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Nowadays the neuroscientific community is taking more and more advantage of the continuous interaction between engineers
and computational neuroscientists in order to develop neuroprostheses aimed at replacing damaged brain areas with artificial
devices. To this end, a technological effort is required to develop neural network models which can be fed with the recorded
electrophysiological patterns to yield the correct brain stimulation to recover the desired functions. In this paper we present a
machine learning approach to derive the input-output function of the olfactory-limbic pathway in the in vitro whole brain of
guinea pig, less complex and more controllable than an in vivo system.We first experimentally characterized the neuronal pathway
by delivering different sets of electrical stimuli from the lateral olfactory tract (LOT) and by recording the corresponding responses
in the lateral entorhinal cortex (l-ERC). As a second step, we used information theory to evaluate how much information output
features carry about the input. Finally we used the acquired data to learn the LOT-l-ERC “I/O function,” by means of the kernel
regularized least squares method, able to predict l-ERC responses on the basis of LOT stimulation features. Ourmodeling approach
can be further exploited for brain prostheses applications.

1. Introduction

Thanks to recent advances in neurotechnology and neu-
rosurgery the possibility of implanting smart devices in
the brain to replace damaged neuronal circuits or deliver
appropriate electrical stimulation is opening the way to inno-
vative treatment of neurological disorders, from epilepsy to
stroke [1–4]. Proposed solutions range from simple activity-
dependent stimulators [3, 4], which monitor the activity
of selected brain regions and deliver electrical pulses to
other regions depending on the detected patterns, to more
complex modeling approaches [1, 2], which aim at learning
the input/output (I/O) function of specific neuronal circuits
to be replaced or “repaired.” In both approaches electrical
stimulation is continuouslymodulated in response to specific

recorded patterns of activity, in real time and in a closed-loop
fashion.

In this context, machine learning techniques, which can
operate either simple pattern recognition or more complex
statisticalmodeling, can be of great help in abstracting the I/O
behavior of neuronal circuits. For instance, it has been sug-
gested that some brain regions, such as the dentate gyrus of
the hippocampus, may provide the proper neuronal substrate
to generate a sparse representation of its input [5]. Such repre-
sentation is at the basis of many machine learning tools that,
as the DG does, can perform “pattern separation” tasks [6].

In this work we have made use of machine learning
techniques to model the behavior of the olfactory-limbic
pathway in the isolated whole brain (IWB) of the guinea pig.
The IWB represents an experimental approach combining
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the advantages of both in vitro (accessibility, controllability)
and in vivo (structural integrity) conditions [7], thus pro-
viding an ideal biological substrate for this kind of studies.
Electrical stimulation of the lateral olfactory tract (LOT)
reliably activates mono- and polysynaptic responses in the
olfactory cortices and limbic structures [8, 9]. Therefore,
these cortical regions can be investigated, from single neuron
up to neuronal network level, using intracellular, multiunit,
and field potential recordings.

By using different paired-pulse stimulation protocols we
first characterized the I/O function of the lateral entorhinal
cortex (l-ERC) upon LOT stimulation. Then, we employed
kernel regularized least squares (KRLS) approaches [10] to
approximate the transfer functions governing the causal
relationship between LOT electrical stimulation and l-ERC
response in terms of number of evoked spikes and 1st
spike latency. Our results show that we were able to fit
these functions with good approximation, especially for the
number of evoked spikes.

These results might have a possible application in the
framework of the design and development of innovative
neuroprostheses and demonstrate that machine learning
techniques can be successfully applied tomodel the statistical
relationship between inputs and neural outputs.

2. Materials and Methods

2.1. In Vitro Isolated Brain of Guinea Pig: Preparation
and Experimental Setup. We performed electrophysiological
recordings on the guinea pig isolated whole brain (IWB)
maintained in vitro by perfusing a complex saline solution
throughout the brain vascular system. The peculiarity of
this experimental model is the complete preservation of the
neuronal and vascular structure integrity; therefore, the iso-
lated guinea pig brain is ideal for studying local and long-
range neuronal interactions in unrestricted brain networks.

Young adult Hartley guinea pigs (150–300 g, Charles
River) were anesthetized with sodium thiopental (125mg/kg,
i.p.) and transcardially perfusedwith a cold (4 C), oxygenated
(95%O

2
, 5%CO

2
) saline solution composed of 126mMNaCl,

3mM KCl, 1.2mM KH
2
PO
4
, 1.3mMMgSO

4
, 2.4mM CaCl

2
,

26mM NaHCO
3
, 15mM glucose, 2.1mM HEPES, and 3%

dextran (MW 70,000). The pH of the solution was corrected
to 7.1 with HCl. The brain was dissected out, transferred to a
recording chamber, and perfused at 7mL/min with the above
solution (pH = 7.3, 15 C) via a peristaltic pump (Minipulse
II, Gilson, France) through a cannula inserted in the basilar
artery (see Figure 1(a)). Prior to recording, the temperature of
the preparation was gradually increased to 32∘C (0.2 C/min)
[11–13].

We recorded evoked local field potentials (LFP) and
multiunit activity (MUA) simultaneously in posterior pir-
iform cortex (pPC) and lateral entorhinal cortex (l-ERC).
LFP responses were evoked by electrical stimulation (0.07–
0.3mA, 0.36ms) of the LOT using a custom-made bipolar
electrode made of twisted, insulated silver wires (S1 in
Figure 1(a)).

LFP andMUAwere recorded using twomicrowire arrays
(Tucker-Davis Technologies, Alachua, FL, USA) featuring 16

tungsten planar recordingwires (filament diameter 50𝜇m, tip
angle 45∘), each separated by 250𝜇m(impedance 30–40KΩ).
The electrodes were implanted in the superficial layers of
the pPC and l-ERC (200–500𝜇m from pial surface). The
extracellular signals were acquired using a PBX3 preamplifier
(Plexon, Dallas, TX, USA) configured to separately process
spikes (bandwidth range: 150Hz–8KHz) and local field
potentials (0.7–300Hz). Data were digitized at 10 KHz using
a PCI-6071E A/D board (National Instruments, Austin, TX,
USA) and stored on the hard drive of a computer. Recordings
were performed using ELPHO software developed by Dr.
Vadym Gnatkovsky at the C. Besta Neurological Institute
(Milan, Italy).

Stimulation of the LOT activated two associative poten-
tials (i.e., the mono- and disynaptic components of the
evoked response) in the pPC, while after 3–5ms (a time
lag attributable to a monosynaptic activation) a synaptic
response was detected in the l-ERC.

2.2. Experimental Protocols. We applied different electrical
stimulation protocols to the LOT. In the first paradigm (𝑛 =
6) we modified the interpulse interval (IPI) of a paired pulse:
50, 100, 200, and 500ms. Seventy-five percent of the stimu-
lus intensity necessary to evoke a complete and stable LFP
response was used throughout the experiment. In a second
stimulation protocol (𝑛 = 6) we progressively increased the
intensity of a paired pulse (200ms IPI), from the minimal
to the maximal amplitude necessary to elicit an evoked
response. In both cases the paired pulses were delivered at
0.2Hz.

2.3. Data Preprocessing. Raw data acquired by the ELPHO
software were loaded into MATLAB (the Mathworks Inc.,
Natick, MA, USA) for offline processing. First, raw traces
were bandpass filtered (by applying a second-order bandpass
elliptic filter, bandwidth 800Hz–3 kHz) to select spiking
activity. Stimulation artifacts were suppressed using an offline
MATLAB implementation of the SALPA (Subtraction of
Artifacts by Local Polynomial Approximation) algorithm
[14]. Highly noisy channels were visually excluded from the
analysis.Then, filtered raw data were spike detected bymeans
of the Precise Timing Spike Detection (PTSD) algorithm
[15] (peak lifetime period = 2ms; refractory period = 1ms;
threshold = ±9 times the estimated noise standard deviation).
The result of the spike detection procedure consists of a series
of point processes (i.e., spike trains), one for each recording
channel [16].We evaluated the evoked response by computing
the Peristimulus Time Histogram (PSTH) [17] for each
recording channel of the array and for the full array (time bin
= 2ms). The considered time window was between −10ms
and twice the IPI relative to the 1st pulse stimulus onset.

The strength (or intensity) of each response to electrical
stimulation was evaluated by computing the average number
of evoked spikes on each recording channel (on a time
window equal to the IPI). Instead, the latency of the response
was evaluated as the average delay of the first evoked spike
with respect to the stimulus onset (either 1st or 2nd pulse).
The response strength can be computed upon the application
either of the 1st pulse or of the 2nd pulse, and the two
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Figure 1: Experimental configuration and raw data. (a) The left drawing depicts the ventral surface of the IWB with the principal vessel
highlighted in black and the two cortical areas (pPC and l-ERC). The positions of two schematized MEAs in pPC and l-ERC (in green and
violet, resp.) and of the stimulant electrode (S1 in the LOT) are shown. (b) Example of the recordings obtained during the application of an
IPI variation protocol. The evoked field potentials (LFP, top traces) observed in the pPC are evoked from the LOT. The corresponding MUA
traces, shown in the lower panels, are simultaneously recorded in the pPC and l-ERC.

measures can be summed to compute the global response
strength (i.e., total number of evoked spikes).

As far as the strength is concerned, in order to merge
results of different experiments we operated a normalization
procedure. For the stimulation intensity variation experi-
ments, we divided all strengths by the global average strength
obtained for the maximal stimulation intensity. For the IPI
variation experiments, we divided all strengths by the global
average strength obtained for an IPI equal to 500ms over
all electrodes. On the contrary, latencies were not subject
to any normalization. For the stimulation intensity variation
protocol, since the actual values of stimulation currents vary
in different experiments, in each stimulation session we
normalized all stimulation intensity values to the maximal
one, which has been chosen as the lowest current value
evoking a stable response (by looking at the LFP signal). In

this way, different experiments and stimulation sessions can
be compared and considered altogether.

2.4. Mutual Information Computation. We performed
mutual information measurements to determine the dis-
criminative power of each single feature obtained from the
experimental data. The mutual information [18] is given by
MI(𝑅; 𝑆) = 𝐻(𝑅) − 𝐻(𝑅 | 𝑆), where 𝐻(𝑅) represents the
entropy of the responses and 𝐻(𝑅 | 𝑆) is the entropy of the
responses conditioned to the stimulus. The latter term can
be regarded as the uncertainty of the association between
a stimulus and its responses. The highest the uncertainty
𝐻(𝑅 | 𝑆) is, the less the mutual information and the
corresponding discriminative power of the features will be.
In particular, to compare the relevance of the features across
different experiments we considered the coding fraction:
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cf(𝑅; 𝑆) = MI(𝑅; 𝑆)/𝐻(𝑅). For this analysis, we focused on
experiments where we varied the input IPI (ranging from 50
to 500ms) and the stimulus amplitude (ranging from 50 to
130 𝜇A).

2.5. Machine Learning Methods to Learn and Predict Output
Features from LOT Stimuli. To predict the output responses
(# spikes or latency) elicited by a given LOT stimulation,
we adopted a supervised nonparametric machine learn-
ing approach: kernel regularized least squares (KRLS). The
method works as follows: given a training set of 𝑛 input
observations 𝑥

1
, . . . , 𝑥

𝑛
(in our case the IPI and stimulus

amplitude values) and corresponding outputs 𝑦
1
, . . . , 𝑦

𝑛
(the

# spikes/latency), the system learns the function 𝑓(𝑥) = 𝑦
that produced such observations. In nonparametric settings,
the function 𝑓 is modeled as the linear combination 𝑓(𝑥) =
∑
𝑘

𝑖=1
𝑎
𝑖
𝜑
𝑖
(𝑥) of multiple “atoms” or basis functions 𝜑

1
, . . . , 𝜑

𝑘

that can account for different nonlinearities in the system.
More precisely, KRLS, which can be seen as a nonpara-

metric extension of ridge regression, finds a function as
superposition of “kernels” centered at the training set points
(see below). Similar to more basic least squares methods,
the coefficients of the expansion can be found by solving
a linear system which is now defined by the kernel. By
choosing different kernels, the method allows modeling
different kinds of nonlinear functional dependencies, while
avoiding overfitting, that is, finding statistically stablemodels.

In this work we considered two possible choices of basis
functions, namely, linear and Radial Basis Function (RBF).
The linear approach is used as a baseline and consists in
simply fitting a linear model on the training data. The RBF
approach on the other hand consists in using a set of basis
functions 𝜑

𝑖
(𝑥) = exp(−‖𝑥 − 𝑥

𝑖
‖
2
/𝜎) each centered on a

training input 𝑥
𝑖
and learning the corresponding coefficients

𝑎
1
, . . . , 𝑎

𝑛
that characterize the best fitting function 𝑓(𝑥) =

∑
𝑛

𝑖=1
𝑎
𝑖
𝜑
𝑖
(𝑥). To solve this problem we employed the MAT-

LAB implementation of KRLS in the custom toolbox GURLS
[19] developed by the Laboratory for Computational and
Statistical Learning (LCSL) at the Massachusetts Institute of
Technology (MIT). The learning model is characterized by
twomain hyperparameters, namely, the regularization,𝜆, and
the Gaussian bandwidth of the RBF atoms, 𝜎. We selected
the best hyperparameters according to the cross-validation
procedure described below.

2.6. Accuracy Computation and Model Validation. We evalu-
ated the predictive capabilities of the learning systems trained
on the collected dataset according to different measures
of performance. Specifically, for the problem of predicting
the number of spikes elicited by a given LOT stimulus we
reported the classification accuracy, namely, the ratio of
correctly predicted number of spikes with respect to the
total number of predictions made. For the latency estimation
problemwe used the normalizedmean squared error (nMSE)
which reports the squared error (𝑓(𝑥) − 𝑦)2 normalized with
respect to the variance of the output Var(𝑦). According to this
measure, a nMSE of value 1.0 would correspond to a system
unable to infer any relation between the inputs 𝑥 and the
outputs 𝑦 while a value of nMSE = 0 would correspond to a

system that is perfectly reconstructing the output observation
from the input stimulus.

Model selection and validation of the learning sys-
tems described above were performed following a 10-fold
cross-validation procedure: we subdivided the whole dataset
acquired during our experiments in 10 distinct subparts. We
used 9 out of 10 of these smaller datasets to train the KRLS
learning system as described above and the remaining dataset
to evaluate its prediction performance according to the cor-
responding measure (accuracy for # spikes, nMSE for latency
estimation).We accounted for statistical variability by averag-
ing the prediction results over multiple runs of this train/test
protocol, one for each of the 10 cross-validation datasets.

2.7. Statistical Analysis. Whenever the normality assumption
failed (checked by applying Kolmogorov-Smirnov test, 𝑃
level 0.01), nonparametric statistical tests were applied (e.g.,
Wilcoxon rank sum test, Kruskal-Wallis ANOVA). Unless
differently specified, all data are reported as mean ± standard
error of the mean. In box plots, the median value and 25th–
75th percentiles are indicated by the box, whereas whiskers
indicate either 95th (upper) or 5th percentile (lower). All
statistical analyses have been performed by usingOriginPro v
8.6 (OriginLabCorporation, Northampton,MA01060, USA)
or MATLAB.

3. Results and Discussion

In order to investigate the input/output (I/O) function of the
olfactory-limbic pathway of the in vitro guinea pig brain, we
first performed electrophysiological recordings of the pPC
and l-ERC by using MEAs upon stimulation of the LOT.
Such stimulation activated associative potentials throughout
the olfactory cortex. These potentials were characterized by
two distinct peaks: the mono- and disynaptic response (see
LFP traces in Figure 1(b)). The former corresponds to the
activation of apical dendrites in the superficial layer of the
pPC, while the latter is sustained by intra-pPC fibers and
by associative fibers originating from neighboring cortical
structures. l-ERC responses were characterized by a large
wave component that represents the direct propagation of
the olfactory input, followed by large-amplitude polysynaptic
response [8, 20, 21].

Upon LOT stimulation, polysynaptic response of pPC
showed latency of 36.64 ± 3.62ms, whereas the l-ERC, which
represents the output of the pPC, was activated after 41.04 ±
1.51ms.

3.1. Electrophysiological Characterization of the I/O Behavior
of the LOT-l-ERC Pathway. Figure 2 shows representative
examples of the spiking activity recorded by one electrode
of the MEA in l-ERC during typical stimulation sessions. In
Figure 2(a) we varied the IPI between the two pulses from 50
to 500ms, whereas in Figure 2(b) we varied the stimulation
intensity from 70 to 170 𝜇A.We plotted the stimulation raster
plots (in black), where each row represents the spike train
evoked by a single instance of a paired-pulse stimulus, and
then superimposed the corresponding PSTH (light grey).
Responses were quite reproducible for different stimulation
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Figure 2: Raster plots andPSTH functions of selected electrodes for different tested values of IPI (a) and stimulus intensity (b).The stimulation
raster plots show the spiking activity recorded by a single electrode in response to all stimulation trials.The time window is 1 s; 20 stimulation
trials have been shown for each condition.
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Figure 3: Average response curves for the stimulation intensity and the IPI variation protocols. (a, b) Normalized number of spikes in l-ERC
upon LOT stimulation, when varying the normalized stimulation intensity (a) or the IPI (b). The normalized number of spikes is reported
as a percentage of the reference response, which is the average total number of spikes obtained for the maximal stimulation intensity. Black
curves report responses evoked by the 1st and red curves responses by the 2nd pulse. Blue curves report the total number of spikes. (c, d)The
latency of the response is depicted as the average delay of the first evoked spike with respect to the stimulus onset, obtained by varying either
the stimulation intensity (c) or the IPI (d). All graphs report mean ± SEM.

trials, and PSTHs show sharp peaks at precise latencies. By
varying the IPI, the response to the second pulse appears to
be facilitated for IPI = 100ms and IPI = 200ms (Figure 2(a)).
While increasing the stimulation intensity, responses to both
pulses increase, but the effect is much more prominent for
responses to the 2nd pulse (Figure 2(b)).

As described in Section 2, we considered different output
features, that is, the average number of spikes evoked by either
the 1st or the 2nd pulse, the total number of evoked spikes (by
both pulses), and the average latency of the 1st evoked spike

by either the 1st or the 2nd pulse. Wemeasured these features
for each electrode of the MEA implanted in l-ERC and for
each tested value of the input.

In Figure 3, we reported the mean ± standard error of
the mean (SEM) of output features as a function of input
parameters. As a confirmation of the qualitative observations
made for Figure 2, we observed paired-pulse facilitation for
intensities ranging from 70% to 100% of the maximal ampli-
tude (Figure 3(a)). An additional increase did not induce
any further spike increment (data not shown). Interestingly,
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the spike latency differences between the first and the sec-
ond stimuli were abolished as the PP facilitation increased
(Figure 3(c)).

In l-ERC, a paired-pulse facilitation mechanism is acti-
vated by IPI higher than 50ms and reaches its maximum
for IPI = 100ms (Figure 3(b)). Hence, the number of spikes
which correlated with the disynaptic component of the
evoked field potential (see also Figure 1) increased in accor-
dance with the IPI (Figure 3(c)). The conditioning effect of
the first stimuli started to decline for IPI higher than 100ms.
In fact, for an IPI of 500ms the two responses were independ-
ent as the number of evoked spikes is almost equal. Further-
more, the facilitation itself likely explains the significantly
shorter latencies at the second pulse for IPIs shorter than
200ms (Figure 3(d)).

3.2. Modeling Approach. We focused on the modeling of
the direct olfactory pathway in order to derive a function
allowing us to predict the l-ERC electrophysiological activity
from the features of the LOT stimulation.

In Figure 4 we reported a graphical representation of the
“pPC-l-ERCmodel.” Our goal is to build a system that is able
to accurately replicate the neural response of the l-ERC to a
given LOT stimulation in terms of output features (Figure 4).
To this endwe used a set of empiricalmeasurements obtained
according to the stimulation protocols described above in
order to train a prediction system.

As already anticipated, to characterize the neural activity
evoked by a given stimulus, we considered two distinct sets
of output features measured by the l-ERC MEA, one related
to the number of spikes elicited by each stimulus, the other
recording the latency of such response (Figure 4).

3.3. Mutual Information between Inputs and Outputs. The
mutual information analysis showed that for the IPI exper-
iments the latency of the first spike after the second stimulus
was the most significant (Figure 5—top panel) among the
tested features. This is of particular relevance because the
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temporal encoding of stimuli is reflected into the responses.
This analysis also shows that the latency is a much more
effective feature than the number of spikes evoked by the
second stimulus. For the stimulus intensity experiments the
latency of the first spike after the second stimulus was still
informative but also the number of spikes evoked by the
second stimulus was a relevant feature for the discriminative
task. Interestingly the number of spikes after 2nd pulse was
consistently, over all data sets, more informative than number
of spikes after 1st pulse, suggesting that paired stimuli better
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Figure 6: Results of neural activity prediction for the KRLS algorithm with linear (cyan) and RBF (green) kernels. (a, b) # spikes recorded by
a representative electrode as the LOT normalized stimulus intensity varied from 0 to 1. Blue circles report the frequency with which a specific
number of spikes were recorded for a given stimulus intensity (e.g., larger circles correspond to more frequent # spikes). (a) # spikes after
the 1st pulse. (b) # spikes after 2nd pulse. (c, d) Distributions of prediction accuracies reported in box plot format (all recording channels, all
experiments). Linear (cyan) and RBF (green) approaches are compared with chance levels (red). ∗ ∗ ∗ denotes 𝑃 < 0.001 significance level
with respect to chance levels (Kruskal-Wallis ANOVA for ranks, with Bonferroni correction). (c) Accuracy distribution for # spikes after 1st
pulse (left), # spikes after the 2nd pulse (middle), and total # spikes (right) for IPI variation. (d) Accuracy distribution for # spikes after 1st
pulse (left) # spikes after the 2nd pulse (middle), and total # spikes (right) for stimulus intensity (stim. int.) variation.

reflect the different stimulation amplitude adopted in the
experiments.

3.4. Output Prediction from LOT Stimuli. In Figures 6(a) and
6(b) we reported the number of spikes after 1st (Figure 6(a))

and 2nd pulse (Figure 6(b)) predicted by a trained KRLS
system using an RBF (Gaussian, in green) and a linear
kernel (in cyan) for a representative electrode as the LOT
normalized stimulus amplitude varies from 0 to 1. Blue
circles report the frequency of a fixed number of spikes
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observed for a given LOT stimulus. The radius of the circle is
directly proportional to such value (e.g., spikes that are more
frequently observed/most likely to be recorded are associated
with larger circles). From a qualitative perspective it can be
noticed that the nonlinearity introduced by the Gaussian
kernel is extremely helpful to fit the data and indeed almost
always predicts the numbers of spikes that are associated with
most frequent classes. This is not true for the KRLS predictor
using linear kernel; see, for instance, the prediction produced
for inputs between 0.5 and 0.6 LOT stimulus amplitude in
Figure 6(b).

To quantitatively measure the generalization perfor-
mance of the two machine learning approaches described
in Section 2 we reported—as a box plot—the accuracy (in
predicting the correct number of spikes) measured indepen-
dently for each electrode channel (among the 16 available).
We invalidated those electrode channels for which less than
10 observations were available. As a baseline measure we also
reported the chance levels, that is, the probability of predict-
ing the correct number of spikes by randomly choosing such
value among those available in training. For instance, if the
maximum number of spikes recorded during training was 12,
the chance of correct guessing will be 1/12.

From these experiments it can be clearly noticed that
the stimulus amplitude (Figure 6(c)) is strongly correlated to
the number of neural spikes evoked. Indeed, for both linear
and nonlinear fitting approaches, the observed accuracy is
relatively concentrated around high accuracy values (65–
70%) with respect to chance (around 10%). On the contrary,
the IPI value should be unrelated to the number of spikes
elicited by the first stimulus and, indeed, as it can be noticed
fromFigure 6(d), the prediction accuracies of both linear and
RBF approaches have a large variance. As expected, the IPI
is strongly related to the number of spikes elicited by the
second stimulus, leading again to prediction accuracies that
concentrate around high values.

The time incurring between a LOT stimulus and the
neural activity it induces is also a feature in which we are
interested. This latency is measured in milliseconds (ms) for
each channel of theMEA in the l-ERC and can bemodeled as
a one-dimensional process that directly depends on the LOT
stimulus input. In analogy to the experiments performed
to estimate the correlation between IPI/stimulus amplitude
and the number of elicited spikes, we report in Figures 7(a)
and 7(b) the performance of both linear and RBF methods
when predicting the latency of neural response after the first
and second stimulus. Similar to the previous experiments,
the blue dots represent the observed behavior of the system
during the stimulation process, with responses clustered
around themost likely latency values. As can be noticed from
the plot, the linear method leads to more robust but less
accurate estimation. Instead, the nonlinear approach with the
Gaussian kernel ismore sensitive to small variations but repli-
cates more accurately the true “pPC → l-ERC” behavior.

As already mentioned in Section 2, we measured predic-
tion performance of themachine learning system approaches
employed in this work in terms of their normalized mean
squared error (nMSE). Analogously to the previous analysis
on the number of spikes, we performed the latency prediction

experiments for each of the 16 electrode channels. We report
the nMSE values measured as a box plot in Figures 7(c) and
7(d).

Notice that the spike latency observed after the first
pulse is logically independent of the IPI value; therefore,
the statistical analysis boils down to the estimation of the
expectation of the spike latency based on all observations
regardless of their IPI value. Indeed, as can be noticed from
Figure 7(c), both linear and nonlinearmethods are not able to
fit the data. In particular we point out that often the systems
achieve values of nMSE that are larger than 1, implying that
for most experiments the number of training examples was
not even sufficient to correctly estimate the mean of the
distribution of latency values.

Interestingly, a similar behavior is observed for the linear
kernel when IPI is used to estimate the latency of neural
activity after the second stimulus. On the contrary, the RBF
approach is apparently able to learn the dependency between
IPI and spike latency, leading to a remarkable decrease of
prediction error.

As can be noticed, when varying the stimulus intensity
(Figure 7(d)), the nMSE for the latency to 1st and 2nd pulse
seems to be comparable with slightly better performances for
the Gaussian kernel with respect to the linear one.

4. Conclusions

In this study, we took advantage of the peculiar features of the
in vitro whole brain of guinea pig (namely, great accessibility
and controllability of experimental conditions, together with
preservation of structure integrity) to deliver repeated paired-
pulse stimulations to the LOT, while varying the stimulus
features (namely, IPI and stimulus intensity), and record l-
ERC responses. Output patterns were first characterized in
terms of number of evoked spikes (after both pulses and
total), measuring the response strength, and 1st spike latency
(after both pulses), measuring the response delay. These data
were then used to fit a system (i.e., I/O function), by means
of the KRLS method, able to predict l-ERC responses on the
basis of LOT stimulation features.

As qualitatively illustrated in Figures 1, 2, and 3, output
features are dependent on the input: in fact, gradual increase
of either IPI or stimulation intensity causes graded variations
of both number of evoked spikes and 1st spike latency,
especially when considering the 2nd pulse.

These results are confirmed bymutual information analy-
sis (Figure 5), which revealed how the latency to the 2nd pulse
carries the highest information about the input IPI and the
number of spikes after the 2nd pulse about the stimulation
intensity.

The application of machine learning techniques is effec-
tive in modeling the LOT-l-ERC I/O function, especially
regarding the prediction of the evoked number of spikes
(Figure 6). Prediction accuracies reach very high values with
respect to chance levels, thus demonstrating that we were
able to reproduce the behavior of the studied circuit by
using a statistical modeling approach. Prediction of the time
delay between the applied stimulus and the corresponding
neural response appears to be more challenging (Figure 7).
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Figure 7: Results of prediction of the latency between LOT stimulus and neural response. (a, b) Observed and predicted latency values of
the neural activity elicited by LOT stimuli. Blue circles correspond to observed latencies. Predictions provided by KRLS algorithm trained on
previous empirical evidence are reported: cyan for linear kernel and green for Gaussian (RBF) kernel. (a) Latency after 1st pulse. (b) Latency
after 2nd pulse. (c, d) Distributions of the normalized mean squared error (Nmse; see text for a definition) reported in box plot format. ∗∗∗
and ∗ denote, respectively, 𝑃 < 0.001 and 𝑃 < 0.05 significance levels (Wilcoxon rank sum test). (c) nMSE distributions of the predicted
latency after 1st pulse (left) and 2nd pulse (right) in the experiments of IPI variation. (d) nMSE distributions of the predicted latency after 1st
pulse (left) and 2nd pulse (right) in the experiments of stimulus intensity (stim. int.) variation.

In particular, only the IPI value and the latency after the
2nd stimulus seem to be significantly correlated, and such
correlation is however highly nonlinear (i.e., only the RBF
approach allows to actually achieve a remarkable decrease of
the error).

The strategy used for LOT stimulation consisted of a
paired-pulse protocol at different interpulse intervals and

stimulus intensities. These patterns clearly represent an over-
simplification of the complex computational tasks carried
out in the olfactory cortices to shape an odor percept. To
overcome this limitation and convey sensory information
through the disrupted synaptic pathway, more naturalistic
stimulation patterns based on in vivo recordings can be
adopted as reported in previous studies [22]. For instance,
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bursts of stimuli at different frequencies or series of irregular
stimuli with random interpulse intervals following different
statistics could be used [23]. Moreover, the analysis approach
adopted in this work is rather general and independent of
the considered input/output features; hence, we believe it
might be easily extended to the analysis of more naturalistic
stimulation patterns to mimic actual sensory signals.

In conclusion, these results may provide a possible appli-
cation in the framework of the design and development of
innovative cortical prostheses aimed at replacing a damaged
part of the brain.Ongoing and future experiments include the
application of a mechanical lesion between pPC and l-ERC,
thus interrupting the signal transmission fromLOT to l-ERC.
Similar modeling approaches could be used in principle to
derive the optimal local cortical stimulation to be delivered
downstream the pPC to restore l-ERC response upon LOT
stimulation.
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