
Research Article
Improved Fractal Space Filling Curves Hybrid Optimization
Algorithm for Vehicle Routing Problem

Yi-xiang Yue,1 Tong Zhang,2 and Qun-xing Yue3

1School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
2Research Center for Solid Mechanics, Beihang University, Beijing 100191, China
3China Academy of Space Technology (CAST), Beijing 100094, China

Correspondence should be addressed to Yi-xiang Yue; yixiangyue@yahoo.com

Received 29 January 2015; Revised 27 May 2015; Accepted 28 May 2015

Academic Editor: Saeid Sanei

Copyright © 2015 Yi-xiang Yue et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP
model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves
(SFC)method andGenetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFCmethod can find an initial
and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a
large number of experimental computations from Solomon’s benchmark have been studied. The experimental results demonstrate
the feasibility and effectiveness of the HOA.

1. Introduction

Vehicle Routing Problem (VRP) is an important problem
in Supply Chain Management (SCM). The classical Vehicle
Routing Problem can be defined as the determination of an
optimal set of routes for a fleet of vehicles which need to
serve a set of customers. With the time window constraints,
general VRP can be transformed to one of the variants of
the VRP, the Vehicle Routing Problem with time window
(VRPTW). VRPTW has been proved to be an NP-Hard
problem and can hardly be found as the global optimal
solution [1]. Although VRP has been studied for decades
and there are a huge number of heuristic methods to solve
the Vehicle Routing Problem to near-optimal solution [2],
it is still an important research direction to researchers in
SCM. Recently, research attention for VRP has turned to
hybridization ofmetaheuristics. It is assumed that combining
features of different heuristics in complementary fashion can
result in more robust and effective optimization tools.

Classic Space Filling Curves (SFC), originally described
by the ItalianmathematicianG. Peano in 1890, is based on the
fractal theory.The space was divided into adjacent Sierpinski
triangles by fractal method until each point in the space can

be expressed in a continuous line (0, 1) by space filling curves.
The space filling curve represents multidimensional space
with one-dimensional space line. The applications of fractal
theory have played an important role in image processing and
multidimensional data index and so forth.

The locations of all customers and depots can be regarded
as the points in the two-dimensional space, and SFC can
interpret the sequence of these points; once the sequence
of the points is determined, the routes for VRP also can
be found. Bartholdi et al. [3, 4] construct a short tour
through points in the plane and the points are sequenced
as they appear along a space filling curve. Bartholdi’s SFCs
are constructed in triangle and rectangle and the heuristic
consists essentially of sorting. The SFC method is potentially
very useful, for it is the fastest available heuristic for large
problems. Storer and Bringhurst have tested problems of 10 to
500 cities [5]. But the average solution quality of themethod is
only fair, and its worst-case performance is relatively bad [6].
So although it is easily coded and requires only𝑂(𝑁)memory
and𝑂(𝑁 log𝑁) operations, no papers imply that thismethod
has been applied in some real-world instances.

Genetic Algorithms (GA) are a family of heuristic search
procedures based on the biological paradigm of natural

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2015, Article ID 375163, 9 pages
http://dx.doi.org/10.1155/2015/375163

2 Computational Intelligence and Neuroscience

selection. They were pioneered by De Jong [7] to solve non-
linear optimization problems and later extended by various
authors to many combinatorial problems. A more thorough
description of past GA applications to VRP is given in [8–11].

This paper proposes a brand new Hybrid Optimization
Algorithm (HOA) combined with SFC and GA. We use SFC
to get a feasible original solution and then use GA to obtain
the optimal solution. This paper is organized as follows. We
provide a more detailed description of VRP and propose a
mathematic model in the following section. In Section 3, we
introduce the HOA in detail. Subsequently, we use Solomon
benchmark to test the HOA and the computational results
are analyzed in Section 4. Finally, some conclusions and
recommendations for further research are proposed.

2. Description and Formulation of VRP

The VRP can be described as “the provision of goods and
services from supply points to demand points”; for classic
VRP, we consider one supply point andmany demand points.
The supply point can be a depot and demand points can
be customers to ordinary logistic system. We now present a
mathematical formulation of the VRPTW problem.

Suppose there are 𝐿 customers and one depot; the depot
has the same vehicles with the capacity of 𝑞 tons for each trip.
The solution of the problem is to get an order of 𝐿 points and
then divide the 𝐿 points into𝑚 groups; each groupmeans one
trip of a vehicle.The goal of VRP is tominimize the total route
length and vehicle number.

2.1. Presumption. Note that our formulation ofVRPhas some
presumptions as follows:

(1) Each trip of the vehiclesmust start from the depot and
end with the depot.

(2) The demand volume of each customer should not
exceed the vehicle loading capacity.

(3) Each customer must be visited only once.
(4) Each customer has a service time window.

2.2. Formulation. In considering the constraints above, a
multiobjective mathematical model is constructed as follows.

The decision variables are

𝑦𝑘𝑖 =
{

{

{

1, if demand point 𝑖 is visited by vehicle 𝑘

0, otherwise,

𝑥𝑖𝑗𝑘

=
{

{

{

1, if vehicle 𝑘 traveled from demand point 𝑖 to 𝑗

0, otherwise.

(1)

The other notations used in this model are defined as
follows.

V is the average speed of vehicle, 𝑔𝑖 is the demand volume
of customer 𝑖, 𝑑𝑖𝑗 is the distance from 𝑖 to 𝑗, 𝑡𝑖𝑗 is the travel
time from 𝑖 to 𝑗, 𝑠𝑖 is the service time of customer 𝑖, 𝑅𝑘 is

the route of vehicle 𝑘 which is also a set of visiting points,
and 𝑅𝑘 = {𝑟𝑘0, 𝑟𝑘1, . . . , 𝑟𝑘ℓ, . . . , 𝑟𝑘0}, where 𝑟𝑘0 = 𝑟0, ∀𝑘, is the
depot. 𝑅𝑘1 ∩ 𝑅𝑘2

= 𝜙, ∀𝑘1, 𝑘2 ∈ [1, 𝑚], 𝑘1 ̸= 𝑘2, [𝑡
𝑠

𝑖
, 𝑡
𝑒

𝑖
] is

the time window of customer 𝑖, and 𝜏𝑘𝑖 is the moment when
vehicle 𝑘 arrives at point 𝑖; for each point 𝑖, it should obey the
constraints 𝑡𝑠

𝑖
≤ 𝜏𝑘𝑖 ≤ 𝑡

𝑒

𝑖
.

The model of VRP can be formulated as follows:

min𝑍1 =

𝐿

∑

𝑖=1

𝐿

∑

𝑗=1

𝑚

∑

𝑘=1
𝑑𝑖𝑗 ⋅ 𝑥𝑖𝑗𝑘,

min𝑍2 = 𝑚

(2)

subject to

𝐿

∑

𝑖

𝑔𝑖𝑦𝑘𝑖 ≤ 𝑞 ∀𝑘 ∈ [1,𝑚] (3)

𝑚

∑

𝑘=1

𝑦𝑘𝑖 = 1 ∀𝑖 ∈ [1, 𝐿] , ∀𝑘 ∈ [1,𝑚] (4)

𝐿

∑

𝑖=1

𝑥𝑖𝑗𝑘 = 𝑦𝑘𝑗 ∀𝑗 ∈ [1, 𝐿] , ∀𝑘 ∈ [1,𝑚] (5)

𝐿

∑

𝑖=1

𝑥𝑖𝑗𝑘 = 𝑦𝑘𝑖 ∀𝑖 ∈ [1, 𝐿] , ∀𝑘 ∈ [1,𝑚] (6)

𝑡
𝑠

𝑗
≤

𝑚

∑

𝑘=1

𝐿

∑

𝑖=1,𝑖 ̸=𝑗

𝑥𝑖𝑗𝑘 ⋅ 𝑦𝑘𝑖 (𝜏𝑘𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗) ≤ 𝑡
𝑒

𝑗

∀𝑗 ∈ [1, 𝐿] .

(7)

Formula (2) represents object functions; the first object is
to minimize the total route length, and the second object is to
minimize the vehicle number.

Formulae (3)–(7) are constraints. Formula (3) guarantees
that the total customers’ requirement cannot exceed the
vehicle loading capacity. Formula (4) guarantees that each
demand point can be visited by one vehicle. Formulae (5)
and (6) together mean that each demand point must be
visited at least and at most once. Formula (7) means that the
arrival time of each requirement point vehicle must meet the
service time window of each customer. 𝜏𝑘𝑖 can be calculated
as follows:

𝜏𝑘𝑖 = max {𝜏𝑘,𝑖−1 + 𝑠𝑘,𝑖−1 + 𝑡𝑟𝑘,𝑖−1 ,𝑟𝑘𝑖
, 𝑡
𝑠

𝑖
} ,

where 𝑡𝑖𝑗 =
𝑑𝑖𝑗

V
.

(8)

3. Hybrid Optimization Algorithm

3.1. Outline of the Algorithm. When there are no constraints
of vehicle loading capacity and time window, VRP can be
considered as a Traveling Salesman Problem (TSP), which is
to find a sequence of all demand points to get the shortest
route distance. So once we get the order of demand points,
we can insert several depot points into the queue of demand

Computational Intelligence and Neuroscience 3

Divide space into small pieces
by fractal method

Start

Get the order of demand points
(solution of TSP) by SFC

Insert depot point into the
solution of TSP

GA operation to the solution
of TSP

Get the final solution of VRP

End

GA iterations

Figure 1: Outline of the algorithm.

0

Level 0

0

2

6

1

3

4 5

Level 1 Level 2 Level 3

10

11

16

12

13

14 15

03 00

01

06

02

04 0530

31

36

32

33

34 35

60

61

66

62

63

64 65

20

21

26

22

23

24 25

40

41

46

42

43

44 45

50

51

56

52

53

54 55

010

011

016

012

013

014 015

003 000

001

006

002

004 005030

031

036

032

033

034 035

060

061

066

062

063

064 065

020

021

026

022

023

024 025

040

041

046

042

043

044 045

050

051

056

052

053

054 055

210

211

216

212

213

214 215

203 200

201

206

202

204 205230

231

236

232

233

234 235

260

261

266

262

263

264 265

220

221

226

222

223

224 225

240

241

246

242

243

244 245

250

251

256

252

253

254 255

110

111

116

112

113

114 115

103 100

101

106

102

104 105130

131

136

132

133

134 135

160

161

166

162

163

164 165

120

121

126

122

123

124 125

140

141

146

142

143

144 145

150

151

156

152

153

154 155

310

311

316

312

313

314 315

303 300

301

306

302

304 305330

331

336

332

333

334 335

360

361

366

362

363

364 365

320

321

326

322

323

324 325

340

341

346

342

343

344 345

350

351

356

352

353

354 355

410

411

416

412

413

414 415

403 400

401

406

402

404 405430

431

436

432

433

434 435

460

461

466

462

463

464 465

420

421

426

422

423

424 425

440

441

446

442

443

444 445

450

451

456

452

453

454 455

510

511

516

512

513

514 515

503 500

501

506

502

504 505530

531

536

532

533

534 535

560

561

566

562

563

564 565

520

521

526

522

523

524 525

540

541

546

542

543

544 545

550

551

556

552

553

554 555

610

611

616

612

613

614 615

603 600

601

606

602

604 605630

631

636

632

633

634 635

660

661

666

662

663

664 665

620

621

626

622

623

624 625

640

641

646

642

643

644 645

650

651

656

652

653

654 655

Figure 2: Honeycomb structure on different level.

points according to the constraints of time window and
loading capacity. Thus, the solution of the TSP problem can
be divided by point of depot into several small fragments;
each fragment represents a route for one vehicle which starts
from the depot and ends with the depot. The outline of the
algorithm is shown in Figure 1.

3.2. Process of Algorithm

3.2.1. Honeycomb Based SFC. There are many kinds of space
filling curves, and the widely used are Sierpinski SFC and
Hilbert SFC. Sierpinski SFC is based on the Sierpinski triangle

subdivision, and the Hilbert SFC is based on rectangular seg-
mentation. Honeycomb structure is a new fractal hexagonal
lattice structure which can cover any two-dimensional space
with seamless lattice [12, 13]. The geometry of honeycomb
structure has been extensively studied and has been proven
to have high mechanical stability and high thermal efficiency
and covering efficiency, which has been applied in many
fields, such as nanostructure materials and structures.

Honeycomb structure has obvious self-similar fractal
characteristics. We show the honeycomb structure as in
Figure 2.

4 Computational Intelligence and Neuroscience

010

011

016

012

013

014 015

003 000

001

006

002

004 005030

031

036

032

033

034 035

060

061

066

062

063

064 065

020

021

026

022

023

024 025

040

041

046

042

043

044 045

050

051

056

052

053

054 055

210

211

216

212

213

214 215

203 200

201

206

202

204 205230

231

236

232

233

234 235

260

261

266

262

263

264 265

220

221

226

222

223

224 225

240

241

246

242

243

244 245

250

251

256

252

253

254 255

110

111

116

112

113

114 115

103 100

101

106

102

104 105130

131

136

132

133

134 135

160

161

166

162

163

164 165

120

121

126

122

123

124 125

140

141

146

142

143

144 145

150

151

156

152

153

154 155

310

311

316

312

313

314 315

303 300

301

306

302

304 305330

331

336

332

333

334 335

360

361

366

362

363

364 365

320

321

326

322

323

324 325

340

341

346

342

343

344 345

350

351

356

352

353

354 355

410

411

416

412

413

414 415

403 400

401

406

402

404 405430

431

436

432

433

434 435

460

461

466

462

463

464 465

420

421

426

422

423

424 425

440

441

446

442

443

444 445

450

451

456

452

453

454 455

510

511

516

512

513

514 515

503 500

501

506

502

504 505530

531

536

532

533

534 535

560

561

566

562

563

564 565

520

521

526

522

523

524 525

540

541

546

542

543

544 545

550

551

556

552

553

554 555

610

611

616

612

613

614 615

603 600

601

606

602

604 605630

631

636

632

633

634 635

660

661

666

662

663

664 665

620

621

626

622

623

624 625

640

641

646

642

643

644 645

650

651

656

652

653

654 655

010

011

016

012

013

014 015

003 000

001

006

002

004 005030

031

036

032

033

034 035

060

061

066

062

063

064 065

020

021

026

022

023

024 025

040

041

046

042

043

044 045

050

051

056

052

053

054 055

210

211

216

212

213

214 215

203 200

201

206

202

204 205230

231

236

232

233

234 235

260

261

266

262

263

264 265

220

221

226

222

223

224 225

240

241

246

242

243

244 245

250

251

256

252

253

254 255

110

111

116

112

113

114 115

103 100

101

106

102

104 105130

131

136

132

133

134 135

160

161

166

162

163

164 165

120

121

126

122

123

124 125

140

141

146

142

143

144 145

150

151

156

152

153

154 155

310

311

316

312

313

314 315

303 300

301

306

302

304 305330

331

336

332

333

334 335

360

361

366

362

363

364 365

320

321

326

322

323

324 325

340

341

346

342

343

344 345

350

351

356

352

353

354 355

410

411

416

412

413

414 415

403 400

401

406

402

404 405430

431

436

432

433

434 435

460

461

466

462

463

464 465

420

421

426

422

423

424 425

440

441

446

442

443

444 445

450

451

456

452

453

454 455

510

511

516

512

513

514 515

503 500

501

506

502

504 505530

531

536

532

533

534 535

560

561

566

562

563

564 565

520

521

526

522

523

524 525

540

541

546

542

543

544 545

550

551

556

552

553

554 555

610

611

616

612

613

614 615

603 600

601

606

602

604 605630

631

636

632

633

634 635

660

661

666

662

663

664 665

620

621

626

622

623

624 625

640

641

646

642

643

644 645

650

651

656

652

653

654 655

010

011

016

012

013

014 015

003 000

001

006

002

004 005030

031

036

032

033

034 035

060

061

066

062

063

064 065

020

021

026

022

023

024 025

040

041

046

042

043

044 045

050

051

056

052

053

054 055

210

211

216

212

213

214 215

203 200

201

206

202

204 205230

231

236

232

233

234 235

260

261

266

262

263

264 265

220

221

226

222

223

224 225

240

241

246

242

243

244 245

250

251

256

252

253

254 255

110

111

116

112

113

114 115

103 100

101

106

102

104 105130

131

136

132

133

134 135

160

161

166

162

163

164 165

120

121

126

122

123

124 125

140

141

146

142

143

144 145

150

151

156

152

153

154 155

310

311

316

312

313

314 315

303 300

301

306

302

304 305330

331

336

332

333

334 335

360

361

366

362

363

364 365

320

321

326

322

323

324 325

340

341

346

342

343

344 345

350

351

356

352

353

354 355

410

411

416

412

413

414 415

403 400

401

406

402

404 405430

431

436

432

433

434 435

460

461

466

462

463

464 465

420

421

426

422

423

424 425

440

441

446

442

443

444 445

450

451

456

452

453

454 455

510

511

516

512

513

514 515

503 500

501

506

502

504 505530

531

536

532

533

534 535

560

561

566

562

563

564 565

520

521

526

522

523

524 525

540

541

546

542

543

544 545

550

551

556

552

553

554 555

610

611

616

612

613

614 615

603 600

601

606

602

604 605630

631

636

632

633

634 635

660

661

666

662

663

664 665

620

621

626

622

623

624 625

640

641

646

642

643

644 645

650

651

656

652

653

654 655

Figure 3: Honeycomb structure management method.

For any two-dimensional space, we can get the complete
coverage for it by different level of honeycomb structure with
proper radius of hexagon cell. The honeycomb structure can
be divided into 7 blocks. We give each block an ID: the
central block is 0 and six surrounding blocks are 1 to 6,
respectively; with fractal method, we can give each cell an
ID, as shown in Figure 2. With the cell ID, we can easily find
the exact block, sub-block and the cell position at the whole
space.The hierarchicmanagement of honeycomb is shown in
Figure 3.

Each honeycomb structure can be divided into seven sub-
structures; each substructure is also a honeycomb structure.
So the whole structure is a self-similar hierarchic structure.
We think it is also very useful to manage many real-world
problems efficiently. The recursion structure of honeycomb
(in C# format) is as in Algorithm 1.

Suppose the central cell is 𝐶0, the edge length of cell is
𝛼, and the level index is 𝑛; there are some useful equations

for our algorithm. Equation (9) represents the area that the
honeycomb structure can cover:

𝐴𝑛 = 7
𝑛
𝐴0,

𝐴0 =
𝛼
2
⋅ 3√3

2
.

(9)

Equation (10) represents the distance between subblock
center and upper-level center:

𝜆 = √3 ⋅ 7𝑛−1 ⋅ 𝛼 𝑛 ≥ 1. (10)

So the distance between cell ID 100 and cell ID 000 in
Figure 1 (Level 3) is√3 ⋅ 73−1 ⋅ 𝛼.

Equation (11) represents the rotation angle of subblock
center to upper-level center:

𝜔 =
𝜄 ⋅ 𝜋

3.0
+ arctan(

√3
5

) ⋅ (𝑛 − 1) , (11)

Computational Intelligence and Neuroscience 5

public class HoneycombStructure
{

public int Level; //Current structure level
public BeeCell pCenterCell; //central cell
public ArrayList subCenterCellArray; //sub-structure central cell
public BeehiveStructure pParentStructure; //upper level structure
public BeehiveStructure pCenterStructure; //central sub-structure, 0
public ArrayList subCenterStructureArray; //surround sub-structure, 1–6

}

Algorithm 1: Definition of honeycomb structure.

Algorithm: Generate Honeycomb Structure
Function Name: ComposeBeeCell (int Level, float radius, PointF center)
Input: Structure level, cell radius, structure center
Output: Honeycomb structure
Begin ComposeBeeCell (int Level, float radius, PointF center)

if (Level == 0) then
DrawSingleCell (center, radius)

else
newLevel← Level-1;
for 𝑘 = 0 to 6 do

𝑥-offset← 0;
𝑦-offset← 0;
if (𝑘 > 0) then

Get new level center distance by (9)
Get new level center rotate angel by (10)
Calculate new level center location offset x-offset, y-offset on 𝑥-axis, 𝑦-axis

End
Calculate new level center location by x-offset, y-offset
ComposeBeeCell (newLevel, radius, newCenter);

End
End

End

Algorithm 2: Honeycomb structure generating algorithm.

where 𝜄 ∈ [1, 6] is the subblock index. So the rotation angle of
center of cell ID 100 is 1 ⋅ 𝜋/3.0 + arctan(√3/5) ⋅ (3 − 1).

Supposing the minimum distance of any two points
(including depot and demand points) in this space is 𝑑

∗

𝑖𝑗
, if

𝑑
∗

𝑖𝑗
> 2𝛼, then there is at most one point in a cell. After some

experiments, we suggest that the level number should be less
than 6, because when 𝑛 ≥ 7, the honeycomb construction
process is time consuming to personal computer; when 𝑛 =

6 the total cells are 76 which is enough for ordinary VRP.
For some extreme example, we could allow more than one
command point in one cell; when the initial solution of TSP
is generated, we could give a random sequence of the points
in one cell.

According to the characteristic of the honeycomb struc-
ture, we use the recursion procedure to generate a honeycomb
structure. The pseudocode of the algorithm in C# format is
shown in Algorithm 2.

By a similar recursion method, we also can give every
cell an ID; according to the management principle, all the
cells in honeycomb structure can form a sequence. If the cell

contains demand points, we push the point into a stack in
order; then we can also get the order of demand point; this
order of demand point is the initial solution of the TSP
problem. Based on this initial problem, we can calculate the
final solution of VRP by adding the constraints.

3.2.2. Improvement by Genetic Algorithm (GA). Based on the
initial solution calculated by honeycomb based SFC, we use
GA to improve the solution. GA is a widely used artificial
intelligent method; there are many papers about the details
of the algorithm; we only introduce the modifications of our
method to fit the VRP.

(1) Chromosome Representation. In this paper, we use the
classic chromosome representation to VRP, using a string to
be the chromosome, but the minimum unit of string is the
numeric number of demand points; 0 represents the depot.

(2) Initial Population Generation. Classic population is ran-
domly generated.There are some other improved population

6 Computational Intelligence and Neuroscience

Algorithm: Generate initial population of GA by or-opt method
Function Name: GenerateInitialPopulation (int orLength, ArrayList InitialSolution)
Input: Initial solution of VRP, local search step length
Output: the set of solutions for VRP
Begin GenerateInitialPopulation (int orLength, ArrayList InitialSolution)

Get current solution 𝑅opt from input array.
𝑠
𝑙
= 𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ, 𝑅∗opt = 𝑅opt

while (population less than expected number) do
Generate two random integer 𝑘1, 𝑘2 ∈ [1, 𝐿].
if |𝑘2 − 𝑘1| ≥ 𝑠𝑙 then

Exchange point 𝑘1 and 𝑘2, get new solution
Take point 𝑘1, 𝑘2 respectively as center, select 𝑠𝑙 adjacent point to do 𝑠𝑙-opt operation
Add all these new solution into the set of initial population
if (population number reaches expected number) then break
Chose best solution as 𝑅∗opt

End
𝑅opt = 𝑅

∗

opt
End
Output the set of population.

End

Algorithm 3: Or-opt method to generate the initial population.

k2 k2
k1 k1

Or-opt

Figure 4: 2-opt method for VRP.

generationmethods forVRP, such as themethod based on the
sweep approach of Gillett and Miller [14] or solutions based
loosely on the generalized assignment approach of Fisher
et al. [15]. Due to the characteristics of honeycomb structure,
the initial solution has a certain degree of improvement; we
use Or-opt method to generate an initial population of GA to
search the optimal solution of VRP.

Taking the 2-opt method into consideration to illustrate
the process of algorithm, in Figure 4, which is a solution of
simple VRP, there are two vehicles to finish the distribution
task; we choose point 𝑘1 in first vehicle’s route and point 𝑘2
in second vehicle’s route and then exchange the position of
points 𝑘1 and 𝑘2 in each other’s vehicle route; then we get
a new solution. After the completion of or-opt process, we
choose the optimal solution of the population and always
keep the chromosome of the optimal solution directly to
the next generation, this operation can improve the rate of
convergence of the algorithm.

Suppose the local search step length for Or-opt is 𝑠𝑙;
usually 𝑠𝑙 ≤ 4. The best solution of initial population is 𝑅∗opt.
The algorithm to generate the initial population of GA is
shown in Algorithm 3.

(3) Crossover Operator. Crossover operator is a major process
of producing children solutions from current population.

7, 2, 4, 5, 1, 6, 3

1, 2, 3, 4, 5, 6, 7

7, 2, 3, 4, 5, 1, 6

2, 4, 5, 1, 3, 6, 7

7, 2, 3, 4, 5, 4, 5, 1, 6, 3

1, 2, 4, 5, 1, 3, 4, 5, 6, 7

7, 2, 3, 4, 5, 4, 5, 1, 6, 3

1, 2, 4, 5, 1, 3, 4, 5, 6, 7

P2

P1

P

2

C2

C1

P

1

P

1

P

2

(a) (b)

(c)(d)

Figure 5: Crossover operation.

There aremanymethods for crossover operation according to
different problems. We introduce an easy crossover operator
to fulfill the task. The crossover operation for a simple
example with 7 demand points is shown in Figure 5.

The process is described as follows.

Step 1. Randomly choose two chromosomes as parents and
then generate crossover chromosome segment randomly.
Generate two integers randomly: one for crossover point and
the other for segment length, as shown in Figure 5(a).

Step 2. Swap the crossover genes segment, as shown in
Figure 5(b).

Step 3. Validity checking: due to the constraints of VRP,
each demanding point can only be visited once; keep the
crossover gene segment; delete the samenumber in the parent
chromosomes, as shown in Figure 5(c).

Computational Intelligence and Neuroscience 7

Step 4. Get two new chromosomes with crossover gene
segment and save them to the next generation, as shown in
Figure 5(d).

3.2.3. Interpolation Operator. Interpolation operator is a
process to convert solution of TSP to solution of VRP.
The interpolation operator is to put depots into the sequence
of demand points; each segment separated by depot repre-
sents one vehicle’s delivery task. Take the chromosome 𝐶2
in Figure 5(d) as an example. (2, 4, 5, 1, 3, 6, 7) is one
solution of seven-point TSP. Insert point “0” into the solution,
such as (0, 2, 0, 4, 5, 0, 1, 3, 6, 7, 0), which becomes a
solution of seven-point one-depot VRP. The solution means
there are three vehicles to finish the distribution work: the
first segment “0-2-0” represents that the first vehicle delivers
goods for demand point 2 and then back to depot; the second
segment “0-4-5-0” represents the second vehicle’s route and
task.Where to insert depot point depends on vehicle capacity
and time windows constraints.

The process of interpolation operator is the iteration
of checking the sequence of demanding point one by one,
accumulates the demand volume, arrival time to the next
point; once they cannot satisfy the constraints, insert “0”
point behind the point and then begin a new iteration.

3.3. Time Complexity Analysis of the Algorithms. According
to the previous part, we analyze the time complexity of the
algorithm step by step as follows.

(1) Construction of the Honeycomb. Using the recursion
procedure to construct the honeycomb structure and give
the ID to every cell, the time complexity of the procedure
is 𝑂(7𝑛) where 𝑛 is the level number of the honeycomb. As
we mentioned before, we suggest that 𝑛 < 7 to get an initial
solution fast.

(2) Get the Initial Solution of VRP. Get the initial solution
of VRP by sorting the cell ID which contains more than
one demand point. The time complexity of sorting process
is 𝑂(𝑙 ⋅ log𝑙), where 𝑙 is the demand points number.

(3) Or-opt Method to Generate the Population of GA. The
time complexity of Or-opt algorithm is 𝑂(𝑙

𝑟
), where 𝑙 is the

demand points number and 𝑟 is the exchange segment length.
Take the 2-opt method as an example; the time complexity is
𝑂(𝑙

2
).

(4) Genetic Algorithm to Improve the Solution. According to
the process of GA, we should execute three operations at
each iteration: selection, crossover operator, and mutation
operator.

The time complexity of selection is 𝑂(𝜔), where 𝜔 is the
population size, the time complexity of mutation operator is
𝑂(𝜔 ⋅ 𝜌), where 𝜌 is the mutation segment length, the time
complexity of crossover operator is 𝑂(𝜔 ⋅ 𝑙). Therefore, the
time complexity of every iteration is 𝑂(𝜔 ⋅ 𝑙), the total time
complexity is 𝑂(𝜔 ⋅ 𝑙 ⋅ 𝐼), where 𝐼 is the maximum iteration

number of GA. Generally iteration number is bigger than
demand point number, 𝐼 > 𝑙, so the time complexity in this
step is 𝑂(𝑙

3
).

Based on the above analysis, the time complexity of the
HOA is 𝑂(𝑙

3
), determined by GA.

4. Solomon Experimentation

We implemented experiment software by C# on Windows
7 OS and conducted a lot of computation experiments on
famous Solomon’s benchmark. Solomon’s benchmarks have
56 instances and include 25 customers serial instances,
50 customers serial instances, and 100 customers serial
instances. These 56 problems are categorized into six classes,
namely, C1, C2, R1, R2, RC1, and RC2. Problems which fall
into C categories are clustered data, meaning nodes are
clustered either geographically or in terms of time windows.
Problems from R categories are uniformly distributed data
and those from RC categories are hybrid problems that have
the features of both C and R categories. In addition, C1, R1,
and RC1 problem sets have narrow time window for the
depot, whereas C2, R2, and RC2 have wider time window for
the depot. The best solution published so far for Solomon’s
benchmarks can be found through the following link:
http://www.sintef.no/Projectweb/TOP/VRPTW/Solomon-
benchmark/.

The computation experiments are performed on a per-
sonal computer with Intel Core 2 Duo 2.6G CPU and
4G RAM; the parameters for the algorithm are defined as
follows: maximum honeycomb level is 6, VRP is with hard
time window, the two objective functions use the hierarchy
of minimizing number of vehicles rather than minimizing
total distance, 2-opt method is used to generate the initial
population of GA, the population size is 500, crossover rate
is 40%, the mutation rate is 10%, and the iteration number is
500. The computation results are shown in Table 1.

For 25 demand points’ group, the average deviation to
the best known solution is 8.92%. However, the average
deviations for 50 demand points’ group and 100 demand
points’ group are 15.39% and 19.32%, respectively. The results
show that thisHOA can efficiently solve small scale problems.
Specifically,HOAcan find the optimal solution in a very short
CPU time for 25 demand points’ group, which is highlighted
in Table 1.

With regard to large scale problems (100 demand points’
benchmarks), the CPU time and best solutions of different
algorithms are compared as follows. Note that the computa-
tion results of 2-INT, SA, Tabu, and GA can be found at [2].

The compared results are shown inTable 2, and the results
are also presented in Figures 6 and 7.

According to Figures 6 and 7, we can easily find that the
HOA can obtain promising computation efficiency.

Compared to 2-INT, although the computation cost
is slightly worse, the solutions obtained by the HOA are
much better for most instances (e.g., types R1, R2, RC1, and
RC2).

8 Computational Intelligence and Neuroscience

Table 1: Comparison of results for Solomon’s benchmark.

Type

Results (distance/vehicle number) CPU time (ms) Best known solution
(distance/vehicle number) Gap Δ (%)

25 50 100 25 50 100 25 50 100 25 50 100
points points points points points points points points points points points points

C101 191.8/3 434.35/7 1094.83/13 7843 20437 130656 191.3/3 362.4/5 828.94/10 0 19.8 32.1
C102 196.08/3 398.39/6 1087.73/12 7640 19968 129375 190.3/3 361.4/5 828.94/10 3.0 10.2 31.2
C201 219.23/2 434.96/4 849.64/5 7281 17656 123796 214.7/2 360.2/3 591.56/3 2.1 20.7 43.6
C202 241.46/2 422.91/3 782.3/5 7203 17218 124500 214.7/2 360.2/3 591.56/3 12.5 17.4 32.2
R101 654.71/8 1108.65/14 1806.0/22 8656 21890 97859 617.1/8 1047.0/12 1645.79/19 6.1 5.9 9.7
R102 580.06/7 999.24/12 1596.55/18 8125 20734 95953 547.1/7 944.9/12 1486.12/17 6.0 5.7 7.4
R201 514.85/3 951.98/6 1458.06/8 6843 21355 95921 463.3/4 800.7/6 1252.37/4 11.1 18.9 16.4
R202 486.85/3 846.61/5 1331.56/5 6750 17687 95406 410.5/4 712.2/5 1181.70 18.6 18.9 12.7
RC101 490.0/5 1014.41/10 1788.93/16 7828 20984 115890 461.1/4 957.9/9 1696.94/14 6.3 5.9 5.4
RC102 351.9/3 999.68/9 1694.35/15 7625 20531 114921 351.8/3 844.3/8 1554.75/12 0 18.4 9.0
RC201 427.29/3 888.31/6 1658.15/6 7843 17937 116640 360.2/3 684.8/5 1406.91/4 18.6 29.7 17.9
RC202 414.97/3 694.9/4 1558.91/6 6562 17828 118406 338.0/3 613.6/5 1365.65/3 22.8 13.2 14.2

Table 2: Comparison of our results with the historical best (time(s)/distance).

Type Algorithm
HOA 2-INT SA Tabu GA

C102 129/1087.73 25/923.38 84/901.53 557/901.53 556/868.80
C202 124/782.3 55/801.28 166/787.86 1885/746 1073/683.86
R102 96/1596.55 46/1720.46 78/1544.82 1076/1488.59 507/1558.59
R201 96/1458.06 98/1791.42 217/1726.13 3323/1437.49 851/1329.74
RC101 116/1788.93 49/1948.94 63/1940.57 1016/1734.17 432/1728.3
RC201 116/1658.15 60/2070.4 146/1891.9 3217/1617.5 835/1565.67

0

500

1000

1500

2000

2500

3000

3500

C102 C202 R102 R201 RC101 RC201

Ti
m

e (
s)

HOA
2-INT
SA

Tabu
GA

Figure 6: CPU time comparison (s).

Compared to SA, the computation cost is very similar, but
the HOA produces better solutions for most instances (e.g.,
types R2, RC1, and RC2).

Compared to Tabu, the HOA can obtain very similar
solutions by amazing computation time, less than 1/10 the
computation time of Tabu.

500

900

1300

1700

2100

C102 C202 R102 R201 RC101 RC201

D
ist

an
ce

HOA
2-INT
SA

Tabu
GA

Figure 7: Results comparison.

Compared to GA, the HOA produces similar solutions in
much less computation time. Note that a similar solution to
classic GA can be produced by HOA, if we adjust algorithm
parameters (such as population size and iteration number) of
HOA properly.

Computational Intelligence and Neuroscience 9

Figure 8: Results of R201 graph.

The computation costs by using HOA for all instances are
very close; the difference between the fastest instance (R102,
R201) and the slowest instance (C102) is only 33 s.

To summarize, we can conclude that the HOA has better
computation efficiency and robustness to VRPs and has a real
potential application for its fast computation efficiency and
robustness. It can provide a feasible solution according to cus-
tomer’s requirement; for example, customer can customize
the iteration number before the algorithm begins; even in a
few iterations it can output an improved solution. To dealwith
small or medium scale problems, HOA can produce a good
or even the optimal solution in very short time. Figure 8 is
the experimental software interface to solve the 50 demand
points of R201; it can find the near-optimal solution within
20 seconds. For 25 demand points’ problem, it can find the
solution within a few seconds.

5. Conclusions

This paper proposes a fractal hierarchic honeycomb structure
based HOA to solve VRP. The algorithm first divides the
whole space into sequenced cells by honeycomb structure to
get the initial solution of VRP, uses GA to improve an initial
solution, and gets the final solution for VRP. Experimental
software is developed based on the proposed HOA, and
computational experiments are conducted based on Solomon
benchmark. The test results demonstrate the superiority of
the proposed algorithm.

This is the first time to implement the honeycomb
structure and apply it to VRP; the self-similar hierarchic
honeycomb structure has many characteristics, and we pro-
vide a new cell ID sequence method based on fractal theory.
The hierarchicmanagement idea of honeycomb structure can
potentially be applied into different real-world management
problems, such as large scale social management and grid
management.

The proposed HOA has been proved to be computation-
ally efficient and robust for VRP. Moreover, it can be easily
implemented and potentially can be generalized to solve
various real work problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was financially supported by the Fundamental
Research Funds for the Central Universities (no.
2014JBZ008).

References

[1] B. M. Baker and J. Sheasby, “Extensions to the generalised
assignment heuristic for vehicle routing,” European Journal of
Operational Research, vol. 119, no. 1, pp. 147–157, 1999.

[2] K. C. Tan, L. H. Lee, Q. L. Zhu, and K. Ou, “Heuristic methods
for vehicle routing problem with time windows,” Artificial
Intelligence in Engineering, vol. 15, no. 3, pp. 281–295, 2001.

[3] L. K. Platzman and I. Bartholdi III, “Spacefilling curves and the
planar travelling salesman problem,” Journal of the Association
for Computing Machinery, vol. 36, no. 4, pp. 719–737, 1989.

[4] I. Bartholdi and L. K. Platzman, “Heuristics based on space-
filling curves for combinatorial problems in Euclidean space,”
Management Science, vol. 34, no. 3, pp. 291–305, 1988.

[5] R. H. Storer and A. Bringhurst, “Heuristics for the planer
euclidean TSP based on space filling curves and simulated
annealing,” Working Paper 87-008, Department of Industrial
Engineering, Lehigh University, Bethlehem, Pa, USA, 1987.

[6] D. Bertsimas and M. Grigni, “Worst-case examples for the
spacefilling curve heuristic for the Euclidean traveling salesman
problem,”Operations Research Letters, vol. 8, no. 5, pp. 241–244,
1989.

[7] K. A. De Jong, Analysis of the behavior of a class of genetic
adaptive systems [Ph.D. thesis], University of Michigan, Ann
Arbor, Mich, USA, 1975.

[8] B. M. Baker and M. A. Ayechew, “A genetic algorithm for the
vehicle routing problem,” Computers & Operations Research,
vol. 30, no. 5, pp. 787–800, 2003.

[9] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei,
“A hybrid genetic algorithm formultidepot and periodic vehicle
routing problems,” Operations Research, vol. 60, no. 3, pp. 611–
624, 2012.

[10] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A hybrid
genetic algorithm with adaptive diversity management for a
large class of vehicle routing problems with time-windows,”
Computers & Operations Research, vol. 40, no. 1, pp. 475–489,
2013.

[11] G.-H. Sun, “Modeling and algorithm for open vehicle routing
problem with full-truckloads and time windows,” System Engi-
neering: Theory & Practice, vol. 32, no. 8, pp. 1801–1807, 2012.

[12] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature
Materials, vol. 6, no. 3, pp. 183–191, 2007.

[13] K. S. Novoselov, D. Jiang, F. Schedin et al., “Two-dimensional
atomic crystals,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 102, no. 30, pp. 10451–10453,
2005.

[14] B. E. Gillett and L. R. Miller, “A heuristic algorithm for the
vehicle-dispatch problem,” Operations Research, vol. 22, no. 2,
pp. 340–349, 1974.

[15] M. L. Fisher, R. Jaikumar, and L. N. van Wassenhove, “A
multiplier adjustment method for the generalized assignment
problem,” Management Science, vol. 32, no. 9, pp. 1095–1103,
1986.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

