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The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service
robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework
based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data
sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis
(PCA)models for fault feature extraction.The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers
that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novelML-kernel based PSVMclassifier
is proposed in this paper, and the positive definiteness of theML-kernel is proved as well.The basic probability assignments (BPAs)
are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result
is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and
identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared
with the traditional methods.

1. Introduction

In recent years, the wheeled robots have received a wide
range of applications and developments [1–3]. Particularly, in
home service area, various kinds of wheeled service robots
have become members of our family, such as the elderly
companion robot [4] and the sweeping robot [5]. However,
robot users are usually nonexpert in robot technology, which
means that the faults which occurred in the wheeled robot
system may cause serious damage to their life and property.
The increasing demand of safety, reliability, and the necessity
of low cost have become the bottleneck of wheeled robot
applications with current technology. Therefore, it is mean-
ingful to focus on novel fault diagnosis methods, particularly
for the man-robot coexistent environments.

Generally speaking, the existing fault diagnosis methods
can be classified as the model based and the data driven
ones [6, 7]. In the earlier days, the research of model
based fault diagnosis methods drew much attention and
constituted the mainstream of this field [8, 9]. In [10],

based on the mathematical model of the roboticmanipulator,
Caccavale et al. presented a discrete-time framework for
diagnosis of sensors and actuators of robotic manipulators.
Using particle filter, Yu et al. [11] proposed a fault-proneness
prediction method for robot dead reckoning system. Besides
the abovementioned methods, the adaptive observer and
some other model based methods have also been designed
for fault diagnosis of robot platform or robot manipulator
[12, 13]. Those model based fault diagnosis methods are
effective and suitable for the diagnosis problem of robot
manipulator or robot arm, because robot arm usually works
in a structured environment and it is relatively easier to get
the accurate mathematical model. While, for wheeled robots,
firstly, their working environments are usually dynamic and
unstructured, secondly, wheeled robots are usually equipped
with various kinds of equipment that are more complex in
both hardware and software aspects compared with manipu-
lators. Thus it is hard to get an accurate mathematical model
of a wheeled robot working in an unstructured environment,
which becomes a restriction of those model based methods.
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Moreover, thewheeled robots arewell equippedwithmultiple
sensors which implies that large data volumes containing
robot running status information are available. Those large
data volumes imply difficulties in system modeling, while
they provide the required information for data driven based
fault diagnosis method.

Principal component analysis (PCA) is a typical represen-
tative of the data driven fault diagnosis method. PCA is more
suitable for fault detection rather than diagnosis, because it
does not use the input-output relationships [14].Therefore, in
order to improve the diagnosis ability, PCA is often used by
combining the classifiers, such as the neural network (NN)
and the support vector machine (SVM). This hybrid method
has been applied in the fault diagnosis of rotating machinery
[15], power transmission systems [16], and some other aspects
[17, 18]. Applications of PCA could be useful in extracting
and interpreting process information frommassive data sets,
and the pattern recognition techniques could also be used to
diagnose the specific running status of the robot.

Nevertheless, there are mainly two problems that exist in
the above hybrid diagnosis methods. On the one hand, most
of the studies adopted the existing classical kernel (e.g., Gaus-
sian kernel and polynomial kernel) as the kernel function of
SVM in their diagnosis methods, while new kernel functions
with better classification performance need to be proposed,
proved, and applied to the robot fault diagnosis fields. On the
other hand, the diagnosed objects are usually complex and
with varying degrees of uncertainties. A single PCA model
cannot achieve full and complete awareness of the diagnosed
object so that the information fusion in data level or decision
level is needed to reduce the existing uncertainties.

Mittag-Leffer functions [19, 20] play fundamental roles
in fractional calculus, which exhibit intermediate process
among exponential function, power function, and poly-
nomial function. Nowadays, fractional calculus has been
successfully applied in many aspects, such as the application
of fractional Fourier transform in signal processing [21]
and the application of fractional order PI controllers [22].
Inspired by fractional calculus, a novel fractional Gaussian
kernel named ML-kernel is proposed in this paper, which
is a generalization of the traditional Gaussian kernel. The
proposed ML-kernel is proved to be positive definite and its
diagnosis performance is discussed in this paper. Besides,
a hybrid fault diagnosis framework is discussed for robot
driving system based on Dempster-Shafer (D-S) fusion and
ML-kernel support vector machine (SVM). Multiple PCA
models are established to do fault feature extraction and the
fault feature vectors are used as the inputs of the ML-kernel
SVM classifiers. The ML-kernel SVM classifiers output the
preliminary fault diagnosis results which are fused by D-S
fusion and the fusion result is taken as the final diagnosis
result. Two sets of comparative experiments are carried out
to validate the proposed method.

The remainder of this paper is organized as follows.
Section 2 briefly introduces the SVMmethod and the positive
definiteness of the presented ML-kernel is also proved in this
section. In Section 3, the proposed fault diagnosis framework
is described in detail. Section 4 illustrates the architecture
of the experimental wheeled robot driving system and

the application studies for various fault conditions. Section 5
is devoted to conclusions.

2. SVM Algorithm and the Presented
ML-Kernel Function

2.1. Conventional SVM Algorithm. In the past few years,
SVM has been one of the most highly studied topics in
the machine learning fields, and it has been successfully
applied in practice, especially for classification problems (e.g.,
fault diagnosis) [23, 24]. Based on the statistical theory of
VC dimension and structural risk minimization inductive
principle, SVM reaches the best compromise between the
complexity of modeling and the leaning ability and hunts
the best generalization ability. The basic SVM [25] deals
with linearly separable two class cases and it can cope with
nonlinear problems by introducing kernel functions and
slack penalty. Given a training set 𝑆
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where 𝑐 is the slack penalty, 𝜔 is the adjustable weight vector,
𝑏 is the offset of the hyperplane, and 𝜉

𝑖
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where 𝛼
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is the Lagrangian coefficient, from which we can
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The kernel function can map the input vector 𝑥 into
feature space and returns a dot product of the feature space.
The linear discriminant function with kernel 𝐾(𝑥
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where sgn(⋅) is the signum function.
The fault diagnosis of a robot driving system is a multiple

class classification problem, while the conventional SVMwas
designed for the binary classification problem, so it is not
suitable for the fault diagnosis in its original form. A few
types of methods for multiclass SVM have been proposed
[26]: one against one, one against others, direct acyclic graph,
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and so forth. This study employs the “one against one”
multiclass SVM. In order to construct the BPAs, we need the
probabilistic outputs of the SVM classifiers and the “pairwise
coupling” method [27] is used to solve this problem.

2.2. Kernel Function. The nonlinear pattern recognition
problem in fault diagnosis can be transformed into the linear
problem in some very high-dimensional feature spaces. The
kernel function𝐾(𝑥
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that satisfies the Mercer theorem can be used as a kernel
function [28]. Currently, there are three typical kinds of
kernel functions:
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2.3. Proof of the Positive Definiteness of the ML-Kernel. As
the core of SVM, kernel function and the parameters of the
model determine the performance of the SVM algorithm
applied to the fault diagnosis system. In this paper, we employ
the Mittag-Leffler function as a novel kernel function named
as ML-kernel. The Mittag-Leffler function [29] is defined as
follows:
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Given a kernel, it is in general straightforward to verify

its continuity and symmetry, while the positive definiteness is
more important and essential for a kernel. Thus, the proof of
the positive definiteness of the proposed ML-kernel is given
as below.
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where 𝛾 is a real number that keeps the contour path of
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Hence, we can obtain
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words, the proposed ML-kernel is symmetrical and positive
definite. Therefore, the proof is complete.

3. Fault Diagnosis Method Based on
ML-Kernel SVM and D-S Fusion

As shown in Figure 1, there are two main processes of the
proposed approach, namely, the training process and the fault
diagnosis process. Before the application of the proposed
approach, the initial samples should be obtained from the
laboratory experiments. In the training process, multiple
PCA models are set up based on the data sampled in the
normal and faulty states. Then, those models are used to do
fault feature extraction and the ML-kernel SVM classifiers
are trained. In the diagnosis process, new sampled data are
normalized firstly. Secondly, the PCA models established in
the training process are applied to do fault feature extraction.
The fault feature vectors are then served as the inputs of
the trained ML-kernel SVM classifiers, respectively, and
the probabilistic outputs of the classifiers are taken as the
preliminary fault diagnosis results. The BPAs are constructed
based on the preliminary fault diagnosis results and the
confidence values calculated from the confusion matrix. To
reduce the uncertainties of the preliminary diagnosis results,
the D-S fusion algorithm is introduced for decision fusion
and the final diagnosis results are given based on the fusion
results. The proposed approach is elaborated in detail as
follows.

3.1. Data Preprocessing and Establishment of Multiple PCA
Models. Suppose that there are ℎ + 1 kinds of robot running
states represented as {𝑆
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, . . . , 𝑆
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}. 𝑆0 represents the normal
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faulty state 𝑆
𝑘
. To establish PCA models, several steps are

introduced.

Step 1 (data normalization). To reduce the influence of
different dimensions of the sensors, the training data should
be normalized before establishing the PCAmodels. For a data
set of 𝑛 observations and 𝑚 process variables 𝐷
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𝐶
𝑘
= 𝑃

𝑘
Λ

𝑘
𝑃

𝑇

𝑘
, (17)

where𝐶
𝑘
represents covariancematrix of𝐷

𝑘
,Λ

𝑘
is a diagonal

matrix containing the eigenvalues of 𝐶
𝑘
in decreasing order,

and 𝑃
𝑘
is orthogonal and contains the eigenvectors of 𝐶

𝑘
.

Step 3 (determine the loadingmatrix according to the number
of PCs). Given 𝛽

𝑖
= 𝜆

𝑖
/∑

𝑚

𝑗=1 𝜆𝑗
, the number of principal

components (PCs) 𝑙 is determined to satisfy the equation
𝛽1 + 𝛽2 + ⋅ ⋅ ⋅ + 𝛽

𝑙
≥ 𝜇, where 𝜇 is a constant and usually

required to be bigger than 0.85 [31].
The loading matrix 𝑃̂

𝑘
= [𝑝1, 𝑝2, . . . , 𝑝𝑙

] consists of the
former 𝑙 eigenvectors of the covariance matrix and𝐷

𝑘
can be

decomposed as

𝐷
𝑘
= 𝑇

𝑠
𝑃̂

𝑇

𝑘
+𝐸, (18)

where 𝑇
𝑠

= 𝐷
𝑘
𝑃̂

𝑘
is named as score matrix and 𝐸 is the

residual matrix.

3.2. Feature Extraction and SVM Training. During the pro-
cess of PCA, the orthogonal loading matrix 𝑃̂

𝑘
can be

considered as the main features of the original training data
set. So, we can do data dimensionality reduction and feature
extraction at the same time using the following equation:

𝐹
𝑘
= (𝐷all ⋅ 𝑃̂𝑘

) ∈ 𝑅
(ℎ+1)𝑛×𝑙

, 𝑘 = 0, 1, . . . , ℎ, (19)
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Figure 1: Flow diagram of the proposed fault diagnosis approach.

where 𝐷all ∈ 𝑅
(ℎ+1)𝑛×𝑚 is the normalized training data sets

and 𝑃̂
𝑘
∈ 𝑅

𝑚×𝑙 is the loading matrix of the 𝑘th PCA model. 𝑙
is the number of principal components and 𝐹

𝑘
is used as the

final training sets of SVM
𝑘
(𝑘 = 0, 1, . . . , ℎ).

A novel ML-kernel presented in Section 2.3 is applied as
the kernel function of SVM

𝑘
and particle swarmoptimization

(PSO) [32] is adopted to tune the parameters 𝑐, 𝛿, and𝛼. Here,
𝑐 is the slack penalty and 𝛿 and 𝛼 are two parameters of the
ML-kernel.

3.3. Decision Fusion. To reduce the uncertainties and impre-
cisions of the preliminary fault diagnosis results, D-S fusion
is introduced in the proposed fault diagnosis framework.The
determination of BPAs is the first and most important step in
evidence theory. In our approach, we construct BPAs based
on the probabilistic outputs of the PSVM classifiers and their
confidence values.

Step 1 (calculation of the confidence values). The average
classification accuracy of SVM

𝑘
can be calculated by

𝑎
𝑘
=

∑
ℎ+1
𝑝=1 (𝑐𝑝𝑝

⋅ 𝑁
𝑝
)

𝑁
, (20)

where 𝑐
𝑝𝑝

is the diagonal elements of the confusion matrix of
SVM

𝑘
, 𝑁

𝑝
= 𝑛 is the number of samples under the 𝑝th kind

of fault condition, and 𝑁 = (ℎ + 1)𝑛 is the total number of
training samples in the training set 𝐹

𝑘
. So, we can get 𝑎

𝑘
=

∑
ℎ+1
𝑝=1 𝑐𝑝𝑝

/(ℎ + 1), which can be used as the global confidence
of SVM

𝑘
.

The 𝑞th column vector of the confusion matrix 𝑐
⋅𝑞

(𝑞 =

1, 2, . . . , ℎ + 1) indicates the local confidence for the 𝑞th kind
of fault and the local confidence can be calculated by

𝜔
𝑘𝑞

=
𝑐
𝑞𝑞

∑
ℎ+1
𝑝=1 𝑐𝑝𝑞

, 𝑞 = 1, 2, . . . , ℎ + 1. (21)

Thenwe can incorporate the local confidence𝜔
𝑘𝑞
into the

probabilistic output of SVM
𝑘
and after normalization we can

get

𝑓
󸀠

𝑘𝑞
=

𝜔
𝑘𝑞
𝑓

𝑘𝑞

∑
ℎ+1
𝑞=1 𝜔𝑘𝑞

𝑓
𝑘𝑞

, (22)

where 0 ≤ 𝑓
𝑘𝑞

≤ 1 is the output of SVM
𝑘
.
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Step 2 (construction of BPAs and D-S fusion). In our
approach, the BPAs are defined as

𝑚
𝑘
(⌀, 𝑆

0
, 𝑆

1
, . . . , 𝑆

ℎ
, Θ)

= (0, 𝑎
𝑘
𝑓

󸀠

𝑘0
, 𝑎

𝑘
𝑓

󸀠

𝑘1
, . . . , 𝑎

𝑘
𝑓

󸀠

𝑘ℎ
, 1− 𝑎

𝑘
) .

(23)

It can be indicated from (23) that the frame of dis-
cernment 𝑃(Θ) = {⌀, 𝑆

0
, 𝑆

1
, . . . , 𝑆

ℎ
, Θ}. Here, ⌀ denotes

the empty set, and 𝑆
ℎ
represents the ℎth kind of running

condition of the robot. It is obvious that ∑
𝐴∈𝑃(Θ)

𝑚
𝑘
(𝐴) =

1; 𝑚
𝑘
(⌀) = 0. With BPAs, we use a fast fusion algorithm

based on the matrix analysis [33] to accomplish D-S fusion
algorithm.

4. Implementations on Wheeled Robot

A real application of robot driving system fault diagnosis is
selected to illustrate the aforesaid theories and the proposed
diagnosis framework. The experimental robot and its fault
diagnosis problem are described briefly, followed by the
discussions of the three key components in the proposed
diagnosis framework, namely, data collection and prepro-
cessing, feature extraction and SVM training, and decision
fusion. In addition, several groups of contrast experiments are
given in this section.

4.1. Description of Experimental Robot. As shown in Figure 2,
we use the wheeled service robot developed by our research
group as the experimental platform. This robot is driven
by two differential wheels and it is equipped with various
kinds of sensors such as one gyroscope (L3GD20), two
incremental encoders, two temperature sensors (DS18B20),

Table 1: Fault position and its common fault modes.

Fault
categories Fault position Fault mode Tag

Normal
condition None None 𝑆

0

Mechanical
faults

Left wheel Low pressure 𝑆
1

Right wheel Low pressure 𝑆
2

Left coupling Loosening 𝑆
3

Right coupling Loosening 𝑆
4

Sensor faults
Left encoder Pulse loss 𝑆

5

Right encoder Pulse loss 𝑆
6

Gyroscope Constant drift 𝑆
7

current detecting circuits, and voltage detecting circuits. The
architecture of the driving system is shown in Figure 3.

In general, faults which occurred in a wheeled robot
driving system can be divided into two categories:mechanical
faults and sensor faults. In fact, each of the two categories
can be subdivided into many small classes. However, only a
few typical kinds of high risk faults often occur in the actual
course of using the robot [11]. In this paper, we mainly focus
on the diagnosis of 7 common kinds of high risk faults and
the normal condition 𝑆0 is treated as a special kind of “fault.”
As shown in Table 1, the fault space can be defined as 𝑆err =

{𝑆
0
, 𝑆

1
, . . . , 𝑆

7
}.

In order to achieve the effective detection and diagnosis
of the faults presented in Table 1, the fault symptom space
must be determined, which means that we should select
the available and useful sensor signals in the robot driving
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Figure 3: Architecture of wheeled robot driving system.

system. It can be indicated from Figure 3 that the working
status of the robot driving system is closely relatedwithmotor
speed, driving voltage, armature current, angular rate, and
temperature of H-bridge. Considering that the temperature
of H-bridge is easily affected by environment temperature,
we use the change rate of the H-bridge temperature as
characteristic signal and the final fault symptom space can
be defined as {left wheel speed V

𝑙
, right wheel speed V

𝑟
, left

motor driving voltage U
𝑙
, right motor driving voltage U

𝑟
, left

motor armature current I
𝑙
, right motor armature current I

𝑟
,

change rate of the left H-bridge temperature T
𝑙
, change rate

of the right H-bridge temperature T
𝑟
, angular rateW}.

4.2. Data Collection and Preprocessing. The robot motion
controller (ARM chip) is responsible for data collection
and uploading. In our experiments, we sample 200 sets
of data under each of the running conditions (𝑆

0
–𝑆

7
),

respectively. So, the raw data sets can be marked as 𝐷all =

[𝐷0, . . . , 𝐷𝑘
, . . . , 𝐷7]

𝑇
∈ 𝑅

1600×9 and 𝐷
𝑘

∈ 𝑅
200×9 denotes

data sampled under the 𝑘th running condition. For simpli-
fication without losing generality, 100 sets of data in each
𝐷

𝑘
are randomly selected as the original training samples

𝑋
𝑘

∈ 𝑅
100×9 and the remaining 100 sets of data are used as

the original testing samples𝑌
𝑘
∈ 𝑅

100×9.With the normalized
𝑋

𝑘
(𝑘 = 0, . . . , 7), 8 PCA models are established by (17)

and (18). The cumulation variance proportion of the PCs for
each PCA

𝑘
model is shown in Figure 4 and the threshold

value 𝜇 is set to 0.85. We can get 𝑙
𝑘

= [5, 5, 5, 4, 5, 5, 5, 5],
which represents the optimal number of PCs for PCA

𝑘
(𝑘 =

0, . . . , 7).

4.3. Feature Extraction and SVM Training. The normalized
training data set 𝑋all = [𝑋0, . . . , 𝑋7]

𝑇
∈ 𝑅

800×9 is projected
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Figure 4: Cumulation variance proportion of the PCs.

onto the principal component subspace of each PCA
𝑘
model

and we can get the feature vectors 𝐹
𝑘
∈ 𝑅

800×𝑙𝑘 , (𝑘 = 0, . . . , 7)
by (19). Then 𝐹

𝑘
is used to train SVM

𝑘
with 5-fold cross

validation and PSO algorithm for parameters optimization.
Taking SVM8 as an instance, Figure 5 shows the distribu-

tion of the particles during parameters optimization process
using PSO algorithm and the optimal parameters of SVM8
are {𝑐 = 11.086, 𝑔 = 2.997, 𝛼 = 0.950}. The optimal
parameters of other SVMmodels are shown in Figure 6.With
the trained SVM

𝑘
models, the global and local confidence
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values (𝑎
𝑘
, 𝜔

𝑘0, . . . , 𝜔𝑘7) can be obtained using (20) and
(21), respectively, and the confidence values of SVM

𝑘
(𝑘 =

0, . . . , 7) are presented in Figure 7.

4.4. Decision Fusion. With the global and local confidence
values elaborated in Figure 7, we can construct the BPAs for
D-S fusion by (23). Taking 𝑆2 and 𝑆

4
, for example, we get two

sets of fusion records randomly and the details are presented
in Table 2.

As shown in Table 2, there are three error diagnoses
in the 7th, the 14th, and the 16th row, because one single
PCA model cannot achieve complete awareness of the robot
driving system. While in the proposed approach, multiple
PCA models are used to do feature extraction and D-S
fusion is applied to fuse the outputs of the ML-kernel PSVM
classifiers. Thus, the proposed approach can achieve better
awareness of the system and diagnose the faults accurately.
Besides, it can be indicated from the 5th and the 7th column
that the confidence value (0.959 and 0.995) after D-S fusion
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Figure 7: Confidence values of SVM
𝑘
.

is much bigger than that of any single PCA
𝑘
. In other words,

the proposed approach can reduce the uncertainties of the
diagnosis result efficiently.

The classification accuracy indicates the ability to diag-
nose the entire categories which are defined as 7 kinds of
faulty states {𝑆

1
, . . . , 𝑆

7
} and 1 normal state {𝑆

0
}. In this study,

we use the true positive rate as the diagnosis accuracy, which
is defined as

Acc =
𝑁TP

𝑁TP + 𝑁FN
× 100%, (24)

where 𝑁FN is the number of false negatives defined as the
number of faults in category 𝑘 that are not classified as
category 𝑘 and𝑁TP is the number of true positives.

According to Figure 8, the final diagnosis accuracy is
96.75% for the testing samples 𝑌all = [𝑌0, . . . , 𝑌𝑘

, . . . , 𝑌7] ∈

𝑅
800×9 (see Section 4.2) in our experiments.

4.5. Contrast Experiments. To further verify the effectiveness
of the proposed framework and the ML-kernel, several
groups of contrast experiments are conducted, respectively,
for comparison.

4.5.1. Evaluation of the ML-Kernel. In order to evaluate the
performance of the proposed ML-kernel, we compare the
diagnosis accuracy of the ML-kernel with the existing three
typical kernel functions based on the proposed hybrid diag-
nosis framework. For fair comparison, we use the same sets
of training samples 𝑋all = [𝑋0, . . . , 𝑋7] and testing samples
𝑌all = [𝑌0, . . . , 𝑌7] (mentioned in Section 4.2). Besides, PSO
and 5-fold cross validation are applied to find the optimal
parameters for each kernel function.The experimental results
are presented in Table 3.

From the 5th row and the 6th row of Table 3, we can see
that the proposed ML-kernel has an identical classification
performance compared with the classical Gaussian RBF
kernel when 𝛼 = 1. When 0 < 𝛼 ≤ 1, we can see that
the diagnosis ability of the proposedML-kernel is better than
that of the classical Gaussian RBF kernel. From the discussion
in Section 2.3, we know that the proposed ML-kernel can be
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Table 2: BPAs assignments and fusion experiment records.

Fault mode PCA model BPAs Outputs
m(𝑆

0
) m(𝑆

1
) m(𝑆

2
) m(𝑆

3
) m(𝑆

4
) m(𝑆

5
) m(𝑆

6
) m(𝑆

7
) m(𝜃)

𝑆
2

PCA0 0.004 0.003 0.463 0.003 0.446 0.002 0.024 0.004 0.051 𝑆
2

PCA1 0.004 0.004 0.492 0.006 0.333 0.003 0.095 0.005 0.058 𝑆
2

PCA2 0.004 0.003 0.620 0.004 0.279 0.002 0.046 0.003 0.039 𝑆
2

PCA3 0.001 0.001 0.708 0.001 0.151 0.001 0.107 0.002 0.028 𝑆
2

PCA4 0.004 0.002 0.350 0.002 0.546 0.002 0.010 0.003 0.081 𝑆
4

PCA5 0.004 0.002 0.498 0.004 0.410 0.002 0.025 0.004 0.051 𝑆
2

PCA6 0.002 0.002 0.507 0.002 0.390 0.002 0.047 0.003 0.045 𝑆
2

PCA7 0.003 0.002 0.609 0.003 0.301 0.002 0.006 0.003 0.071 𝑆
2

DS 0.000 0.000 0.959 0.000 0.041 0.000 0.000 0.000 0.000 𝑆
2

𝑆
4

PCA0 0.007 0.004 0.419 0.006 0.501 0.002 0.005 0.005 0.051 𝑆
4

PCA1 0.005 0.003 0.021 0.004 0.902 0.002 0.001 0.004 0.058 𝑆
4

PCA2 0.006 0.003 0.515 0.005 0.423 0.002 0.003 0.004 0.039 𝑆
2

PCA3 0.001 0.001 0.022 0.001 0.942 0.000 0.003 0.002 0.028 𝑆
4

PCA4 0.007 0.003 0.742 0.004 0.153 0.002 0.002 0.006 0.081 𝑆
2

PCA5 0.007 0.003 0.320 0.005 0.605 0.002 0.002 0.005 0.051 𝑆
4

PCA6 0.004 0.003 0.400 0.003 0.535 0.002 0.004 0.004 0.045 𝑆
4

PCA7 0.005 0.003 0.363 0.005 0.544 0.002 0.002 0.005 0.071 𝑆
4

DS 0.000 0.000 0.005 0.000 0.995 0.000 0.000 0.000 0.000 𝑆
4

Table 3: Diagnosis accuracy of the proposed hybrid framework with different kernel functions.

Kernel function Diagnosis accuracy
𝑆

0
𝑆

1
𝑆

2
𝑆

3
𝑆

4
𝑆

5
𝑆

6
𝑆

7
Total

Polynomial kernel 79% 97% 96% 85% 94% 98% 99% 81% 91.51%
Sigmoid kernel 92% 94% 94% 69% 71% 96% 99% 91% 88.25%
Gaussian RBF kernel 81% 97% 95% 86% 92% 99% 100% 84% 91.76%
ML-kernel (𝛼 = 1) 81% 97% 95% 86% 92% 99% 100% 84% 91.76%
ML-kernel (0 < 𝛼 ≤ 1) 92% 100% 96% 94% 98% 99% 100% 95% 96.75%
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Figure 8: Fault diagnosis result.

regarded as a generalized form of the Gaussian RBF kernel
and the experimental results here verify this conclusion again.
Table 3 demonstrates that the proposed ML-kernel has the
best performance for fault diagnosis of the wheeled robot

driving system, followed by the Gaussian RBF kernel and the
polynomial kernel, while the sigmoid kernel has the worst
performance in our experiments.

4.5.2. Evaluation of the Proposed Hybrid Diagnosis Frame-
work. The performance of the proposed framework can be
evaluated by comparison with traditional nonfusion diagno-
sis framework. 10 groups of new test data are sampled and
each group contains 800 samples which are sampled under
each of the running conditions (𝑆

0
, . . . , 𝑆

7
), respectively (100

samples for each running condition). The ML-kernel is
adopted as the kernel function of the SVMs both in the
proposed framework and in the traditional framework. The
experimental result is shown in Figure 9, from which we
can see that the proposed framework achieves the average
accuracy of 94.46% (where the highest diagnosis accuracy
and the standard deviation are 97.5% and 1.95, resp.). While,
for the traditional framework, the average accuracy is 88.15%
(where the highest diagnosis accuracy and the standard
deviation are 95.5% and 5.76, resp.), it is clear that the
proposed framework achieves better performance both in
diagnosis accuracy and in stability, which can be owing to the
multiple PCA models and the fusion in decision level.
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5. Conclusion

A novel hybrid fault diagnosis framework for wheeled robot
driving system is proposed in this paper.Theproposed frame-
work is composed of three key components, namely, data
collection and preprocessing, feature extraction and SVM
training, and decision fusion. Besides, a novel fractional ML-
kernel is presented and its positive definiteness and diagnosis
ability are discussed in this study. In the proposed framework,
multiple PCA models are established to do fault feature
extraction firstly. Secondly, the extracted fault feature vectors
are used to train the ML-kernel PSVM classifiers with PSO
algorithm and cross validation for parameters tuning. Based
on the probabilistic outputs and confidence values of those
classifiers, the BPAs are constructed. Finally, the BPAs are
fused by D-S fusion algorithm that follows the final diagnosis
result. In contrast with the earlier studies, the proposed
approach can achieve better awareness of the diagnosed
system and reduce the uncertainties of the diagnosis result
significantly. Through an illustrative application of wheeled
robot driving system fault diagnosis, the proposed method
is verified as an efficient way of diagnosing the faults in
robot driving system and has better performance in stability
(standard deviation 1.95) and diagnosis accuracy (highest
diagnosis accuracy 97.5%) compared with the traditional
methods. In the future, the combination with parallel com-
puting and the cost-sensitive fault diagnosis framework will
be studied.
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