜎
2

𝑖
). Let

𝑇
𝑖𝑗
, 𝑖 ̸= 𝑗, be the number of generations in which the 𝑖th

subpopulation finds the test datum covering 𝑃
𝑗
; then 𝑇

𝑖𝑗
is

also a random variable. Suppose that the probability ofℵ(𝑃
𝑖
)

finding the test datum that covers 𝑃
𝑗
is 𝜆
𝑗
; then 𝑃{𝑇

𝑖𝑗
= 𝑡} =

(1 − 𝜆
𝑗
)
𝑡−1
𝜆
𝑗
, 𝑡 = 1, 2, . . .. For convenience to illustration, we

also denote 𝑇
𝑖
by 𝑇
𝑖𝑖
.

If we use traditional single-objective GAs to solve (3),
in the circumstance of using the same population size, the
probability of ℵ(𝑃

𝑖
) finding an optimal solution within 𝑡

generations is 𝑃{𝑇
𝑖
≤ 𝑡} = Φ((𝑡 − 𝜇

𝑖
)/𝜎
𝑖
), where Φ(𝑥) is the

distribution function of standard normal distribution. Thus
the probability of all subpopulations finding their optimal
solutions within 𝑡 generations is

Γ
1 (𝑡) = 𝑃 {𝑇1 ≤ 𝑡, . . . , 𝑇𝑛 ≤ 𝑡}

= 𝑃 {𝑇
1
≤ 𝑡} ⋅ ⋅ ⋅ 𝑃 {𝑇

𝑛
≤ 𝑡}

=

𝑛

∏

𝑖=1

Φ(
𝑡 − 𝜇
𝑖

𝜎
𝑖

) .

(10)

If we adopt the proposed method to solve (6), then the
probability of finding the test datum covering path 𝑃

𝑖
within

𝑡 generations is

𝑃 {min (𝑇
1𝑖
, . . . , 𝑇

𝑛𝑖
) ≤ 𝑡}

= 1 − 𝑃 {min (𝑇
1𝑖
, . . . , 𝑇

𝑛𝑖
) > 𝑡}

= 1 − 𝑃 {𝑇
1𝑖
> 𝑡} ⋅ ⋅ ⋅ 𝑃 {𝑇

𝑛𝑖
> 𝑡}

= 1 − (1 − 𝑃 {𝑇
1𝑖
≤ 𝑡})

× ⋅ ⋅ ⋅ × (1 − 𝑃 {𝑇
𝑛𝑖
≤ 𝑡})

= 1 − [1 − Φ(
𝑡 − 𝜇
𝑖

𝜎
𝑖

)] (1 − 𝜆
𝑖
)
𝑡(𝑛−1)

.

(11)

Thus the probability of all subpopulations finding all
optimal solutions within 𝑡 generations is

Γ
2 (𝑡) =

𝑛

∏

𝑖=1

{1 − [1 − Φ(
𝑡 − 𝜇
𝑖

𝜎
𝑖

)] (1 − 𝜆
𝑖
)
𝑡(𝑛−1)

} . (12)
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Since (1 − 𝜆
𝑖
)
𝑡(𝑛−1)

< 1, we obtain

Γ
2 (𝑡) >

𝑛

∏

𝑖=1

{1 − [1 − Φ(
𝑡 − 𝜇
𝑖

𝜎
𝑖

)]}

=

𝑛

∏

𝑖=1

Φ(
𝑡 − 𝜇
𝑖

𝜎
𝑖

) = Γ
1 (𝑡) .

(13)

That is to say, the probability of finding all optimal
solutions using the proposed algorithm is larger than that of
traditional single-objective GAs. In addition, the more the
number of target paths is, the more obvious the advantage of
the proposed method is, which can also be easily understood
by the following example.

Suppose that the set of target paths is {𝑃
1
, . . . , 𝑃

5
} and

𝑇
𝑖
∼ 𝑁(500, 100

2
), 𝜆
𝑗
= 1/10000, 𝑖, 𝑗 = 1, . . . , 5; then the

probabilities of finding all optimal solutions within 500 and
600 generations using traditional single-objective GAs are

Γ
1 (500) =

5

∏

𝑖=1

Φ(
500 − 500

100
) = 0.5

5
= 0.0313,

Γ
1 (600) =

5

∏

𝑖=1

Φ(
600 − 500

100
) = 0.8143

5
= 0.3580,

(14)

respectively, whereas the probabilities of finding all optimal
solutions within 500 and 600 generations using the proposed
algorithm are

Γ
2 (500) =

5

∏

𝑗=1

{1 − [1 − Φ(
500 − 500

100
)]

× (1 −
1

10000
)

500×(5−1)

}

= 0.5906
5
= 0.0719,

Γ
2 (600) =

5

∏

𝑗=1

{1 − [1 − Φ(
600 − 500

100
)]

× (1 −
1

10000
)

600×(5−1)

}

= 0.8539
5
= 0.4540,

(15)

respectively. If the number of target paths increases to 10, and
𝑇
𝑖
∼ 𝑁(500, 100

2
), 𝜆
𝑗
= 1/10000, 𝑖, 𝑗 = 1, . . . , 10, then the

probabilities of finding all optimal solutions within 500 and
600 generations using traditional single-objective GAs are

Γ
1 (500) =

10

∏

𝑖=1

Φ(
500 − 500

100
) = 0.5

10
= 0.000977,

Γ
1 (600) =

10

∏

𝑖=1

Φ(
600 − 500

100
) = 0.8143

10
= 0.1282,

(16)

respectively, whereas the probabilities of finding all optimal
solutions within 500 and 600 generations using the proposed
algorithm are

Γ
2 (500) =

10

∏

𝑗=1

{1 − [1 − Φ(
500 − 500

100
)]

× (1 −
1

10000
)

500×(10−1)

}

= 0.6812
10
= 0.0215,

(17)

Γ
2 (600) =

10

∏

𝑗=1

{1 − [1 − Φ(
600 − 500

100
)]

× (1 −
1

10000
)

600×(10−1)

}

= 0.8918
10
= 0.3182,

(18)

respectively. As can be seen from these results, in circum-
stance with 5 target paths, the probabilities of finding all
optimal solutions within 500 and 600 generations using
the proposed algorithm are 0.0719 and 0.4540, respectively,
which are 0.0719/0.0313 ≈ 2.3 and 0.4540/0.3580 ≈ 1.3 times
those of traditional single-objective GAs; in circumstance
with 10 target paths, the probabilities of finding all optimal
solutions within 500 and 600 generations using the proposed
algorithm are 0.0215 and 0.3182, respectively, which are
0.0215/0.000977 ≈ 22 and 0.3182/0.1282 ≈ 2.5 times those
of traditional single-objective GAs. The above results force-
fully illuminate that the proposed algorithm is more efficient
than traditional single-objective GAs; moreover, with the
increase of the number of target paths, the advantages become
more obvious.

5.2. Computational Complexity. Wewill compare the compu-
tational complexity of ourmultipopulation genetic algorithm
and those of traditional ones. Suppose that the program
under test has 𝑙 executable statements and there are 𝑛 target
paths {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
}. The population size is 𝑚. Because 𝑚

can be set manually, we consider 𝑚 as a constant. We take
the number of executed statements for the calculation of
individual fitness and individual sharing in a generation as
a measure of the computational complexity of an algorithm.

If we use traditional multipopulation GAs to solve the
problem, which means that there is no individual sharing
among subpopulations, then the program under test will be
run 𝑛𝑚 times, which is equal to the number of all individuals.
Since each run of the programprobably executes 𝑙 statements,
the number of executed statements for the run of the program
under test will be 𝑙𝑚𝑛. Taking the computation of the fitness
as one statement, then all these 𝑚𝑛 individuals need to
execute𝑚𝑛 statements. So the number of executed statements
in a generation using traditional multipopulation GAs is
𝐶(𝑙, 𝑛) = 𝑙𝑚𝑛 + 𝑚𝑛.

If we use the proposed method to solve the problem,
which means that subpopulations share all individuals, in
addition to the run of the program under test and the com-
putation of the fitness function, we consider the computation
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Table 3: Description of subject programs.

Program Loc Description Number of targets
Insertion sort 16 Array sorting 4
Bubble sort 18 Array sorting 4
Triangle 20 Return the type of a triangle 4
Binary search 37 Key number searching 7
Gcd 55 Compute greatest common divisor 20
Look 135 Find words in the system dictionary or lines 30
Comm 145 Select or reject lines common 30
Cal 160 Print a calendar for a specified year or month 30
Controller 172 Internal states regulation 30
Tcas 173 Altitude separation 30
Col 275 Filter reverse paper motions 50
Spline 289 Interpolate smooth curve 50
Tot info 365 Statistics computation 50
Schedule2 374 Priority scheduler 50
Printtok 400 Lexical analyzer 50
Schedule 412 Priority scheduler 50
Replace 564 Pattern replace 100
Barcode 672 Barcode maker 100

due to individual sharing among subpopulations. Taking the
computation of the approach level as a statement, individual
sharing needs to execute 𝑚𝑛2 sentences. So the number
of executed sentences in a generation using the proposed
method is 𝐶󸀠(𝑙, 𝑛) = 𝑙𝑚𝑛 + 𝑚𝑛 + 𝑚𝑛

2. Under normal
circumstances, 𝑛 is much smaller than 𝑙, so 𝑙𝑚𝑛+𝑚𝑛+𝑚𝑛2 ≪
2𝑙𝑚𝑛 + 𝑚𝑛. Thus

𝐶
󸀠
(𝑙, 𝑛)

𝐶 (𝑙, 𝑛)
=
𝑙𝑚𝑛 + 𝑚𝑛 + 𝑚𝑛

2

𝑙𝑚𝑛 + 𝑚𝑛
≤
2𝑙𝑚𝑛 + 𝑚𝑛

𝑙𝑚𝑛 + 𝑚𝑛
< 2. (19)

On the other hand, each subpopulation has𝑚 individuals
as possible solutions for each generation in traditional mul-
tipopulation GAs. But in our method, the possible solutions
become𝑚𝑛 for each generation via individual sharing, which
is 𝑛 times that of traditional methods. In other words, the
population size is magnified to 𝑛 times via individual sharing
with the computation quantity almost doubling.

6. Experiments

A group of experiments are conducted so as to investigate
the performance of the proposed method. In the follow-
ing section, subject programs are first introduced. After-
wards, experimental design is characterized. Finally, empir-
ical results are presented and discussed.

6.1. Subject Programs. In order to evaluate the proposed
method,we select eighteen programs for experiments. Table 3
shows some basic information of each program, including its
name, size, and description. Table 3 is sorted by the sizes of
the programs.These test subjects include not only laboratory
programs, but also nontrivial industry ones. In addition, their
lengths and functions are different from each other. These
programs have been thoroughly used by other researches in

the literature of software testing and analysis [19, 32–34]. The
number of target paths for each program is also listed in
Table 3.

For each program under test, we just randomly choose
a part of feasible paths to cover. If there are too many paths
to be covered, we can divide them into several groups, so
that the scale of paths is reasonable. In addition, if we choose
infeasible paths as target ones, the performances of different
methodswill not be distinguished, because it is impossible for
any method to generate test data covering infeasible paths.
The prediction of the infeasibility of a program path is an
undecidable problem, and heuristic techniques that automat-
ically select likely feasible paths can be employed [32].

6.2. Experimental Design. When designing the experiment,
we specially have concern about two issues that can be
described as follows.

Proposition 1. Can individual sharing improve the efficiency
of the algorithm?

In order to verify the first proposition, we conduct two
groups of experiments. In the first group of experiments,
we use the proposed multipopulation GA with individual
sharing to generate test data, while in the second one,
different populations do not implement individual sharing
but evolve independently.

Proposition 2. How is the overall performance of the proposed
method?

In order to validate the overall performance of the
proposed method in this study (for short, our method), we
compare it with other threemethods, namely, Gong’s method



Computational Intelligence and Neuroscience 9

Table 4: Parameter settings.

Parameter Value
Population size 300
Selection operator Roulette wheel
Crossover operator One-point crossover
Crossover rate 0.9
Mutation operator One-point mutation
Mutation rate 0.3
Maximum generation 50000
Encoding style Binary
Variable range [0, 1023]

[30], Ahmed’s method [29], and randommethod.The reason
why we adopt Gong’s and Ahmedmethods to compare is that
they are also about the problem of generating test data for
multiple paths. In addition, random method is a basic test
technique and has been widely used, so we also adopt it as
a consult object.

All methods (except random one) apply the same values
of parameters, which are listed in Table 4. There are two
termination criteria: one is that the test data for all target
paths have been found; the other is that the number of
generations has reached the maximum.

6.3. Experimental Results. In each group of experiments, we
performed 30 runs for each program under test and record
the time consumption of each run and each method, where
the time consumption refers to the time needed to generate
test data covering all target paths.

6.3.1. Experimental Results for Testing the Performance of
Individual Sharing. The experimental results to test the per-
formance of individual sharing are listed in Table 5, in which
Ave. and S.D. are the sample average and standard devia-
tion of time consumption for each program and method,
respectively. Sh.R. means the radio of the number of test data
obtained by individual sharing and the number of all test
data.

It can be seen from Table 5 that, (1) for all subject
programs, the average time consumption using the method
of individual sharing is all less than that not implementing
individual sharing.The least time consumption of themethod
applying individual sharing is 6.38 seconds (Bubble Sort),
while that not implementing individual sharing for the same
program is 11.03 seconds. The most time consumption of
the method applying individual sharing is 183.53 seconds
(barcode), while that of the secondmethod is 265.72 seconds.
(2) The sharing rates of all programs exceed 30% except
schedule (29.8%). The average sharing rate of the eight
programs is 36.87%, which means that approximately one of
each three test data pieces is obtained by individual sharing.
By this way, we can make more full use of individuals
generated in evolutionary process, therefore improving the
efficiency of generating test data.

Weuse hypothesis testing to give amore scientific analysis
for the above experimental results. Let 𝑋

1
and 𝑋

2
denote

Table 5: Number of evaluations and success rate of different fitness
functions.

Programs Sharing No sharing
Ave. (s) S.D. Sh.R (%) Ave. (s) S.D.

Insertion sort 17.62 4.24 34.6 24.74 5.91
Bubble sort 6.38 3.72 45.6 11.03 4.93
Triangle 12.92 5.72 41.3 20.83 7.73
Binary search 39.82 8.18 32.4 48.49 10.93
Gcd 32.74 7.25 36.7 43.83 8.89
Look 16.26 6.32 31.8 22.63 7.83
Comm 30.77 11.86 45.6 50.35 16.37
Cal 39.27 9.06 39.3 55.92 12.83
Controller 46.72 11.72 33.9 63.52 12.89
Tcas 38.62 9.29 32.7 46.83 10.94
Col 75.61 16.72 35.3 103.73 24.65
Spline 50.72 17.75 37.8 69.93 23.89
Tot info 79.92 20.85 37.9 121.78 26.78
Schedule2 73.88 24.25 31.8 97.62 30.57
Printtok 36.83 15.73 33.7 48.29 19.82
Schedule 45.74 17.99 29.8 65.23 18.74
Replace 141.23 44.27 41.3 176.34 42.87
Barcode 183.53 39.83 39.4 265.72 47.31

Table 6: Values of statistic 𝑈
1
and 𝑈

2
of object programs.

Programs Values of 𝑈
Insertion sort −5.36
Bubble sort −4.12
Triangle −4.51
Binary search −3.48
Gcd −5.30
Look −3.47
Comm −5.31
Cal −5.81
Controller −5.28
Tcas −3.13
Col −5.17
Spline −3.54
Tot info −6.76
Schedule2 −3.33
Printtok −2.48
Schedule −4.11
Replace −3.12
Barcode −7.28

the time consumptionusing andnot using individual sharing,
respectively (without confusion, we will use the same symbol
for all programs under test). It can be verified that𝑋

1
and𝑋

2

are random variables obeying normal distribution. Suppose
that 𝑋

𝑖
∼ 𝑁(𝜇

𝑖
, 𝜎
2

𝑖
), 𝑖 = 1, 2. Because the sample standard

deviation is an unbiased estimate of the standard deviation
of the population, we take the values of sample standard
deviations as those of standard deviations. Let the signifi-
cance level 𝛼 = 0.01. We will illustrate the performances
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Table 7: Number of evaluations and success rate of different fitness functions.

Programs Our method Gong’s method Ahmed’s method Random method
𝑈
1

𝑈
2

𝑈
3Ave. (s) S.D. Ave. (s) S.D. Ave. (s) S.D. Ave. (s) S.D.

Insertion sort 19.52 5.07 24.72 6.08 27.93 6.86 42.89 10.82 −3.6 −5.40 −10.71
Bubble sort 5.85 4.29 8.79 4.15 9.85 3.93 12.32 4.17 −2.7 −3.77 −5.92
Triangle 13.58 5.29 17.94 5.12 20.82 7.73 28.73 8.72 −3.24 −4.23 −8.14
Binary search 36.04 10.82 43.24 9.08 54.84 10.93 59.61 13.36 −2.79 −6.70 −7.51
Gcd 34.82 9.93 42.79 9.67 51.37 8.72 72.71 13.49 −3.15 −6.86 −12.39
Look 18.02 7.88 22.94 7.26 25.72 9.79 31.82 10.9 −2.52 −3.36 −5.62
Comm 33.92 12.89 39.74 16.23 50.35 17.48 48.28 15.51 −1.54 −4.14 −3.90
Cal 35.92 10.02 60.93 13.19 60.52 13.07 82.73 15.33 −8.27 −8.18 −14.00
Controller 49.93 12.78 62.19 12.98 71.81 13.83 90.26 15.53 −3.69 −6.36 −10.98
Tcas 35.92 9.95 42.85 9.74 52.89 11.44 77.28 19.53 −2.73 −6.13 −10.34
Col 69.01 15.94 84.23 18.24 112.56 23.78 108.92 26.72 −3.44 −8.33 −7.03
Spline 53.88 17.23 63.99 21.43 78.81 21.84 89.51 20.84 −2.01 −4.91 −7.22
Tot info 84.27 21.89 114.23 23.14 125.83 29.78 147.34 32.25 −5.15 −6.16 −8.86
Schedule2 78.83 22.51 93.66 26.69 110.73 35.75 135.37 46.31 −2.33 −4.14 −6.01
Printtok 30.72 16.92 35.74 17.83 56.83 20.83 72.75 21.56 −1.12 −5.33 −8.40
Schedule 44.93 15.84 56.84 19.23 70.72 23.82 107.32 21.78 −2.62 −4.94 −12.69
Replace 137.38 40.03 160.98 40.92 188.78 51.78 205.27 48.9 −2.26 −4.30 −5.89
Barcode 192.82 40.17 224.87 49.23 287.67 56.13 316.42 68.73 −2.76 −7.53 −8.50

of different methods by comparing 𝜇
1
(= 𝐸(𝑋

1
)) and 𝜇

2
(=

𝐸(𝑋
2
)).

Step 1. Establishing hypothesis:

𝐻
0
: 𝜇
1
− 𝜇
2
≥ 0; 𝐻

1
: 𝜇
1
− 𝜇
2
< 0. (20)

Step 2. Constructing statistics:

𝑈 =
𝑋
1
− 𝑋
2

√𝜎
2

1
/𝑛
1
+ 𝜎
2

2
/𝑛
2

. (21)

Step 3. Giving rejection region:

𝑈 =
𝑋
1
− 𝑋
2

√𝜎
2

1
/𝑛
1
+ 𝜎
2

2
/𝑛
2

≤ −𝑍
𝛼
, (22)

where 𝛼 = 0.01, 𝑛
1
= 𝑛
2
= 𝑛
3
= 30.

Step 4. Calculating the value of statistics.
The values of statistics 𝑈 of different programs are listed

in Table 6; 𝑍
𝛼
= 2.325.

Step 5. Drawing conclusions
From Table 6 we conclude that the values of 𝑈 are all less

than −𝑍
𝛼
= −2.325. Then we reject null hypothesis 𝐻

0
for

all object programs, which means that the time consumption
using individual sharing is significantly less than that not
using it.

6.3.2. Experimental Results for Testing the Proposed Method.
The experimental results of comparing different methods are
listed in Table 7. The meanings of all symbols are the same

with Table 5.We also use hypothesis testing to give a scientific
analysis for the above experimental results. The value of
𝑈
1
shows the hypothesis testing results by comparing our

method and Gong’s method, that of 𝑈
2
shows the hypothesis

testing results by comparing our method and Ahmed’s
method, and that of 𝑈

3
shows the hypothesis testing results

by comparing our method and the random method.
It can be seen from Table 7 that, (1) for all subject

programs, the average time consumption using our method
is all less than that of Gong’s, Ahmed’s, and the random
methods. The least time consumption of our method is 5.85
seconds (Bubble Sort), while that of Gong’s, Ahmed’s, and
the random methods for the same program is 8.79, 9.85, and
12.32 seconds, respectively. The largest time consumption of
ourmethod is 192.82 seconds (Barcode), while that of Gong’s,
Ahmed’s, and the random methods is 224.87, 289.67, and
316.42 seconds, respectively. (2)Gong’s andAhmed’smethods
have better results than the randommethod but are all poorer
than ours. (3)The values of𝑈

2
and𝑈

3
are all less than −𝑍

𝛼
=

−2.325.The values of𝑈
1
are all less than−𝑍

𝛼
= −2.325 except

three programs, that is, Comn, Splinge, and Printtok. For
these three programs, the time consumption of our method
is still all less than that of Gong’s method. Then we conclude
that the time consumption using our method is significantly
less than that using Gong’s, Ahmed’s, and random methods.

7. Threats to Validity

The present study focuses on generating test data for multiple
paths coverage. One possible threat to the validity of the
proposed method may be related to parameter settings. The
settings of parameters in GAs have an influence on the
performance of generating test data. Appropriate choices of
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these values can improve the performance of an algorithm
and therefore enhance its efficiency in generating test data.
However, how to set proper parameters is not the emphasis of
this study; thuswe just give the values of the parameters based
on our experience.The second threat to the validity may have
relation with the use of software systems. Thus, possible bugs
or errors, different program conversions, and test objectives
may also have influence on the obtained results. Additionally,
the selection of target paths may have also influenced the
obtained results.

8. Conclusion

We establish a mathematical model which is a rational reflec-
tion of the problem of generating test data for multiple paths
coverage. On this basis, a multipopulation GA is presented to
solve the problem in the model. The main idea of this algo-
rithm, very different from traditional multipopulation GAs,
is to improve the search efficiency by means of individual
sharing among different subpopulations. In addition, we not
only prove the efficiency of our method theoretically, but also
apply it in various programs under test. The experimental
results show that ourmethod hasmore significant advantages
than Ahmed’s multiobjective method and random method.
The proposed algorithm in this study enriches the theory and
technique of GA-based test data generation and provides a
new way to improve the efficiency of software testing.

Possible future researches are presented as follows: one is
the method to generate test data when the number of target
paths is very large; the other one is the establishment of test
platform based on our method.
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