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Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the
performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-
based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low
Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data.
This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of
traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS)
database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

1. Introduction

The large amounts of traffic data collected from the traffic
sensors are extremely valuable for route guidance, planning,
and management of Intelligent Transportation Systems (ITS)
[1]. The data, which include traffic speed, volume, and occu-
pancy, are collected via various traffic collecting devices and
technologies. Traffic speed data is one of the most important
information sources for ITS, Advanced Traveler Information
Systems (ATIS), and Advanced Traffic Management Systems
(ATMS) [1]. As one of important parameters of traffic data,
traffic speed data play a prominent role in the traffic domain
and convey more information on traffic state, such as traffic
congestion, than traffic volume data. For example, traffic
speed data are used for computing the traffic congestion index
in Beijing. Moreover, the traffic speed data are used for the
purpose of traffic guidance [2].

Despite the importance of traffic speed information,
unfortunately, substantial missing data are usually induced
due to various malfunctions in data collection and/or record
systems, such as failed loop detectors, failed loop amplifiers,
and failed signal communication and processing devices.
However, most of traffic data analysis methods used in

intelligent transportation systems require the completeness of
data and thus missing traffic speed data will severely degrade
the performance of ITS, such as the accuracy of travel time
estimation. Besides improving the reliability of traffic data
collection and record systems, the research on the problem
of missing data in intelligent transportation systems has been
aroused due to extensive concern by traffic engineers and
researchers.

In the past decade, various imputation methods have
been proposed for solving the missing traffic data problem.
Among these methods, most of them focus on traffic volume
data imputation, and only a few researches try to deal with
missing traffic speed data estimation. Since traffic speed data
have some similar characteristics with traffic volume data,
such as temporal and spatial correlations, some imputing
methods for missing traffic volume data can be applied
directly to traffic speed data. However, compared with traffic
volume data imputation, there are many special characteris-
tics of speed data. One major observation for traffic speed
data imputation is that traffic speed data fluctuate more
severely compared with traffic volume data, which poses
significant challenge to traditional methods.
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In general, the frequently usedmethods include historical
(neighboring) imputation methods [3] and spline (including
linear)/regression imputation methods [4]. The historical
imputation method fills a missing data point with a known
data point collected on the same site at the same daily time
but from a neighboring day [5]. A variation of this algorithm
fills the missing data with the average values taken over
the most recent days [6]. The spline/regression imputation
method recovers the missing values by applying mathemat-
ical interpolation algorithms according to the surrounding
known data points collected during the same day [7–9]. The
imputing performance of above methods greatly depends
on the surrounding data of missing points, and thus these
methods fail to estimate the missing value at high missing
ratio.Meanwhile, the abovemethods fail to capture the global
information of data sets. As a result, this kind of methods will
produce relative poor results for imputingmissing speed data
due to its high fluctuation characteristics.

Because of the above reason, researchers proposed
Bayesian Principal Component Analysis (BPCA) algorithm
[10] and Probabilistic Principal Component Analysis (PPCA)
[7] for addressing missing data problem. BPCA is a mod-
ification of PPCA. Indeed, both PPCA and BPCA are
based on EM imputation methods [11] and make use of
the relationship between the observed data and the latent
variables for imputing the missing data. Generally, the rela-
tionship between the observed data and the latent variables
is described as probabilistic model. In order to obtain the
maximum probability of above parameters, the Bayesian
model is introduced to estimate the missing values with
respect to the estimated posterior distribution. The missing
values are gradually recovered, along with the building of the
latent model. Intuitively, the two methods make a reasonable
trade-off among the periodicity, local predictability, and
other statistical property of the traffic flow. This ability
helps them to outperform the traditional methods since they
exploit more temporal correlations than traditional methods.
Widhalm et al. [12] proposed a method based on Gaussian-
mixture model to estimate road link speed from sparse or
missing probe vehicle data.The traffic speed is estimated only
from sparse (only a few available observations) historical data
of all links in the road network. However, these methods
may perform poorly when the missing ratio is high due to
the intrinsic characteristic of EM method and the intrinsic
characteristic of matrix model.

To improve the performance of traffic data imputation,
tensor pattern is introduced to represent the traffic data while
encoding multicorrelations in traffic data, and tensor-based
imputation algorithms mine the multicorrelations of the
constructed tensor while estimating the missing entries. Tan
et al. [13] construct traffic volume data as a tensor model and
propose an efficient algorithm based on tensor completion to
impute missing traffic volume. It exploits global information
of traffic volume data, specifically, tensor based model can
exploit multiway global information simultaneously, such
as temporal and spatial information. Though this method
shows its superiority in traffic volume data imputation, the
performances on estimating missing traffic speed data are
not reported. Asif et al. [14] proposed a low-dimensional

model to impute the missing speed data in road network.
They model the traffic data as matrix and/or tensor and use
Fixed Point Continuation with Approximate SVD (FPCA)
[15] and Canonical Polyadic (CP) decomposition [16] to solve
the problem of missing traffic speed data. The missing speed
data can be imputed more accurately than tradition methods
based on the multiway global information. However, most of
them focused on traffic volume data imputation, and they did
not discuss how to exploit themultiway global information of
traffic speed data.

In this paper, we focus on the missing speed data
imputation on freeway. Motivated by the work in [13], this
paper adopts tensor pattern to model the traffic speed data,
and then an efficient tensor completion method which can
deal with noisy entries is used to estimate the missing traffic
speed data due to the severe fluctuation of traffic speed data.
The correlations of traffic speed data are analyzed firstly,
and then tensor pattern is used for modeling traffic speed
which could benefit for mining the underlying multimode
correlations while keeping its natural structure. To estimate
the missing entries in the traffic speed tensor, a high accuracy
low rank tensor completion algorithm called HaLRTC [17]
is adopted, which can deal with noisy observed entries. The
proposed method is evaluated on the Performance Measure-
ment System (PeMS) database (http://pems.dot.ca.gov/) and
experimental results show the proposed method achieves
higher recovery accuracy than the state-of-the-art missing
traffic speed data imputation methods.

To give a detailed explanation, the rest of this paper is
organized as follows. Section 2 presents the notations used in
this paper and introduces tensor completion algorithms for
missing data estimation. The intrinsic correlations of traffic
speed data, such as week-to-week relations, day-to-day rela-
tions, and hour-to-hour relations, are analyzed in Section 3.
In Section 4, we propose a general model to describe traffic
data tensor completion problem and give a high accuracy
low rank tensor completion algorithm (HaLRTC) to solve it.
Numerical experiments are reported in Section 5 followed by
conclusion in Section 6.

2. Notations and Tensor Completion

In this section, the notations used in this paper are presented,
and then the matrix and tensor completion algorithms for
missing data estimation are introduced.

2.1. Notations. We denote the scalars in R with lowercase
letters (𝑎, 𝑏, . . .) and the vectors with bold lowercase letters
(a, b, . . .). The matrices are written as uppercase italic letters,
for example, X, and the symbols for tensors are handwriting
letters, for example,X.The subscripts represent the following
scalars: (X)

𝑖𝑗𝑘
= 𝑥
𝑖𝑗𝑘
, (X)
𝑖𝑗
= 𝑥
𝑖𝑗
. The superscripts indicate

the size of the matrices or tensors. For example, there is a set
of traffic volume data which are recorded every 5 minutes for
16 days. Then, the data of one day preserves 288 data points
(12 hours per day and 24 data points per hour).Therefore, the
traffic data of 16 days can be constructed as a matrix model
of size 16 × 288 or a tensor model of size 16 × 12 × 24.



Computational Intelligence and Neuroscience 3

The Frobenius norm of matrix X is defined as ‖X‖
𝐹

:=

(∑
𝑖,𝑗
|𝑥
𝑖𝑗
|
2
)

1/2. Let Ω be an index set, then X
Ω
denotes the

vector consisting of elements in the setΩ only. Define ‖X‖
Ω
=

(∑
(𝑖,𝑗)∈Ω

𝑥
2

𝑖𝑗
)

1/2.
An 𝑛-way tensor can be rearranged as a matrix, this is

called matricization, also known as unfolding or flattening a
tensor.The “unfold” operation along the 𝑛thmode on a tensor
X of size 𝐼

1
×𝐼
2
×⋅ ⋅ ⋅×𝐼

𝑁
is defined as unfold (X, 𝑛) = X

(𝑛)
.The

opposite operation “fold” is defined as fold (X
(𝑛)
) = X. For

example, the above tensor model X for traffic volume data
which of size 16×12×24 can be unfolded along the 1thmode,
and get a matrix X

(1)
of size 16 × 288. In addition, the mode-

𝑛 rank of X is denoted as rank
𝑛
(X), which is equal to the

column rank of X
(𝑛)
.

2.2. Tensor Completion Methods. The matrix and tensor
completion methods were recently proposed for addressing
the missing data problem. Those methods can perform well
even when the missing ratio is very high.

During the past years, there were lots of works on matrix
completions. Recently, most theoretical work focuses on
proving bounds for the exact matrix completion problem,
and a lot of work focuses on low rank or approximate low
rank matrix completion problems. Candès and Recht [18]
introduced a convex optimization to solve thematrix comple-
tion problem by modeling it as a Semi-Definite Programing
(SDP). FPCA [15] and SVT [19] are the other two algo-
rithms for solving the low-rank matrix completion problem.
ADMiRA [20] is an iterative method for solving a least
squares problem with the restriction of rank. OptSpace [21]
is an efficient procedure to solve the exact and approximate
matrix completion problems.

Tensor completion methods can be seen as a high-order
extension of matrix completion methods. They can capture
more global information than matrix completion methods
due to the intrinsic multiway characteristics of tensor model.
Liu et al. [17] first proposed a tensor completion method
based on trace norm minimization and applied it on image
completion. Also, a first-order method has been recently
developed called CP-WOPT [16] base on CP decomposition
of tensor model and applied on imputing missing network
traffic data. Signoretto et al. [22] established a mathematical
framework for learning with higher order tensors respect to
missing data.

Traffic speed data have intrinsic multiway spatial-
temporal correlations. For fully exploiting the spatial-
temporal correlations and improving the performance of
imputation methods, a multiway tensor model is utilized to
construct the traffic speed data and a high accuracy low rank
tensor completion algorithm is used to address the missing
speed data in this paper.

3. Correlation Analysis of Traffic Speed Data

As mentioned above, the core idea of the approaches for
addressing missing data problems was to make use of
the established intrinsic relations among those data [23].

Figure 1: Loop Detectors in District 7, Los Angeles County.

0 50 100 150 200 250 300

80

70

60

50

40

30

20

10

0

Time interval (5min)

Sp
ee

d 
(m

ph
)

Link1
Link2
Link3
Link4

Link5
Link6
Link7

Figure 2: The daily profile of the traffic speed data on Monday for
seven detectors.

Exploiting the useful intrinsic information of traffic speed
data attracts continuous interest due to its wide applications,
especially in missing traffic speed data imputation.

Below we will illustrate the traffic speed data down-
loaded from PeMS (http://pems.dot.ca.gov/) and analyze the
correlations between each mode of traffic speed data. We
downloaded a set of traffic speed data in District 7, Los
Angeles County (see Figure 1). The area covers 13 loop
detectors for a direction. The traffic speed data are recorded
by every 5 minutes. And the whole period of the data lasts for
28 days, that is, from February 4 to March 3, 2013.

For illustrating the spatial correlations of traffic speed
data, seven adjacent detectors are chosen randomly from the
above area for simplicity. And the data on Monday for each
detector are plotted in Figure 2. The figure shows that the
traffic speed data between neighbor detectors are strongly
correlated. Also, the Pearson Correlation Coefficient (PCC)
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Table 1: Pearson Correlation Coefficient between five weekdays for VDS 716331.

PCC Link1 Link2 Link3 Link4 Link5 Link6 Link7
Link1 1.0000 0.9617 0.9454 0.8255 0.8698 0.7567 0.7187
Link2 0.9617 1.0000 0.9660 0.8735 0.8584 0.8012 0.7564
Link3 0.9454 0.9660 1.0000 0.9233 0.9247 0.8521 0.7972
Link4 0.8255 0.8735 0.9233 1.0000 0.8507 0.9526 0.8982
Link5 0.8698 0.8584 0.9247 0.8507 1.0000 0.8325 0.7898
Link6 0.7567 0.8012 0.8521 0.9526 0.8325 1.0000 0.9694
Link7 0.7187 0.7564 0.7972 0.8982 0.7898 0.9694 1.0000

Table 2: Pearson Correlation Coefficient between five weekdays for VDS 716331.

PCC Monday Tuesday Wednesday Thursday Friday
Monday 1.0000 0.6082 0.6184 0.6286 0.7261
Tuesday 0.6082 1.0000 0.7757 0.7124 0.6882
Wednesday 0.6184 0.7757 1.0000 0.8264 0.7382
Thursday 0.6286 0.7124 0.8264 1.0000 0.6609
Friday 0.7261 0.6882 0.7382 0.6609 1.0000
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Figure 3: The daily profile of the traffic speed data of five weekdays
for VDS 716331.

between each Monday’s speed data is computed in Table 1.
Here, the PCC for vector 𝑥 and 𝑦 is defined as

𝜌
𝑥,𝑦

=

cov (𝑥, 𝑦)
𝜎
𝑥
𝜎
𝑦

=

𝐸 ((𝑥 − 𝐸 (𝑥)) (𝑦 − 𝐸 (𝑦)))

𝜎
𝑥
𝜎
𝑦

, (1)

where cov(⋅) stands for the covariance and 𝐸(⋅) stands for the
mathematical expectation.

Besides the strong spatial correlations of traffic speed
data, the temporal correlations are also prominent. In order
to illustrate the temporal correlations of the traffic speed data,
the daily data for five weekdays during a week is plotted
in Figure 3. The correlations of the speed data between

02/06/2013
02/13/2013

02/20/2013
02/27/2013

0 50 100 150 200 250 300

80

70

60

50

40

30

20

Time interval (5min)

Sp
ee

d 
(m

ph
)

Figure 4: The daily profile of the traffic speed data on Wednesday
in February 2013.

each weekday are obvious. However, the fluctuations of each
data profile are notable; this is the inherent property of
traffic speed data especially when the traffic condition is in
congestion. Also, the PCCs of the data sets are shown in
Table 2.

It is worth mentioning that the correlations along week-
to-week mode should be more prominent. For verifying the
idea, the speed data on Wednesday for a month (February
2013) are plotted in Figure 4, and the PCCs are shown in
Table 3. The correlations are stronger than those between
weekdays.

Simultaneously, the correlations of traffic speed data are
of multiple patterns. The interval-to-interval correlations are
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Table 3: PearsonCorrelationCoefficient onWednesday in February
2013.

PCC Monday Tuesday Wednesday Thursday
Monday 1.0000 0.8733 0.7656 0.8738
Tuesday 0.8733 1.0000 0.8422 0.8890
Wednesday 0.7656 0.8422 1.0000 0.8139
Thursday 0.8738 0.8890 0.8139 1.0000

usually ignored because it may be less apparent than day-
to-day correlations. After making statistics and analysis, the
PCCs of interval-to-interval pattern are averaged as about
70%.The temporal correlations are not so stronger than traffic
volume data. Thus, more accurate methods are needed to
develop missing traffic speed data.

According to the above analysis, it is sufficient to say
that traffic speed data on a freeway corridor exhibit a strong
correlation in multimode. In day mode as well as week
mode, space as well as interval mode, PCCs are about 0.7.
It should be noted that PCC value can be underestimated
and/or misleading if outliers that are ubiquitous in traffic
speed data are present [24]. Some robust statistical methods,
such as the methods proposed by Verma et al. [25, 26], have
been proposed in recent years.These methods would provide
more powerful tools for traffic speed data analysis. This will
be considered in our future work to help us to understand the
intrinsic features underlying the traffic speed data.

4. HaLRTC for Traffic Speed Completion

Based on the above correlations analysis of traffic speed data,
the tensor model is firstly constructed along different modes.
The correlations of traffic speed data are critical for recovering
the missing traffic speed data. Traditional methods mostly
exploit part of correlations, such as historical or temporal
neighboring correlations. The classic methods usually utilize
the temporal correlations of traffic speed data fromday to day.
Such as the single detector data, multiple correlations contain
the relations of traffic speed data from day to day, hour to
hour, and so forth. In addition, the spatial correlations exist
in multiple detectors speed data.

Conventional methods usually use day to day matrix
pattern to model the traffic speed data. Although each mode
of traffic speed data has a very high similarity, these methods
do not utilize the multimode correlations, which are “Day ×
Hour,” “Week×Hour,” and “Link×Hour,” simultaneously and
thus may result in poor recovery performance.

To make full use of the multimode correlations and
spatial-temporal information, traffic speed data need to be
constructed into multiway data model. Fortunately, tensor
pattern based traffic speed data can be well used to model
the multiway traffic speed data. This helps keep the original
structure and employ enough spatial-temporal information.
For example, the speed data set which is used for correlations
analysis in Section 3 can be constructed as a 13 × 28 × 24 ×
12 tensor model according the PCCs computed along each
mode. Here, the speed tensor of size 13 × 28 × 24 × 12,
which stands for 13 detectors, 28 days, 24 hours in a day,

and 12 sampling intervals in a hour (i.e., sampling interval is
5min). For imputing the missing speed data, the built tensor
model can keep up the integrity of speed data structure and
exploit multimode correlations simultaneously. Meanwhile,
an efficient algorithm is equally important.

Considering the higher fluctuation characteristics of traf-
fic speed data, a high accuracy low rank tensor completion
(HaLRTC) algorithm [17] is used for imputing missing traffic
speed data in this paper. In the following, a single detector
speed profile is created as a three-order tensor X ∈ R𝑙×𝑚×𝑛

for expressing simply; also it is the same formultiple detectors
speed data. The speed tensor X ∈ R𝑙×𝑚×𝑛 contains average
speed values for 𝑙 days, 𝑚 hours, and 𝑛 intervals. However,
not all values in X are known. Let Ω be the set of values
for which speed data is available. Just as the correlations
analysis in Section 3, strong temporal and spatial correlations
are exhibited. Hence, the speed data can be represented as
a low-dimensional structure. Thus, the problem of imputing
missing traffic speed data can be solved by the optimization
problem for low rank tensor completion:

min
X

: rank (X)

s.t.: X
Ω
= T
Ω
,

(2)

where X, T, are 𝑛-mode tensors with identical size in
each mode. However, the rank of tensor is not unique and
nonconvex [27]. One common approach is to use the trace
norm ‖ ⋅ ‖

∗
which is the tightest convex envelop for the

rank of tensors to approximate the rank of tensors. Using the
definition of trace norm of tensor in [17], the optimization
problem can be converted into

min
X

:
𝑛

∑

𝑖=1

𝛼
𝑖





X
(𝑖)




∗

s.t.: X
Ω
= T
Ω
,

(3)

where 𝛼
𝑖
’s are constants satisfying 𝛼

𝑖
≥ 0 and ∑

𝑛

𝑖=1
𝛼
𝑖
=

1. To solve the optimization problem, additional tensors
M
1
, . . . ,M

𝑛
are introduced and derive the following equiv-

alent formulation:

min
X,M
1
,...,M
𝑛

:
𝑛

∑

𝑖=1

𝛼
𝑖





M
𝑖(𝑖)




∗

s.t.: X =M
𝑖

for 𝑖 = 1, . . . , 𝑛

X
Ω
= T
Ω
.

(4)

In this paper, a high accuracy algorithm called ADMM [28] is
introduced to tackle the large scale problem. The augmented
Lagrangian function of (4) is as follows:

𝐿
𝜌
(X,M

1
, . . . ,M

𝑛
,Y
1
, . . . ,Y

𝑛
)

=

𝑛

∑

𝑖=1

𝛼
𝑖





M
𝑖(𝑖)




∗
+ ⟨X −M

𝑖
,Y
𝑖
⟩

+

𝜌

2





M
𝑖
−X






2

𝐹
.

(5)
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Input:X withX
Ω
= T
Ω
, 𝜌, and 𝐾

Output:X
(1) SetX

Ω
= T
Ω
andX

Ω
= 0.

(2) for 𝑘 = 0 to 𝐾 do
(3) for 𝑖 = 1 to 𝑛 do

(4) M
𝑖
= fold

𝑖
[𝐷
(𝛼𝑖/𝜌)

(X
(𝑖)
+

1

𝜌

Y
𝑖(𝑖)
)]

(5) end for

(6) X
Ω
=

1

𝑛

(

𝑛

∑

𝑖=1

M
𝑖
−

1

𝜌

Y
𝑖
)

Ω

(7) Y
𝑖
= Y
𝑖
− 𝜌(M

𝑖
−X)

(8) end for

Algorithm 1: HaLRTC: high accuracy low rank tensor completion.

According to the framework of ADMM and the algorithm
description in [17], the HaLRTC algorithm is summarized in
Algorithm 1.

5. Experiments

The performances of HaLRTC algorithm are evaluated on
the real world traffic speed data. The experimental settings
are listed in Section 5.1 and evaluation indices are shown in
Section 5.2. In Section 5.3, temporal correlations are exploited
for imputing missing speed data for a single detector. Addi-
tionally, Section 5.4 tests the algorithms for data sets of
multiple detectors.

5.1. Experimental Settings. HaLRTC is compared with two
classical imputation methods: (1) Mean-Historical imputa-
tion [29] and (2) BPCA-based imputation method [10].

For the historical imputation method, we calculate the
mean value of all the available data points belonging to the
same detector at the same time interval in the last few days
and use the mean as the imputed value; see [29] for more
details. For BPCA, we set the maximum number of iteration
steps is 200 and the threshold of the approximate complexity
is set to 10−4 which is the same as [10]. HaLRTCmethod is an
iterative algorithm; themaximum iterative numbers are set as
500. The value of 𝛼

𝑖
is set to 1/𝑛 (𝑛 is the mode number), and

the parameter 𝜌 is set as 𝑒−3.

5.2. Evaluation Indices. To evaluate the performances of the
proposed method HaLRTC, the following two indices were
used in this paper.

(1) Mean Absolute Percentage Error (MAPE). The index gives
the evaluation of the average estimation error in terms of
percentage:

MAPE = 1

𝑀

𝑀

∑

𝑚=1












𝑡
(𝑚)

𝑟
− 𝑡
(𝑚)

𝑒

𝑡
(𝑚)

𝑟












× 100. (6)
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Figure 5: RMSE for weekdays’ data of single detector.

(2) Root Mean Square Error (RMSE). This index gives the
evaluation of the variance in the estimation errors:

RMSE = √ 1

𝑀

𝑀

∑

𝑚=1

(𝑡
(𝑚)

𝑟 − 𝑡
(𝑚)

𝑒 )

2

, (7)

where 𝑡(𝑚)
𝑟

and 𝑡
(𝑚)

𝑒
are the 𝑚th elements which stand for

the known real value and estimated value, respectively. 𝑀
denotes the number of estimated traffic volumes.

5.3. Results forMissing Speed Data of Single Detector. To illus-
trate the performances of the proposed method, a complete
traffic speed data set is used as ground truth for the test. We
choose the data of a fixed detector VDS 716331 in District
7, Los Angeles County (see Figure 1) which are downloaded
from (PeMS: http://pems.dot.ca.gov/). The traffic speed data
are recorded every 5 minutes. Therefore, a daily traffic speed
series for a loop detector contains 288 records, and the whole
period of the data is chosen for three weeks, that is, from
February 4 to February 24, 2013.

Based on the correlations analysis of traffic speed data in
Section 3, the correlations are stronger for weekdays without
regard to the weekends. And it will be helpful for imputing
the missing traffic speed data. Therefore, the weekdays’ data
for three weeks (i.e., 15 days) are chosen for evaluating the
HaLRTC algorithm.

Based on multiple correlations of the traffic speed data,
the data set is modeled as a tensor of size 24 × 12 × 15 which
stands for 24 hours in a day, 12 sample intervals (i.e., recorded
by 5 minutes) per hour, and 15 days. For the methods Mean
and BPCA, the speed data is arranged as amatrix of size 288×
15. The ratios of missing data are set from 5% to 80% and
the missing data are produced randomly. All the results are
average by 10 instances.

The RMSE curves and MAPE curves of those methods
with randomly missing weekdays’ traffic speed data for a
single loop detector are shown in Figures 5 and 6. Obviously,
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the RMSE and MAPE of HaLRTC approach are smaller
than other approaches. It is worth noting that the RMSE
of HaLRTC will be bigger than RMSE of BPCA when the
missing ratio is 80%. That situation can be considered as a
diploma when the HaLRTC will reach the limit for keeping
the high accurate.

For exploiting stronger correlations of traffic speed data,
Wednesday’s data of a specific week are chosen, and 10 weeks
data make up a data set with 10 days. Identically, the data set
is modeled as a tensor of size 24×12×10which stands for 24
hours in a day, 12 sample intervals (i.e., recorded by 5minutes)
per hour, and 10 days. And a 288×10matrixmodel is arranged
for Mean and BPCA.
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Figure 8: MAPE for data in Wednesday of single detector.

Figures 7 and 8 show that HaLRTC algorithm is with
higher accuracy for imputing missing traffic speed data than
Mean and BPCA. Comparing Figures 5 and 7 corresponding
with comparison of Figures 6 and 8, the performance for
imputing missing traffic speed data will better when exploit-
ing more correlations of data sets.

5.4. Results for Missing Speed Data of Multiple Detectors. To
illustrate the benefit of HaLRTC algorithm in reconstructing
the missing traffic speed data, that is, multiple correlations
of traffic speed data are more beneficial than the partial
correlations used in traditional methods. A new traffic speed
data set by considering spatial correlations is used to evaluate
HaLRTC algorithm.

We choose the data of 13 detectors in District 7, Los
Angeles County (see Figure 1) which are downloaded from
(PeMS: http://pems.dot.ca.gov/). For each detector, the traffic
speed data for a specific day are chosen andderive the data set.
For exploiting the spatial and temporal correlations of traffic
speed data simultaneously, the data set is modeled as a tensor
of size 24 × 12 × 13, which stands for 24 hours in a day, 12
sampling intervals in an hour, and 13 detectors. Meanwhile,
the data set is arranged as a matrix 288 × 13 for Mean and
BPCA.

Figures 9 and 10 show that our propose HaLRTC out-
performs Mean and BPCA for traffic speed data of multiple
detectors.

6. Conclusion

In this paper, a multiway tensor model is proposed to
represent the traffic speed data considering the multiple
correlations, and a high accuracy low rank tensor completion
(HaLRTC) algorithm is employed to estimate the missing
traffic speed data due to its severely fluctuation. Experiments
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Figure 9: RMSE for data of multiple detectors.
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Figure 10: MAPE for data of multiple detectors.

on benchmark show that the proposed method performs
better than other classical state-of-the-art methods. For
future work, it is interesting to extend the proposed method
to large and dynamic road network.
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variate data analysis system: deciphering mean compositions
of island and continental arc magmas, and influence of the
underlying crust,” International Geology Review, vol. 55, no. 15,
pp. 1922–1940, 2013.

[26] S. P. Verma, L. Dı́az-González, M. Rosales-Rivera, and A.
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