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The diameter of a cluster is the maximum intracluster distance between pairs of instances within the same cluster, and the split of a
cluster is theminimumdistance between instanceswithin the cluster and instances outside the cluster. Given a few labeled instances,
this paper includes two aspects. First, we present a simple and fast clustering algorithm with the following property: if the ratio of
the minimum split to the maximum diameter (RSD) of the optimal solution is greater than one, the algorithm returns optimal
solutions for three clustering criteria. Second, we study the metric learning problem: learn a distance metric to make the RSD as
large as possible. Compared with existing metric learning algorithms, one of our metric learning algorithms is computationally
efficient: it is a linear programming model rather than a semidefinite programming model used by most of existing algorithms. We
demonstrate empirically that the supervision and the learned metric can improve the clustering quality.

1. Introduction

Clustering is the unsupervised classification of instances into
clusters in a way that attempts to minimize the intracluster
distance and to maximize the intercluster distance. Two cri-
teria commonly used tomeasure the quality of a clustering are
diameter and split. The diameter of a cluster is the maximum
distance between pairs of instances within the same cluster,
and the split of a cluster is the minimum distance between
instances within the cluster and instances outside the cluster.
Clearly, the diameter of a cluster is a natural indication of
homogeneity of the cluster and the split of a cluster is a natural
indication of separation between the cluster and other clus-
ters.

Many authors studied optimization problems related to
the diameter or the split of cluster, for example, to minimize
the maximum cluster diameter [1–4]; minimize the sum of
cluster diameters or radii [5–8]; or maximize the ratio of the
minimum split to the maximum diameter [9]. The well-
known single-linkage clustering and the complete-linkage
clustering also optimize the two criteria, respectively: the

former maximizes the minimum cluster split, and the later
attempts to minimize the maximum cluster diameter.

Ackerman and Ben-David [10] defined a set of axioms
that a measure of cluster-quality should satisfy scale invari-
ance, isomorphism invariance, weak local consistency, and
cofinal richness, and they showed that the RSD clustering cri-
terion, that is, maximizing of the ratio of the minimum split
to the maximum diameter, satisfies those axioms. Given data
𝑋, let RSDopt(𝑋) be the maximum RSD of 𝑋 among all
possible partitions of 𝑋 into 𝑘 clusters. If RSDopt(𝑋) > 1, the
optimal solution with respect to the RSD criterion has the
following property: the distance between each pair of instan-
ces in different clusters is larger than that of each pair of
instances within the same cluster. Hence, we say that data𝑋 is
well-clusterable if RSDopt(𝑋) > 1, and𝑋

󸀠 aremore clusterable
than𝑋 if RSDopt(𝑋

󸀠
) > RSDopt(𝑋).

Ackerman andBen-David [11] showed that if RSDopt(𝑋)>
1, then the optimal solution with respect to the RSD criterion
can be found in time 𝑂(𝑛2 log 𝑛), where 𝑛 is the number
of instances in 𝑋. In this paper, we further show that if
RSDopt(𝑋) > 1, then the optimal solution with the following
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criteria can be found using Gonzalez’s algorithm [1] in linear
time: maximizing RSD, maximizing the minimum split, and
minimizing the maximum diameter.

However, the condition of RSDopt(𝑋) > 1 is too strong
and unrealistic for real world data. So, a natural problem
arises if 𝑋 is poorly clusterable (RSDopt(𝑋) ≪ 1), whether 𝑋
can be made more clusterable by a metric learning approach
and thus Gonzalez’s algorithm together with the learned
metric can perform better than together with the original
metric.

In the clustering literature, there are commonly two
methods to add supervision information into clustering.
First, adding a small portion of the training data into unla-
beled data, thismethod is also called semisupervised learning
[12, 13]. Second, instead of specifying the class labels, pairwise
constraints are specified [14, 15]: a pairwise must-link con-
straint corresponds to the requirement that the involved two
instances must be within the same cluster, whereas the two
instances involved in a cannot-link constraint must be in
different clusters.

Metric learning can be grouped into two categories, that
is, unsupervised and supervised metric learning. In this
paper, we focus on supervised metric learning. Supervised
metric learning attempts to learn distance metrics that keep
instances with the same class label (or with a must-link con-
straint) close and separate instances with different class labels
(or with a cannot-link constraint) far away. Since there are
many possible ways to realize this intuition, a great number
of algorithms have been developed for supervised metric
learning, for example, Local Linear Discriminative Analysis
(LLDA) [16], Relevant Components Analysis (RCA) [17],
Xing et al.’s algorithm [18], Locally Linear Metric Adaptation
(LLMA) [19], Neighborhood Component Analysis (NCA)
[20], Discriminative Component Analysis (DCA) [21], Local
Fisher Discriminant Analysis (LFDA) [22], Large Margin
Nearest Neighbor (LMNN) [23], Local Distance Metric
(LDM) [24], Information-Theoretic Metric Learning (ITML)
[25], Laplacian Regularized Metric Learning (LRML) [26],
Generalized Sparse Metric Learning (GSML) [27], Sparse
DistanceMetric Learning (SDML) [28], Multi-InstanceMEt-
ric Learning (MIMEL) [29], online-reg [30], Constrained
Metric Learning (CML) [31], mixture of sparse Neighbor-
hood Components Analysis (msNCA) [32], Metric Learning
with Multiple Kernel Learning (ML-MKL) [33], Least
Squared residual Metric Learning (LSML) [34], and Distance
Metric Learning with eigenvalue (DML-eig) [35].

Overall, empirical studies showed that supervised metric
learning algorithms can usually outperform unsupervised
ones by exploiting either the label information or the side
information presented in pairwise constraints. However,
despite extensive studies, most of the existing algorithms for
metric learning have one of the following drawbacks: it needs
to solve a nontrivial optimization problem, for example, a
semidefinite programming problem, there are parameters to
tune, and the solution is local optimal.

In this paper, we present two simplemetric learningmod-
els to make data more clusterable. The two models are com-
putationally efficient, parameter-free, and local-optimality-
free. The rest of this paper is organized as follows. Section 2

gives some notations and the definitions of clustering criteria
used in the paper. Section 3 gives Gonzalez’s farthest-point
clustering algorithm for unsupervised learning, presents a
nearest neighbor-based clustering algorithm for the semi-
supervised learning, and discusses the properties of the two
algorithms. In Section 4, we formularize the problem ofmak-
ing data more clusterable as a convex optimization problem.
Section 5 presents the experimental results. We conclude the
paper in Section 6.

2. Notations and Preliminary

We use the following notations in the rest of the paper.
| ⋅ |: the cardinality of a set.

𝑋 ⊂ R𝑑: the set of instances (in 𝑑-dimension space)
to be clustered.
𝑑(𝑥, 𝑦): the Euclidian distance between 𝑥 ∈ 𝑋 and
𝑦 ∈ 𝑋.
𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
: the 𝑘 small subsets of 𝑋 with given

labels, that is, the supervision. In this paper, we
assume that either 𝑆

𝑖
̸= Φ for 𝑖 = 1, 2, . . . , 𝑘 (the

case of semisupervised learning) or 𝑆
𝑖
= Φ for 𝑖 =

1, 2, . . . , 𝑘 (the case of unsupervised learning).
℘: the set of all partitions of 𝑛 objects into 𝑘 nonempty
and disjoint clusters {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑘
}.

Definition 1. Given 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
, we say that a partition 𝑃 ∈

℘ respects the semi-supervised constraints if 𝑃 satisfies the
following conditions.

(1) All instances in 𝑆
𝑖
must be within the same cluster of

𝑃 for 𝑖 = 1, 2, . . . , 𝑘, and
(2) Any pair of instances 𝑥 ∈ 𝑆

𝑖
and 𝑦 ∈ 𝑆

𝑗
, 𝑥 and 𝑦must

be in different clusters of 𝑃 for 𝑖, 𝑗 = 1, 2, . . . , 𝑘, and
𝑖 ̸= 𝑗.

In the rest of the paper, we use ℘ssc to denote the subset
of ℘ that respects the semisupervised constraints, and we
require that any partition in the context of semisupervised
learning should respect the semisupervised constraints.

Definition 2. For a set 𝐶 of objects, the split 𝑠(𝐶) of 𝐶 is
defined as

𝑠 (𝐶) = min
𝑥∈𝐶,𝑦∉𝐶

𝑑 (𝑥, 𝑦) . (1)

For a partition 𝑃 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
} ∈ ℘, the split 𝑠(𝑃) of 𝑃 is

the minimum 𝑠(𝐶
𝑖
) among 𝑖 = 1, 2, . . . , 𝑘.

Definition 3. For a set 𝐶 of objects, the diameter 𝑑(𝐶) of 𝐶 is
defined as

𝑑 (𝐶) = max
𝑥,𝑦∈𝐶

𝑑 (𝑥, 𝑦) . (2)

For a partition 𝑃 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
} ∈ ℘, the diameter 𝑑(𝑃) of

𝑃 is the maximum diameter 𝑑(𝐶
𝑖
) of𝐶
𝑖
among 𝑖 = 1, 2, . . . , 𝑘.
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Definition 4. The unsupervised and semisupervised max-
min split problems are defined as, respectively,

max
𝑃∈℘

𝑠 (𝑃) , (3)

max
𝑃∈℘scc

𝑠 (𝑃) . (4)

Definition 5. The unsupervised and semisupervised min-
max diameter problems are defined as, respectively,

min
𝑃∈℘

𝑑 (𝑃) , (5)

min
𝑃∈℘scc

𝑑 (𝑃) . (6)

Definition 6. The unsupervised and semisupervised max-
RSD problems are defined as, respectively,

max
𝑃∈℘

𝑠 (𝑃)

𝑑 (𝑃)
, (7)

max
𝑃∈℘scc

𝑠 (𝑃)

𝑑 (𝑃)
. (8)

For the unsupervisedmax-RSDproblem,Wang andChen
[9] presented an exact algorithm for 𝑘 = 2 and a 2-
approximation algorithm for 𝑘 ≥ 3; however the worst-
case time complexity of both algorithms is 𝑂(𝑛3) and thus
impractical for large-scale data.

Let 𝑆 ⊆ 𝑋; we use 𝑑Max(𝑥, 𝑆) to denote the maximum
distance between the instance 𝑥 and instances in 𝑆; that is,
𝑑Max(𝑥, 𝑆) = max{𝑑(𝑥, 𝑦) | 𝑦 ∈ 𝑆}; similarly, 𝑑Min(𝑥, 𝑆) =
min{𝑑(𝑥, 𝑦) | 𝑦 ∈ 𝑆}.

3. Well-Clusterable Data: Find the
Optimal Solution Efficiently

In this section, we show that if RSDopt(𝑋) > 1, the max-
RSD problem, the max-min split problem, and the min-max
diameter problem can be simultaneously solved by Gonza-
lez’s algorithm for unsupervised learning in Section 3.1 and
by a nearest neighbor-based algorithm for semisupervised
learning in Section 3.2, respectively. At the same time, we also
discuss the properties of the two algorithms for the case of
RSDopt(𝑋) ≤ 1.

3.1. Unsupervised Learning. The farthest-point clustering
(FPC) algorithm proposed by Gonzalez [1] is shown in
Algorithm 1, where the meaning of nearest neighbor is its
literal one as (9); that is, 𝑝’s nearest neighbor in 𝑅 is 𝑞,

𝑞 = arg min
𝑢∈𝑅

𝑑 (𝑝, 𝑢) . (9)

Theorem7. For unsupervised learning, if RSDopt(𝑋) > 1, then
the partition 𝑃 returned by FPC is simultaneously the optimal
solution of the max-RSD problem, the max-min split problem,
and the min-max diameter problem.

Algorithm: FPC
Input: The input data 𝑋, and the number 𝑘 of clusters.
Output: The partition 𝑃 of𝑋.
𝑅 ← Φ;
Randomly select an instance 𝑝 from𝑋;
𝑅 ← 𝑅 ∪ {𝑝};
while (|𝑅| < 𝑘)
𝑝 ← argmax

𝑞∈𝑋−𝑅

𝑑Min(𝑞, 𝑅);

𝑅 ← 𝑅 ∪ {𝑝};
end while
Let 𝑃 be the partition by assigning each instance 𝑝 of𝑋 to
its nearest neighbor in 𝑅 (if 𝑝 ∈ 𝑅, the nearest neighbor of
𝑝 in 𝑅 is itself);
return 𝑃;

Algorithm 1: The FPC algorithm for unsupervised learning [1].

Proof. (a) The proof of the max-RSD problem: let 𝑃󸀠 =

{𝐶
1
, 𝐶
2
,. . . , 𝐶

𝑘
} be the optimal partition of the max-RSD

problem; then RSD(𝑃󸀠) > 1, and we have

∀𝑝, 𝑞 ∈ 𝐶
𝑖
, ∀𝑢 ∉ 𝐶

𝑖
: 𝑑 (𝑝, 𝑞) < 𝑑 (𝑝, 𝑢) ∀𝑖. (10)

We prove the following proposition: any pair of instances
in 𝑅 (see Algorithm 1) must be in different clusters of 𝑃󸀠; that
is, 𝑅 contains exactly one instance of each cluster 𝐶

𝑖
, 𝑖 =

1, 2, . . . , 𝑘. If this holds, then by (10), for any instance 𝑞 ∈ 𝐶
𝑖
,

𝑖 = 1, 2, . . . , 𝑘, its nearest neighbor in 𝑅must be the instance
𝑝 such that 𝑝 also belongs to 𝐶

𝑖
, and hence 𝑃 = 𝑃

󸀠.
We prove the proposition by contradiction. Assume that

there exists a pair of instances𝑝 and 𝑞 in𝑅 so that they belong
to the same cluster 𝐶

𝑟
for some 𝑟. Without loss of generality,

let 𝑝 be selected into 𝑅 before 𝑞. Then 𝑑Min(𝑞, 𝑅) ≤ 𝑑(𝑞, 𝑝)

when selecting 𝑞 into 𝑅. Note that |𝑅| < 𝑘 before selecting
𝑞; there exists at least one cluster 𝐶

𝑡
(𝑡 ̸= 𝑟) such that no

instance in 𝐶
𝑡
belongs to 𝑅. By (10), for any 𝑞󸀠 ∈ 𝐶

𝑡
, we have

𝑑Min(𝑞󸀠, 𝑅) > 𝑑(𝑞, 𝑝) ≥ 𝑑Min(𝑞, 𝑅); 𝑞 has no chance to be
selected into 𝑅 since we should select the instance 𝑞󸀠 with the
maximum 𝑑Min(𝑞󸀠, 𝑅), and thus the proposition holds.

(b) Since separating any pair 𝑝, 𝑞 of instances within the
same cluster of 𝑃 into different clusters will strictly decrease
the split of the resulted partition, the conclusion for the max-
min split problem holds.

(c) Since grouping any pair 𝑝, 𝑞 of instances in different
clusters of 𝑃 into the same cluster will strictly increase the
diameter of the resulting partition, the conclusion for the
min-max diameter problem holds.

Clearly, the time complexity of 𝐹𝑃𝐶 is 𝑂(𝑛𝑘) by main-
taining a nearest neighbor table that records the nearest
neighbor in 𝑅 of each instance 𝑝 ∈ 𝑋 − 𝑅 and the
corresponding distance between 𝑝 and its nearest neighbor
in 𝑅. The space complexity is 𝑂(𝑛). So, the time complexity
and the space complexity are both linear with 𝑛 for a fixed 𝑘.
Using a more complicated approach, the 𝐹𝑃𝐶 algorithm can
be implemented in 𝑂(𝑛 log 𝑘), but the implementation was
exponentially dependent on the dimension 𝑑 [3].
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Algorithm: NNC
Input: The input data 𝑋, the number 𝑘 of clusters, and the
𝑘 labeled subsets 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑘
of𝑋.

Output: The partition 𝑃 of𝑋.
for each unlabelled instance 𝑝 ∈ 𝑋, compute 𝑑Max(𝑝, 𝑆

𝑖
)

for 𝑖 = 1, 2, . . . , 𝑘;
Let 𝐶

𝑖
= 𝑆
𝑖
for 𝑖 = 1, 2, . . . , 𝑘;

for each unlabelled instance 𝑝 ∈ 𝑋
𝑟 ← argmin
𝑖∈{1,2,...,𝑘}

𝑑Max(𝑝, 𝑆
𝑖
);

𝐶
𝑟
← 𝐶
𝑟
∪ {𝑝};

end for
return 𝑃 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑘
};

Algorithm 2: The NNC clustering algorithm for semisupervised
learning.

Now, a natural problem arises: if RSDopt(𝑋) ≤ 1, how
does the FPC algorithm perform? Although, in this paper,
we cannot give performance guarantee of the FPC algorithm
for the max-RSD problem and the max-min split problem if
RSDopt(𝑋) ≤ 1, Gonzalez [1] proved the following theorem
(see also [2, 3]).

Theorem 8 (see [1]). The FPC is a 2-approximation algorithm
for the unsupervised min-max diameter problem with the
triangle inequality satisfied for any 𝑘. Furthermore, for 𝑘 ≥

3, the (2 − 𝜀)-approximation of the unsupervised min-max
diameter problem with the triangle inequality satisfied is NP-
complete for any 𝜀 > 0.

So as far as the approximation ratio is concerned, the FPC
algorithm is the best for the unsupervised min-max diameter
problem unless P = NP.

3.2. Semi-Supervised Learning. For semisupervised learn-
ing, we present a nearest neighbor-based clustering (NNC)
algorithm as shown in Algorithm 2. The algorithm is self-
explanatory, and we do not give a further explanation.

Theorem9. For semiunsupervised learning, if RSDopt(𝑋) > 1,
then the partition 𝑃 returned by NNC is simultaneously the
optimal solution of the semisupervised max-RSD problem, the
semisupervisedmax-min split problem, and the semisupervised
min-max diameter problem.

Proof. The proof of max-RSD(𝑃) problem: let 𝑃
󸀠

=

{𝐶
󸀠

1
, 𝐶
󸀠

2
, . . . , 𝐶

󸀠

𝑘
} be the optimal partition of the semisuper-

vised max-RSD problem. Since 𝑃󸀠 respects the supervision,
we can replace 𝑆

𝑖
by a super-instance 𝛼

𝑖
for 𝑖 = 1, 2, . . . , 𝑘;

then each cluster 𝐶󸀠
𝑖
contains exactly one super-instance 𝛼

𝑖

for 𝑖 = 1, 2, . . . , 𝑘 (without loss of generality, here we assume
that 𝛼

𝑖
is in the cluster 𝐶󸀠

𝑖
for 𝑖 = 1, 2, . . . , 𝑘). Let 𝑃 =

{𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
}; then according to the algorithm NNC, each

cluster also contains exactly one super-instance, and without
loss of generality, we also assume that 𝛼

𝑖
is in the cluster 𝐶

𝑖

for 𝑖 = 1, 2, . . . , 𝑘. For each unlabeled instance 𝑝 ∈ 𝐶
󸀠

𝑟
for

𝑟 = 1, 2, . . . , 𝑘, since RSDopt(𝑋) > 1, we have 𝑑(𝑝, 𝛼
𝑟
) =

𝑑Max(𝑝, 𝑆
𝑟
) < 𝑑(𝑝, 𝛼

𝑖
) = 𝑑Max(𝑝, 𝑆

𝑖
) for any 𝑖 ̸= 𝑟, and

the nearest neighbor of 𝑝 in {𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
} is 𝛼
𝑟
, so 𝐶󸀠

𝑟
= 𝐶
𝑟

for 𝑟 = 1, 2, . . . , 𝑘, and thus 𝑃󸀠 = 𝑃.
The proofs for the semisupervisedmax-min split problem

and the semisupervised min-max problem are similar to (b)
and (c) in the proof of Theorem 7 respectively, and here we
omit it.

The time complexity ofNNC using a simple implementa-
tion is

𝑘

∑

𝑖=1

𝑂 (𝑛
󵄨󵄨󵄨󵄨𝑆𝑖
󵄨󵄨󵄨󵄨) + 𝑂 (𝑛𝑘) . (11)

The space complexity of NNC is 𝑂(𝑛). Since we assume
that 𝑆

𝑖
are small sets for 𝑖 = 1, 2, . . . , 𝑘, the time and space

complexities are also linear with 𝑛 when |𝑆
𝑖
| are regarded as

constants for 𝑖 = 1, 2, . . . , 𝑘.
Similar to Theorem 8, we have the following theorem for

the semisupervised min-max diameter problem.

Theorem 10. NNC is a 2-approximation algorithm for the
semisupervised min-max diameter problem with the triangle
inequality satisfied.

Proof. Let 𝑆 = {𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑘
} (see the proof of Theorem 9),

𝛿 = max{𝑑(𝑆
1
), 𝑑(𝑆
2
), . . . , 𝑑(𝑆

𝑘
)}, and 𝜎 = max{𝑑Min(𝑞, 𝑆) |

𝑞 is an unlabelled instance} and let 𝑝 be any unlabelled
instance such that 𝑑Min(𝑝, 𝑆) = 𝜎. Since the optimal par-
tition of a semisupervised min-max diameter problem must
respect the supervision, we have 𝑑opt(𝑋) ≥ 𝛿, where 𝑑opt(𝑋)
denotes the diameter of the optimal solution of the semisu-
pervisedmin-max diameter problem; at the same time, 𝑝 and
𝛼
𝑖
for some 𝑖 ∈ {1, 2, . . . , 𝑘} must be within the same cluster

of the optimal solution, so 𝑑opt(𝑋) ≥ 𝜎; therefore 𝑑opt(𝑋) ≥
max{𝛿, 𝜎}. Now consider the partition 𝑃 = {𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑘
}

returned byNNC. Since each unlabeled instance 𝑞 is assigned
into its nearest neighbor in 𝑆, so, for any cluster 𝐶

𝑖
of 𝑃 for

𝑖 = 1, 2, . . . , 𝑘 (assume that the super-instance in 𝐶
𝑖
is 𝛼
𝑖
), we

have 𝑑(𝑞, 𝛼
𝑖
) ≤ 𝜎, and 𝑑(𝐶

𝑖
) ≤ 2𝜎 by the triangle equality. So,

𝑑(𝑃) ≤ max{2𝜎, 𝛿} ≤ 2𝑑opt(𝑋), and the theorem holds.

4. The Metric Learning Models

If the given data are poorly clusterable, that is, the RSDopt(𝑋)

is far less than one, the algorithms FPC and NNC may per-
form poorly. Given the supervision, we use metric learning
to make the supervised data more clusterable, and then the
two algorithms can be used with the new metric.

Supervised metric learning attempts to learn distance
metrics that keep instances with the same class labels (or
with amust-link constraint) close and separate instances with
different class labels (or with a cannot-link constraint) far
away. As discussed in the first section, there aremany possible
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ways to realize this intuition; for example, Xing et al. [18]
presented the following model:

min
𝑀

∑

(𝑥,𝑦)∈𝑆

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝑀 (12)

s.t. ∑

(𝑥,𝑦)∈𝐷

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑀

≥ 1 (13)

𝑀 ⪰ 0. (14)

In the above model, 𝑆 denotes the set of must-link
constraints, 𝐷 denotes the set of cannot-link constraints,𝑀
is a 𝑑×𝑑Mahalanobis distancesmatrix, and ‖𝑥−𝑦‖

𝑀
denotes

the distance𝑑(𝑥, 𝑦) between two instances𝑥 and𝑦 ∈ 𝑋 ⊆ R𝑑

with respect to𝑀; that is,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑀

= √(𝑥 − 𝑦)
𝑇

𝑀(𝑥 − 𝑦), (15)

where 𝑇 denotes the transpose of a matrix or a vector. The
constraint (14) requires that𝑀 should be a positive semidef-
inite matrix; that is, ∀𝑥 ∈ R𝑑, 𝑥𝑇𝑀𝑥 ≥ 0. The choice of
the constant 1 on the right hand side of (13) is arbitrary but not
important, and changing it to any other positive constant 𝑐
results only in𝑀 being replaced by 𝑐2𝑀.

Note that the matrix 𝑀 can be either a full matrix or
a diagonal matrix. In natural language, Xing et al.’s model
minimizes the sumof the square of distancewith respect to𝑀
between pairs of instances with must-link constraints subject
to the following constraints: (a) the sum of distances with
respect to 𝑀 between pairs of instances with cannot-link
constraints is greater than or equal to one, and (b) 𝑀 is a
positive semidefinite matrix.

Xing et al.’s model, as well as most of the existing
metric learning, is a semidefinite programming problem and
thus computationally expensive and even intractable in high
dimensional space for the case of full matrix.

Inspired by the RSD clustering criterion, we propose two
metric learningmodels: one learns a full matrix and the other
learns a diagonal matrix. In this section, the supervision can
be given either in the form of labeled sets 𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑘
or in

the form of pairwise constraints.

4.1. The Labeled Sets. Given the supervision 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
, we

want to learn a Mahalanobis distances matrix 𝑀 such that
the minimum split with respect to 𝑀 among 𝑆

𝑖
, 𝑖 =

1, 2, . . . , 𝑘, is maximized subject to the following constraints:
(a) the distance between each pair of instances with the same
class label is less than or equal to one and (b) 𝑀 is a

positive semidefinite matrix. Formally, we have the following
optimization problem (the case of full matrix).

The Case of Full Matrix. Consider

max
𝑀

𝑠 (16)

s.t. ∀𝑥 ∈ 𝑆
𝑖
, 𝑦 ∈ 𝑆

𝑗
: 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝑀
≥ 𝑠,

𝑖, 𝑗 = 1, 2, . . . , 𝑘, 𝑖 ̸= 𝑗

(17)

∀𝑥, 𝑦 ∈ 𝑆
𝑖
: 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝑀
≤ 1, 𝑖 = 1, 2, . . . , 𝑘 (18)

𝑀 ⪰ 0 (19)

𝑠 ≥ 0. (20)

The constraint (17) requires that the scalar variable 𝑠 (the
minimum split) is the minimum among distances between
pairs of instances with different class labels. The constraint
(18) requires that the distance between each pair of instances
with the same class label is less than or equal to one. The
optimization objective is to maximize 𝑠. Similar to (13), the
choice of the constant 1 on the right hand side of (18) is
arbitrary but not important and can be set to any positive
constant.

The full matrix model is a SDP optimization problem,
and, theoretically, the global optimal solution can be solved
efficiently [36]. However, when𝑀 is a fullmatrix, the number
of variables (|𝑀|) is quadratic in 𝑑, and thus it is prohibitive
for problemswith a large number of dimensions. To avoid this
problem, we can require that 𝑀 is a diagonal matrix. Since
𝑀 is a diagonal matrix, 𝑀 is a positive semidefinite matrix
if and only if𝑀

𝑖𝑖
≥ 0 for 𝑖 = 1, 2, . . . , 𝑑, where𝑀

𝑖𝑖
is the 𝑖th

diagonal entry. So, learning a diagonalmatrix𝑀 is equivalent
to learning a vector 𝑧 ∈ R𝑑 using the following model (the
case of diagonal matrix).

The Case of Diagonal Matrix. Consider

max
𝑧

𝑠 (21)

s.t. ∀𝑥 ∈ 𝑆
𝑖
, 𝑦 ∈ 𝑆

𝑗
: 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝑧
≥ 𝑠,

𝑖, 𝑗 = 1, 2, . . . , 𝑘, 𝑖 ̸= 𝑗
(22)

∀𝑥, 𝑦 ∈ 𝑆
𝑖
: 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝑧
≤ 1, 𝑖 = 1, 2, . . . , 𝑘 (23)

𝑧 ≥ 0 (24)
𝑠 ≥ 0, (25)

where

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑧
= √

𝑑

∑

𝑖=1

𝑧
𝑖
(𝑥
𝑖
− 𝑦
𝑖
)
2

. (26)

The constraint (24) requires that each component of 𝑧
should be greater than or equal to zero.

Now since the optimization objective and all constraints
are linear, the above optimization problem is a linear pro-
gramming problem with 𝑑 + 1 variables, and 𝑘 × |𝑆

𝑖
| × (|𝑆

𝑖
| −

1)/2+𝑘×(𝑘−1)×|𝑆
𝑖
|
2
/2+(𝑑+1) inequality constraints (assume
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that 𝑆
𝑖
has equal size).When |𝑆

𝑖
| is small for 𝑖 = 1, 2, . . . , 𝑘, the

global optimal solution can be efficiently found using some
optimization tool package, for example, theMATLAB linprog
function, or the CVX—MATLAB software for disciplined
convex programming (http://cvxr.com/cvx/download/).

4.2. Pairwise Constraints. If the supervision is given in the
form of pairwise constraints, that is, the must-link and
cannot-link constraints, the models also work after a minor
modification. Let ML be the set of must-link constraints,
and let CL be the set of cannot-link constraints; then the
full matrix model and the diagonal matrix model should be
modified as follows: substituting (17󸀠) for (17), (18󸀠) for (18),
(22
󸀠
) for (22), and (23󸀠) for (23), respectively,

∀ (𝑥, 𝑦) ∈ ML: 󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑀

≤ 1, (17
󸀠
)

∀ (𝑥, 𝑦) ∈ CL: 󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑀

≥ 𝑠, (18
󸀠
)

∀ (𝑥, 𝑦) ∈ ML: 󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑧
≤ 1, (22

󸀠
)

∀ (𝑥, 𝑦) ∈ CL: 󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑧
≥ 𝑠. (23

󸀠
)

However, if the supervision is given in the form of
pairwise constraints, it is nontrivial to decide whether there
is a partition 𝑃 of𝑋 such that 𝑃 satisfies all of those pairwise
constraints (and we call it the feasibility problem). For CL
constraints, Davidson and Ravi showed that the feasibility
problem is equivalent to the 𝑘-colorability problem [37] and
thus NP-complete [38], whereas the feasibility problem is
trivial if the supervision is given in the form of labeled sets.
Of course, if we do not require that all of those pairwise
constraints should be satisfied, the FPC algorithm can be
naturally used together with the metric learned from the
pairwise constraints.

Clearly, the metric learning models proposed in this
paper are practicable only when the cardinality of sets of
labeled instances or the number of pairwise constraints is
small. Otherwise, the problem is usually overconstrained and
there is no feasible solution.

5. The Experimental Results

5.1. The Compared Algorithms and Benchmark Datasets. To
validate whether semisupervised learning performs better
than unsupervised one, whethermetric learning can improve
clustering quality, and whether our metric learning model
performs better than Xing et al.’s one for the 𝐹𝑃𝐶 and 𝑁𝑁𝐶
algorithms, we implemented the following algorithms:

(i) the FPC algorithm as shown in Algorithm 1;
(ii) the NNC algorithm as shown in Algorithm 2;
(iii) the FPC with our metric learning model (the case of

diagonal matrix) (FPC Diag); that is, we first use our
metric learningmodel to learn a vector 𝑧 and then use
the FPC clustering algorithm with the learned vector;
that is, the distance is computed using (26);

(iv) the NNC with our metric learning model (the case of
diagonal matrix) (NNC Diag);

Table 1: The information of benchmark datasets.

Dataset Abbr. #Class #Attr Size
Balance Bal 3 4 625
Breast Cancer Wisconsin BCW 2 9 699
Credit Cre 2 15 653
Ecoli Eco 8 7 336
Hepatitis Hep 2 19 155
Housing Hou 3 13 506
Ionosphere Ion 2 34 351
Iris Iri 3 4 150
mfeat-fac Mff 10 216 2000
mfeat-pix Mfp 10 240 2000
Pima Pim 2 8 768
Promoters Pro 2 57 106
Segmentation Seg 7 19 2310
Sick Sic 2 29 3772
Soybean Soy 4 35 47
Splice Spl 3 60 3175
Voting Vot 2 16 435
Wine Win 3 13 178
Yeast Yea 10 8 1484
Zoo Zoo 7 17 101

(v) the FPC with Xing et al.’s metric learning algorithm
(also using the diagonal matrix) (FPC Xing); that is,
we first use Xing et al.’s metric learning algorithm
to learn a vector 𝑧 and then use the FPC clustering
algorithm with the learned vector;

(vi) the NNC with Xing et al.’s metric learning algorithm
(also using the diagonal matrix) (NNC Xing).

We also implemented the following algorithms as baseline
approaches. The reason that we select 𝑘-means to compare is
that 𝑘-means is very simple and also a linear time algorithm
when regarding 𝑘 and the repetition times as constants:

(i) the constrained 𝑘-means [39] with Xing et al.’s metric
learning algorithm (CopK Xing);

(ii) pairwise constrained 𝑘-means with Xing et al.’s metric
learning algorithm (PCK Xing) [40, 41].

ForXing et al.’smetric learningmethod, the code is down-
loaded from Xing’s home page: http://www.cs.cmu.edu/∼
epxing/publications.html.

We conduct experiments on twenty UCI real world
datasets obtained from the Machine Learning Repository of
the University of California, Irvine [42]. The information
about those datasets is summarized in Table 1.

5.2. The Experiments Setup. We first make the following
preprocessing: for a nominal attribute with 𝐼 different values,
we replace these values by 𝐼 integers 1, 2, . . . , 𝐼, and then all
attributes are normalized to the interval [1, 2].

Except Ecoli, |𝑆
𝑖
| is set to five for 𝑖 = 1, 2, . . . , 𝑘. Because

the smallest number of instances is two among eight classes
in the dataset Ecoli, |𝑆

𝑖
| is set to two for 𝑖 = 1, 2, . . . , 𝑘.
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Table 2: The mean Rand Index and the standard deviation over 20 random runs (|𝑆
𝑖
| = 2 for Ecoli and 5 for the others, 𝑖 = 1, 2, . . . , 𝑘).

Dataset FPC NNC FPC Diag NNC Diag CopK Xing PCK Xing FPC Xing NNC Xing
Bal 0.534 ± 0.034 0.594 ± 0.038 0.510 ± 0.033 0.588 ± 0.032 0.602 ± 0.039 0.594 ± 0.031 0.434 ± 0.002 0.608 ± 0.067
BCW 0.629 ± 0.074 0.832 ± 0.044 0.636 ± 0.050 0.803 ± 0.023 0.840 ± 0.150 0.860 ± 0.135 0.579 ± 0.014 0.846 ± 0.032
Cre 0.521 ± 0.013 0.601 ± 0.066 0.538 ± 0.050 0.660 ± 0.077 0.683 ± 0.046 0.685 ± 0.065 0.506 ± 0.006 0.625 ± 0.075
Eco 0.596 ± 0.089 0.871 ± 0.022 0.716 ± 0.093 0.793 ± 0.021 0.816 ± 0.009 0.818 ± 0.011 0.298 ± 0.013 0.813 ± 0.033
Hep 0.599 ± 0.063 0.579 ± 0.084 0.640 ± 0.039 0.572 ± 0.063 0.566 ± 0.036 0.564 ± 0.039 0.668 ± 0.010 0.588 ± 0.066
Hou 0.546 ± 0.023 0.603 ± 0.028 0.497 ± 0.048 0.621 ± 0.024 0.604 ± 0.005 0.601 ± 0.006 0.467 ± 0.024 0.607 ± 0.040
Ion 0.519 ± 0.031 0.552 ± 0.023 0.549 ± 0.034 0.553 ± 0.036 0.571 ± 0.021 0.581 ± 0.013 0.522 ± 0.013 0.543 ± 0.021
Iri 0.618 ± 0.056 0.870 ± 0.021 0.655 ± 0.025 0.907 ± 0.068 0.845 ± 0.061 0.819 ± 0.129 0.446 ± 0.096 0.918 ± 0.026
Mff 0.691 ± 0.040 0.879 ± 0.012 0.787 ± 0.047 0.915 ± 0.013 0.901 ± 0.014 0.903 ± 0.008 0.733 ± 0.019 0.875 ± 0.009
Mfp 0.377 ± 0.084 0.867 ± 0.013 0.795 ± 0.053 0.906 ± 0.016 0.906 ± 0.016 0.909 ± 0.015 0.730 ± 0.018 0.880 ± 0.014
Pim 0.542 ± 0.014 0.544 ± 0.027 0.540 ± 0.018 0.538 ± 0.034 0.556 ± 0.004 0.555 ± 0.004 0.544 ± 0.001 0.553 ± 0.024
Pro 0.502 ± 0.008 0.537 ± 0.031 0.511 ± 0.025 0.572 ± 0.061 0.588 ± 0.063 0.579 ± 0.072 0.497 ± 0.003 0.574 ± 0.033
Seg 0.589 ± 0.103 0.855 ± 0.015 0.397 ± 0.162 0.854 ± 0.049 0.827 ± 0.038 0.843 ± 0.021 0.403 ± 0.099 0.821 ± 0.016
Sic 0.595 ± 0.083 0.631 ± 0.124 0.789 ± 0.114 0.835 ± 0.151 0.679 ± 0.136 0.658 ± 0.142 0.863 ± 0.018 0.652 ± 0.095
Soy 0.669 ± 0.044 0.973 ± 0.022 0.754 ± 0.049 0.982 ± 0.011 0.906 ± 0.080 0.843 ± 0.087 0.715 ± 0.056 0.950 ± 0.014
Spl 0.528 ± 0.005 0.516 ± 0.028 0.510 ± 0.031 0.547 ± 0.018 0.618 ± 0.039 0.619 ± 0.036 0.385 ± 0.000 0.539 ± 0.026
Vot 0.540 ± 0.036 0.612 ± 0.097 0.573 ± 0.074 0.769 ± 0.124 0.773 ± 0.004 0.712 ± 0.111 0.526 ± 0.019 0.731 ± 0.071
Win 0.607 ± 0.038 0.804 ± 0.048 0.567 ± 0.076 0.883 ± 0.038 0.840 ± 0.085 0.807 ± 0.088 0.363 ± 0.008 0.803 ± 0.032
Yea 0.291 ± 0.055 0.681 ± 0.031 0.461 ± 0.028 0.679 ± 0.034 0.723 ± 0.012 0.726 ± 0.013 0.233 ± 0.002 0.644 ± 0.049
Zoo 0.807 ± 0.041 0.983 ± 0.012 0.849 ± 0.047 0.992 ± 0.016 0.928 ± 0.046 0.914 ± 0.039 0.753 ± 0.122 0.981 ± 0.010
Mean 0.565 ± 0.047 0.719 ± 0.039 0.614 ± 0.055 0.748 ± 0.046 0.739 ± 0.046 0.730 ± 0.053 0.533 ± 0.027 0.728 ± 0.038

Xing et al.’s metric learning is carried out on the original
pairwise constraints: ML = {(𝑝, 𝑞) | 𝑝, 𝑞 ∈ 𝑆

𝑖
, 𝑖 =

1, 2, . . . , 𝑘} and CL = {(𝑝, 𝑞) | 𝑝 ∈ 𝑆
𝑖
, 𝑞 ∈ 𝑆

𝑗
, 𝑖, 𝑗 =

1, 2, . . . , 𝑘, 𝑖 ̸= 𝑗}. In the phase of clustering for CopK Xing
and PCK Xing, it is the centroid 𝑐

𝑖
of 𝑆
𝑖
that participates in

the clustering process, which guarantees that all must-link
constraints are satisfied.

The stop condition is either the repetition times are more
than 100 or the objective difference between two consecutive
repetitions is less than 10−6.

We use the Rand Index [43] to measure the clustering
quality in our experiments. The Rand Index reflects the
agreement of the clustering result with the ground truth.
Here, the ground truth is given by the data’s class labels. Let 𝑛

𝑠

be the number of instance pairs that are assigned to the same
cluster and have the same class label, and let 𝑛

𝑑
be the number

of instance pairs that are assigned to different clusters and
have different class labels. Then, the Rand Index is defined
as

RI =
2 (𝑛
𝑠
+ 𝑛
𝑑
)

(𝑛 (𝑛 − 1))
. (27)

All algorithms are implemented in MATLAB R2009b,
and experiments are carried out on a 2.6GHz double-core
Pentium PC with 2G bytes of RAM.

5.3. The Mean Rand Index. Table 2 summarizes the mean
Rand Index and the standard deviation over 20 random runs
on twenty datasets, and the value with bold in each row is the
highest. Table 2 shows that although no algorithm performs

better than the other algorithms on all datasets, in general we
can draw the following conclusion.

(1) The supervision can significantly improve the cluster-
ing quality: compared with FPC and FPC Diag, the
meanRand Index ofNNC andNNC Diag over twenty
datasets increases about 27 percent and 22 percent,
respectively. Note that the increment of the Rand
Index that resulted from the addition of supervision
itself is very small.

(2) The introducing of metric learning into an existing
algorithm does not always increase its performance.
However, in general, the effect of our metric learning
model is positive: the win/loss ratio of FPC Diag to
FPC is 11/3, and the win/loss ratio of NNC Diag to
NNC is 8/1, where algorithm A defeating algorithm
B means that the Rand Index of A is higher at least
0.03 than that of B since the standard deviation is a
bit large.

(3) Compared with CopK Xing and PCK Xing,
NNC Diag performs a little better: the win/loss
ratio of NNC Diag to CopK Xing is 5/3, and the win/
loss ratio of NNC Diag to PCK Xing is 6/3.

(4) For the FPC and NNC clustering algorithms, the pro-
posedmetric learningmodel is better thanXing et al.’s
method, especially for FPC. For FPC, Xing et al.’s
method resulted in the fact that the performance of
FPC significantly decreased on nine datasets and the
mean Rand Index of FPC Xing even decreases about
6 percent compared with FPC. The win/loss ratio of
NNC Diag to NNC Xing is 8/1. This fact seems to
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Figure 1: The logarithm graph of the mean runtime (milliseconds)
over 20 random runs.

advise that when selecting ametric learningmodel for
an existing clustering algorithm, the metric learning
model should correspond to the clustering criterion
of the clustering algorithm.

5.4.The Runtime. Figure 1 depicts the logarithm graph of the
mean runtime (milliseconds) over 20 random runs, where the
runtime of FPC, NNC, CopK, and PCK does not include the
metric learning time. The legend Diag denotes the runtime
of the metric learning time of our diagonal matrix model,
and the legend Xing denotes the metric learning time of Xing
et al.’s model (the diagonal matrix). So, the runtime of
FPC Diag (NNC Diag) is the sum of the FPC (NNC) and the
Diag. Similarly, the runtime of CopK Xing (PCK Xing) is the
sum of the CopK (PCK) and the Xing.

Figure 1 shows that both NNC and FPC are much faster
than CopK and PCK, which is consistent with their time
complexities: the complexity of FPC and NNC is 𝑂(𝑛𝑘),
whereas the complexity of CopK and PCK is 𝑂(𝑛𝑘𝑡), where
𝑡 is repetition times of 𝑘-means. Figure 1 also shows that Xing
et al.’s model is slower than our model when the number of
dimensions is relatively large, for example, Ionosphere, Pro-
moters, Sick, and Splice. On the other hand, since the number
of inequality constraints is quadratic with the number of class
labels, our Diag model is slower than Xing et al.’s model
on datasets with relatively large number of class labels, for
example, Ecoli,Mfeat-fac,Mfeat-pix, Yeast, and Zoo.

The experimental results in Table 2 and Figure 1 show that
the FPC algorithm is very fast, but the clustering results are
unsatisfactory. The NNC algorithm proposed in this paper
has the same time complexity as FPC, but the clustering
quality is much more satisfactory than FPC if a few labeled
instances are available.

6. Conclusion

In this paper, we studied the problem related to clusterability.
We showed that if the input data are well clusterable, the opti-
mal solutionswith respect to themin-max diameter criterion,
the max-min split criterion, and the max-RSD criterion can
be simultaneously found in linear time for both unsuper-
vised and semisupervised learning. For the max-RSD crite-
rion, we also proposed two convex optimization models to
make data more clusterable.

The experimental results on twenty UCI datasets demon-
strate that both the supervision and the learned metric can
significantly improve the clustering quality. We believe that
the proposedNNC algorithm andmetric learningmodels are
useful when only a few labeled instances are available.

Usually, the term semisupervised learning is used to
describe scenarios where both the labeled data and the
unlabeled date affect the performance of a learning algorithm,
which is not the case here: the supervised data is used either to
induce a nearest neighbor classifier on the unlabeled data or
to find a metric vector. Hence, the supervision information
can be more elaborately utilized in the future.
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