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An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed
approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal
solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy
transportation problem is obtained. The proposed method is explained in detail with an example.

1. Introduction

The transportation problem refers to a special case of linear
programming problem. The basic transportation problem
was developed by Hitchcock in 1941 [1]. In mathematics
and economics transportation theory is a name given to the
study of optimal transportation and allocation of resources.
The problem was formalized by the French Mathematician
Gaspard Monge. Tolstoi was one of the first person to study
the transportation problem mathematically. Transportation
problem deals with the distribution of single commodity
from various sources of supply to various destinations of
demand in such a manner that the total transportation cost
is minimized. In order to solve a transportation problem the
decision parameters such as availability, requirements and the
unit transportation cost of the model must be fixed at crisp
values.

When applying OR-methods to engineering problems,
for instance, the problems to be modelled and solved are
normally quite clear cut, well described, and crisp. They
can generally be modelled and solved by using classical
mathematics which is dichotomous in character. If vagueness
enters, it is normally of the stochastic kind which can properly
be modelled by using probability theory. This is true for many
areas such as inventory theory, traffic control, and scheduling,
in which probability theory is applied via queuing theory.

One of the most important areas of the kind in which the
vagueness is of a different kind compared to randomness is
probably that of decision making. In decision making the
human factor enters with all its vagueness of perception,
subjectivity, and attitudes of goals and of conceptions. In
transportation problem supply, demand and unit transporta-
tion cost may be uncertain due to several factors; these
imprecise data may be represented by fuzzy numbers. When
the demand, supply, or the unit cost of the transportation
problem takes a fuzzy value then the optimum value of that
problem is also fuzzy, so it becomes a fuzzy transportation
problem.

Linear fractional programming deals with that class of
mathematical programming problem in which the relations
among the variables are linear; the constraint relation must
be in linear form and the objective function to be optimized
must be a ratio of two linear functions. The field of linear
fractional programming problem was developed by Hungar-
ian mathematician B. Matros in 1960. The linear fractional
programming problem is an important planning tool for the
past decades which is applied to different disciplines like engi-
neering, business, finance, and economics. Linear fractional
problem is generally used for modelling real life problems
with one or more objective(s) such as profit-cost, inventory-
sales, actual cost-standard cost, and output-employee; multi-
ple level programming problems are frequently encountered



in a hierarchical organization, manufacturing plant, logistic
companies, and so forth. From practical point of view, it
becomes necessary to consider the large structured program-
ming problem. Even it is theoretically possible to solve this
problem, in practical it is not easy to solve. There are certain
limitations which restrict the endeavours of the analyst. Chief
among these limitations is the problem of dimensionality.
This suggests the idea of developing methods of solution that
should not use simultaneously all the data of the problem; one
such approach is the decomposition principle due to Dantzig
[2] for linear programs. The principle requires the solution
of a series of linear programming problems of smaller size
than the original problem. In this paper, we proposed a new
method to find the optimal solution of the fractional fuzzy
transportation problem based on dual simplex approach.

This paper is organised as follows. In Section 2 related
work is presented. Section 3 provides preliminary back-
ground on fuzzy set theory. The linear fractional fuzzy
programming problem is explained in Section 4. In Section 5
problem formulation of fractional fuzzy transportation prob-
lem appeared. The procedure for the proposed method is
given in Section 6. An illustrative example is provided to
explain this proposed method and the conclusions are given
in Sections 7 and 8, respectively.

2. Related Work

Fractional fuzzy transportation problem is a special type
of linear programming problem and it is an active area of
research. There are a lot of articles in this area which cannot
be reviewed completely and only a few of them are reviewed
here. Charnes and Cooper [3] developed a transformation
technique z = 1/(q' x + f8) to convert fractional programming
method to linear programming method, Swarup [4] intro-
duced simplex type algorithm for fractional program, and
Bitran and Novaes [5] converted linear fractional problem
into a sequence of linear programs and the method is widely
accepted. Tantawy [6] developed a dual solution technique
for the fractional program. Hasan and Acharjee [7] used
the conversion of linear fractional problem into single linear
programming and computed in MATHEMATICA. Joshi and
Gupta [8] solved the linear fractional problem by primal-dual
approach. Sharma and Bansal [9] proposed a method based
on simplex method in which the variables are extended. Jain
et al. [10] proposed ABC algorithm for solving linear frac-
tional programming problem using C-language. Sulaiman
and Basiya [11] used transformation technique.

Verma et al. [12] developed an algorithm which ranks
the feasible solutions of an integer fractional programming
problem in decreasing order of the objective function values.
Metev and Yordanova-Markova [13] applied reference point
method. Pandian and Jayalakshmi [14] used decomposition
method and the denominator restriction method to convert
fractional problem to linear problem. Chandra [15] proposed
decomposition principle for solving linear fractional prob-
lem. Sharma and Bansal [9] gave an integer solution for
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linear fractional problem. Dheyah [16] gave optimal solution
for linear fractional problem with fuzzy numbers. Giizel
et al. [17] proposed an algorithm using first order Taylor
series to convert interval linear fractional transportation
problem into linear multiobjective problem. Madhuri [18]
gave a solution procedure to minimum time for linear
fractional transportation problem with impurities. Jain and
Arya [19] solved an inverse transportation problem with
linear fractional objective function.

Motivated by the work of Giizel et al. [17], in this paper the
author proposes a new method to find the optimal solution
of the fractional fuzzy transportation problem. Some of the
limitations in the existing methods are that, in Charnes
and Coopers methods to obtain the solution, one needs to
solve the linear problem by two-phase method in each step
which becomes lengthy and clumsy. In Bitran and Novae's
method one needs to solve a sequence of problems which
sometimes may need many iterations. In this method if
p(x) < 0 for all x then this method fails. In Swarup’s method
when the constraints are not in canonical form then this
method becomes lengthy and its computational process is
complicated in each iteration. In Harvey’s method he converts
the linear fractional problem maxz = (cx + «)/(dx + f3) to
linear problem under the assumption that 8 # 0. If = 0 this
method fails.

To overcome these limitations, in this paper a new
method is proposed such that the linear fractional trans-
portation problem is decomposed into two linear fuzzy
transportation problems under the assumption that «, f
values are zero. These linear transportation problems are
solved by dual simplex method.

3. Preliminaries

In this section, we present the most basic notations and
definitions, which are used throughout this work. We start
with defining a fuzzy set.

3.1. Fuzzy Set [20]. Let X be a set. A fuzzy set A on X is
defined to be a function A : X — [0,1]orp, : X — [0,1].
Equivalently, a fuzzy set is defined to be the class of objects
having the following representation: A = {(x, p4(,)), x € X}
where y, : X — [0,1] is a function called membership
function of A.

3.2. Fuzzy Number [20]. The fuzzy number A is a fuzzy set
whose membership function satisfies the following condi-
tions.

(i) a(y) is piecewise and continuous.
(ii) A fuzzy set A of the universe of discourse X is convex.

(iii) A fuzzy set of the universe of discourse X is called a
normal fuzzy set if there exists x; € X.
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3.3. Trapezoidal Fuzzy Number [20]. A fuzzy number a =
(a;,ay,a5,4a,) is said to be a trapezoidal fuzzy number if its
membership function is given by

0, x < q
x-a e
a <x<a,
1
b-a’
Uz =141, a, <x < as @)
c—x
a<x < a
3 4
d-c
0, Xz a

3.4. Arithmetic Operations. Let @ = (a,,a,,a5,a,) and

b = (b,by,b;,b,) be two trapezoidal fuzzy numbers; the

arithmetic operators on these numbers are as follows.
Addition:

a+b=(a, +b,a, +b,a; +by,a,+b,). (2)
Subtraction:
a-b=(a,-b,a,-by,a;—by,a,-b,). (3)

Scalar multiplication:

ka = (ka,, ka,, kas, ka,), k>0,

(4)

ka = (kay, kay, kay, ka,), k<O.

3.5. Ranking Function. The following ranking function
defined here is used to compare the fuzzy values when we
perform the dual simplex method. A ranking function R :
F(R) — R, which maps each fuzzy number into the real line.
F(R) represents the set of all trapezoidal fuzzy numbers. If R
is any ranking function, then R(a) = (@, + a, + a; + a,) /4.

3.6. Efficient Point. A feasible point x° € P is said to be an
efficient solution for P if there exists no other feasible point x
of the problem P such that z;(x) > z,-(xo) andi=1,2.

3.7 Ideal Solution. Let x° be the optimal solution to the
problem P,, t = 1,2; then the value of the objective function
zt(xo), t = 1,2, is called the ideal solution to the problem P.

3.8. Best Compromise Solution. An efficient solution x° € P
is said to be the best compromise solution to the problem P,
if the distance between the ideal solution and the objective
value at x°, zt(xo), t = 1,2, is minimum among the efficient
solution to the problem P.

Lemmal. The feasible solution for the problem P is considered
to be efficient if and only if there exist no other feasible solutions
for which we obtain a better value at least for one criterion for
which the value of the rest of criteria remains unmodified.

Theorem 2. If X, is the set of efficient points for problem P,,
t = 1,2, then X, is a subset of the set of all efficient points X of
P.

Proof. Let X, be the set of efficient points of P,. Let X, be the
set of efficient points of P,. As X, ¢ X, t = 1,2. The set of all
efficient points of P}, P, is contained in P. O

Theorem 3. Let X° = {x
P, andlet x° = {xij>
x = x°/x" is an optimal solution of the given problem P where
all of x1,, X5, X315 X4y, . . . are elements of Py, P,.

ij»Xi; € P} be an optimal solution of

xi; € Py} be an optimal solution of Py; then

Proof. Let X° be an optimal solution of P;. This solution is
an efficient solution if there is no feasible solution; these sets
of efficient solutions are contained in x. Similarly the set of
efficient solutions of P, are contained in x. So, by Theorem 2,
these solutions are the set of efficient solutions of P. O

4. Introduction to Linear Fractional Fuzzy
Programming Problem (LFFPP)

One of the main aims of this paper is to extend the linear
fractional problem into linear fractional fuzzy programming
problem.

The LFFPP can be presented in the following way:

_ P
fe=2 5

subject to x € SC R",

~

max

where p(x) and g(x) are linear functions and the set S is
defined as S = {x/Ax = b,x > 0}. Here A is a fuzzy m x n
matrix; we will suppose that S is a bounded polyhedron and
q(x) > Oforall x € S.Itis well known that the goal function in
max f(x) has a global maximum function S and has not any
other local maxima. This maximum is obtained at an extreme
point of S.

LFFPP (5) can now be written as

max p(x)
subject to x€ScR"

(6)
max q(x)

subject to x € Sc R".

Then by Theorem 3, if p(x)/q(x) > 0 Vi and Vx € S then the
set of efficient points for problem P,, t = 1,2, is a subset of the
set of all efficient points of P.

5. Problem Formulation

The proposed fuzzy transportation model is based on the
following assumption.

Index Set. Consider the following

iis source index foralli =1,2,3,...,m.

j is destination index for all j = 1,2,3,...,n.



Parameters. Consider the following
x;; is the number of units transported from source i
to destination j.

¢;; is per unit profit cost of transportation from source
i to destination j.

d;; is per unit cost of transportation from source i to
destination j.

Objective Function. Consider the following.

(i) Fractional transportation problem

Zl ]Z] 1 l]

minz=——;——— 7)

DYDY j=14
The values of ¢; and d;; are considered to be trape-

zoidal fuzzy number.

Constraints. Consider the following.
(i) Constraints on supply available for all sources i

x;;=a; Vi (8)

ij i

™Mz

Il
—

1

(ii) Constraints on demand for each destination j

=

Nonnegative Constraints. Consider the following.
(i) Nonnegative constraints on decision variables

x;; > 0. (10)

The above LFFTP will have a basic feasible solution only when

lea_zjlj

6. Procedure for Proposed Method

Here we present a new method for solving linear fractional
fuzzy transportation problem.

Consider the linear fractional fuzzy transportation prob-
lem as

min —Zl 12 Ly
Zl IZ] 1

m

P:  subject to Z Xij = 0
i=1 (11)
n
)% =b;
j=1
x;; >0
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Since the objective function is a fractional objective function,
we take the problem P into two linear fuzzy transportation
problems by (6) as follows:

m n
. N N
mn N5

i=1j=1

m
P,: subject to foj =g

i=1

Zn:xN:b

-
—

(12)

m n
. D _ D
min z = E E GjXij

P,: subject to

We solve these two linear fuzzy transportation problems by
dual simplex methods. Thus the solution is obtained for
min z" and min z” separately. By Theorem 3, the optimum
solution of P is obtained when the optimal solution of P; and
P, is obtained.

7. Numerical Example

To illustrate the proposed method, consider the following
example for linear fractional fuzzy transportation problem:

P:  min =((0,2,4,6) x;; + (1,2,6,7) x5
+(1,4,5,6) x5, +(3,4,5,8) x,,)
-((0,1,3,4) x;; +(2,3,5,6) x1,
+(1,3,5,7) xy; + (2,6,7,9) )
subject to  xy; + Xy, < 60

Xy + Xy <45
Xqp + X1 250
X1y + Xy 255

X115 X12, X515 X5 2 0.
(13)

The problem P is a linear fractional fuzzy transportation
problem in which the objective function has trapezoidal fuzzy
number; supply and demand values are crisp values. Now by



Computational Intelligence and Neuroscience 5
TABLE 1
C] (_6> _4) _29 0) (_79 _6> _2; _1) (_6> _5, _4) _1) (_8> _5, —4, —3) 0 0 0 0
Yy Xp Xn X1 X X S S, S; S,
0 M 60 1 1 0 0 1 0 0 0
0 S, 45 0 1 1 0 1 0 0
0 S5 =50 -1 0 -1 0 0 0 1 0
0 S, =55 0 ! 0 -1 0 0 0 1
z=0 (0,2, 4,6) 1,2,6,7) (, 4,5, 6) (3,4,5,8) 0 0 0 0
R(--+) 3 4 4 5 0 0 0 0
T 1
TABLE 2
Cj (-6,-4,-2,0) (-7,-6,-2,-1) (-6,-5,—-4,-1) (-8,-5,—-4,-3) 0 0 0 0
Yy Xp X X1 X Xn Sy S, Ss S,
(=8, -5, —4, —3) X, 45 0 0 1 1 -1 0o -1 -1
0 S, 0 0 0 0 0 1 1 1 1
(=6, -5, —4, —1) X, 5 1 0 0 -1 1 0 0 1
(=7, -6, -2, -1) X, 55 0 1 0 1 0 0 0 -1
z = (=995, ~755, -390, —100) 0 0 0 (-5,8,6,9) (=5,0,3,6) 0 (1,4,5,6) (-4,2,9,13)

our computation technique the above problem can be written
as

ZN =(0,2,4,6) x,, +(1,2,6,7) x,
+(1,4,5,6) xy, + (3,4,5,8) Xy

Xq1 + X5 <60

P;: min

subject to

Xy + Xy, <45

X1, + Xy 250

X1p + Xy 255

X115 X125 X315 X3 2 0,

Z2P =(0,1,3,4) x;, + (2,3,5,6) x5
+(1,3,5,7) %3, + (2,6,7,9) X,

subject to  xy; + x7, < 60

Xy + Xy <45

X1 + Xy 250

X1y + X9y 255

X115 X125 X315 X5 2 0.

(14)

Consider P,: The linear problem can be expressed in standard
form as

P: min 2N =(0,2,4,6) x;, +(1,2,6,7) x,,
+(1,4,5,6) Xy, + (3,4,5,8) X,
subject to  x;; + x5, + 5, = 60

Xy, + Xgy +5, =45
X1+ Xy — 83 =50
X1yt Xy — 84 =55
X115 X125 X215 X225 $15 52, 83554 2 0.

(15)

Now P, is solved by the dual simplex method.

The initial iteration of the problem is given in Table 1.

From the initial iteration we can see that the nonbasic
variable X, enters the basis and the basic variable S, leaves
the basis.

Proceeding the dual simplex method and after few itera-
tions we get Table 2. In Table 2 all the values of X are positive
and the optimum solution is obtained as follows:

minz" = (100,390, 755,995),
(16)

X;1 =5, x1,=55 x5 =45.

Consider P,: The linear problem can be expressed in standard
form as

P,: min Z° =(0,1,3,4) x;, +(2,3,5,6) x1
+(1,3,5,7) %5y +(2,6,7,9) x5,
subject to  xy; + x, +S; =60

Xy + Xy +S, =45
X+ x5 —S3=50
X1y + Xy =8, =55

X115 X125 X915 X2, 815825 83,84 2 0.
(17)

Now P, is solved by the dual simplex method.

The initial iteration of the problem is given in Table 3.

From the initial iteration we can see that the nonbasic
variable X, enters the basis and the basic variable S, leaves
the basis.

Proceeding the dual simplex method and after few itera-
tions we get Table 4. In Table 4 all the values of X are positive
and the optimum solution is obtained as follows:

min z” = (155, 305, 515, 665),
(18)
X1 =5,

X1y =55, x5 =45.
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TABLE 3
C; (-4,-3,-1,0) (-6, -5, -3,-2) (-7, -5,-3,-1) (=9, -7,-6,-2) 0 0 0 0
Yy Xp Xn X X X5 S S, S; S
0 S, 60 1 1 0 0 1 0 0 0
0 S, 45 0 0 1 1 0 1 0 0
0 S5 =50 -1 0 -1 0 0 0 1 0
0 S, =55 0 -1 0 -1 0 0 0 1
z=0 (0,1, 3, 4) (2,3,5,6) 1,3,5,7) (2,6,7,9) 0 0 0 0
R(---) 2 4 4 6 0 0 0 0
1 1
TABLE 4
C; (-4,-3,-1,0) (-6,-5-3,-2) (-7, -5-3,-1) (-9,-7%-6,-2) 0 0 0
YB XB Xll XlZ X21 X22 Sl SZ SS S4
(-7, -5,-3,-1) X, 45 0 0 1 1 -1 0 -1 -1
0 S, 0 0 0 0 0 1 1 1 1
(-4,-3,-1,0) X, 5 1 0 0 ! 1 0 0 1
(=6, 5, -3, ~2) X, 55 0 1 0 1 0 0 0 1
z = (-665,—515,-305,-155) 0 0 0 (8,-2,3,3) (-3,0,4,7) 0 (1,3,5,7) (-1,3.9,13)

By Theorem 3 the optimum solution of the fractional fuzzy
transportation problem is obtained.

Thus

_ (100,390, 755,995)

minz = .
(155,305,515, 665)

(19)

8. Conclusion

The present paper proposes a method for solving linear
fractional fuzzy transportation problem where the trape-
zoidal fuzzy numbers are used in the objective function.
The limitations of the existing methods are discussed. The
advantage of the computational technique is that the method
works even when «, 3 values are zero. The dual simplex
method is one of the best methods to get the optimal
solution. The method can be easily implemented to solve
any type of transportation problem. The solution procedures
have been illustrated by an example. The result shows the
high efficiency of the solution and this can be extended to
fractional quadratic problems. The simplex method can be
used instead of dual simplex if all the constraints are of < type
constraints.
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