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A robust computational technique formodel order reduction (MOR) ofmulti-time-scale discrete systems (single input single output
(SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of
multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The
new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining
the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by
obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the
elements of 𝐵, 𝐶, and 𝐷 matrices. The GA computational procedure is based on maximizing the fitness function corresponding
to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is
compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new
approach.

1. Introduction

Model order reduction (MOR) of multi-time-scale systems
has been an important subject area in control engineering
for many years [1, 2]. In many industrial control systems,
simple controllers are preferable. However, derivation of the
mathematical model often leads to detailed description of
a complex model in the form of high order differential
equations [2]. Due to this point of view along with other
different design objectives, model order reduction has been
an active research area in the control society since the 1960s
where a large number of model order reduction methods
have been introduced in literature for single input single
output (SISO) as well as MIMO type systems. The reduction
operation is to search for the possibility of finding some lower
order equations of the same type that may be considered to
adequately reflect the dominant characteristics of the original
system. The objective of simplification is to obtain a low
order model of the existing high order model such that
both are equivalent in terms of system response and being

close to each other in some physical representation means.
Model reduction problems have attracted much attention in
recent years; for example, the model reduction problem has
been investigated using artificial neural networks [3], genetic
algorithms [4], and invasive weed optimization [5]. It was
also used in nonlinear systems [6], gain scheduling [7], linear
time-varying systems [8, 9], and linear parameter-varying
systems [10].

To obtain a model of lower order, a significant number of
methods have been proposed in recent and earlier years, some
for continuous time systems [3–5] and some for discrete-
time systems [1, 11–15]. Some methods, such as model
order reduction by matching Markov parameters [16], were
introduced to ensure stability of the reduced order model. A
popular technique for obtaining reduced order models is the
Krylov subspace [17]; however, stability of the reducedmodel
is not guaranteed. Another important group of reduction
algorithm is the eigenvalue preservation technique [3–5, 11]
where important eigenvalues of the system are retained to
find suitable lower order models.
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A numerous number of MOR methods are available for
continuous systems, but very few have been devoted to the
discrete-time systems MOR. The discrete-time system MOR
may be performed in two different ways. The first one is
performed based on transforming a continuous time model
into another form using different types of transformation
as seen in [6, 18]. In this group of MOR, the reduction
process is completely performed in the continuous time
form. The discrete reduced order model is then obtained by
the corresponding inverse transformation of the continuous
time reduced model. The second method for obtaining a
discrete reduced order model, which is known as a direct
method [14], is deriving the discrete reduced order model
directly without using any type of transformation. Some of
these methods perform the MOR using canonical expansion
of 𝑧-transfer function and stable optimal methods [13, 19],
power decomposition and system identification [20], and
multipoint step response matching [21]. New optimization
techniques, particle swarm optimization [22], and artificial
neural networks [11] have also been introduced for MOR of
discrete-time systems.

GA-based MOR, on the other hand, has received some
of the researchers’ attention as well. Recently, Ponda et al.
[23] employed a particular swarm optimization technique
to obtain a reduced order model of SISO large scale linear
systems. Their technique is based on the integral square
error (ISE). Vishwakarma and Prasad [24] proposed a mixed
method for reducing the order of large-scale linear systems.
They have synthesized the denominator of the reduced order
transfer function using modified pole clustering while the
coefficients of the numerator elements are computed using
GA. Parmar et al. [25] presented a technique for model order
reduction using GA for SISO linear time systems. They have
focused on obtaining a reduced order model that maintains
stability and retains the steady state value. In spite of the
methods available in literature, each method has advantages
and disadvantages when tried on a particular system. In
addition to that, no approach always gives the best results
for all systems. It is important to mention that GAs have also
been used for model system identification, where order and
parameters are set to be determined, as we have investigated
in [26, 27]. In this paper, however, and as motivated by the
singular perturbationmethod which has the characterization
of multi-time-scale systems, the GA procedure is performed
with the advantages of retaining the exact dominant dynam-
ics in the designed model, obtaining a new robust model
with a lower order, and maintaining a minimum steady state
response error.

The work in this paper is organized as follows: Section 2
presents problem formulation of the discrete full and reduced
order models. In Section 3, the genetic algorithm approach
for MOR of multi-time-scale discrete systems is presented.
Illustrative examples utilizing the new approach along with
simulation comparative results of different MOR techniques
are presented in Section 4. Section 5 presents an overall
conclusion of the proposed MOR method.

2. Problem Formulation

In this paper, MOR is investigated for discrete LTI systems
of both SISO and MIMO type models. For SISO systems,
a transfer function model is used, while the state space
representation is used for MIMO systems.

For the SISO systems, consider the discrete-time system
described by

𝑦 (𝑘) + 𝑎
1
𝑦 (𝑘 − 1) + 𝑎

2
𝑦 (𝑘 − 2) + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑦 (𝑘 − 𝑛)

= 𝑏
0
𝑢 (𝑘) + 𝑏

1
𝑢 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝑏

𝑛
𝑢 (𝑘 − 𝑛) ,

(1)

where 𝑢(𝑘) is the input and 𝑦(𝑘) is the output of the system
at the 𝑘th sampling instant. Equation (1) can be written in the
form of a pulse transfer function as

𝐺 (𝑧) =
𝑌 (𝑧)

𝑈 (𝑧)
=
𝑏
0
𝑧
𝑛
+ 𝑏
1
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𝑛

(2)

with 𝑛 ≤ 𝑛. The characteristic polynomial contains the
system dominant and nondominant poles (distinct, repeated,
or complex) where their number, 𝑛, is referred to as themodel
order. The corresponding desired reduced 𝑟th order model is
given by

𝐺
𝑟
(𝑧) =

𝑌 (𝑧)

𝑈 (𝑧)
=
𝑏
0
𝑧
𝑟
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𝑟

𝑧𝑟 + 𝑎
1
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𝑟

, (3)

where some of the coefficients 𝑎
𝑖
(𝑖 = 1, 2, . . . , 𝑟) and

𝑏
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑟) may be zeros as long as 𝑟 ≤ 𝑟. For the

MIMO systems, consider the following 𝑛th order discrete-
time system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (4)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) , (5)

where 𝑘 is the time index, 𝑥 ∈ R𝑛 is the state vector, 𝑢 ∈ R𝑝

and 𝑦 ∈ R𝑚 are the input and output vectors, respectively,
and 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝, 𝐶 ∈ R𝑚×𝑛, 𝐷 ∈ R𝑚×𝑝 are
matrices of appropriate dimensions with 𝑛, 𝑝, and 𝑚 being
the system order, number of inputs, and number of outputs,
respectively. The corresponding desired reduced 𝑟th order
model is obtained as follows:

𝑥
𝑟
(𝑘 + 1) = 𝐴

𝑟
𝑥
𝑟
(𝑘) + 𝐵

𝑟
𝑢 (𝑘) , (6)

𝑦
𝑟
(𝑘) = 𝐶

𝑟
𝑥
𝑟
(𝑘) + 𝐷

𝑟
𝑢 (𝑘) , (7)

where 𝑥
𝑟
(𝑘) is 𝑟-state vector, 𝑦

𝑟
(𝑘) is the reduced ordermodel

output, and 𝐴
𝑟
, 𝐵
𝑟
, 𝐶
𝑟
, and 𝐷

𝑟
are matrices with appropriate

dimensions.

3. Genetic Algorithms with MOR

GAs are based on principles inspired from the genetic and
evolution mechanisms observed in natural systems. Their
basic principle is themaintenance of a population of solutions
to the problem that evolves in time.They are based on the tri-
angle of genetic reproduction, evaluation, and selection [12].
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Genetic reproduction is performed by means of two basic
genetic operators: crossover and mutation. Evaluation is
performed by means of the fitness function that depends
on the specific problem. Selection is the mechanism that
selects parent individuals with probability proportional to
their relative fitness.

In this paper, using the computational intelligence of GA,
we will obtain the reduced order model based on only the
dominant dynamics of the system. For dynamic decoupling,
the GA will set the reduced order model state matrix 𝐴

𝑟
in

the modal form where all of the selected eigenvalues (system
dynamics), real and/or complex, are placed on the diagonal.
Thus, the reduced order model state matrix 𝐴

𝑟
, in (6), is

designed to have the following decoupling format:

𝐴
𝑟
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆
1
𝑎
12
𝑎
13
𝑎
14

⋅ ⋅ ⋅ 𝑎
1𝑟

0 𝜆
2
𝑎
23
𝑎
24

⋅ ⋅ ⋅

d d
.
.
.

⋅ 0 𝜆
𝑏

.

.

.

⋅ 0 𝜎
1
𝛼
1

⋅ 0 −𝛼
1
𝜎
1

0 0 d 𝑎
(𝑟−2)𝑟

0 𝜎
𝑝

𝛼
𝑝

0 ⋅ ⋅ ⋅ 0 −𝛼
𝑝

𝜎
𝑝

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (8)

where the original system dominant poles (real and/or com-
plex) are preserved in the diagonal, seen as 𝜆

𝑖
, 𝑖 = 1, 2, . . . , 𝑏

(real) and 𝜎
𝑖
± 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑝 (complex). Notice that, for

this reduced order model, 𝑟 = (𝑏 + 2𝑝) < 𝑛. To insure that
the dominant poles are preserved in the reduced order model
and for further order reduction, the following condition is
satisfied:

𝜆dominant :=|
󵄨󵄨󵄨󵄨𝜆1
󵄨󵄨󵄨󵄨 >
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󵄨󵄨󵄨󵄨𝜎1 ± 𝛼1
󵄨󵄨󵄨󵄨 >

󵄨󵄨󵄨󵄨𝜎2 ± 𝛼2
󵄨󵄨󵄨󵄨 > ⋅ ⋅ ⋅ >

󵄨󵄨󵄨󵄨󵄨
𝜎
𝑝
± 𝛼
𝑝

󵄨󵄨󵄨󵄨󵄨
.

(9)

Take into account that if |𝜆
𝑖
| < |𝜎

𝑖
± 𝛼
𝑖
|, then (9) is to be

redefined accordingly if necessary. For simplicity, the modal
form is chosen, which implies that all elements seen in (8) as
𝑎
𝑖𝑗
(𝑖 and 𝑗 = 1, . . . , 𝑟) are set to zero.
The GA will determine the parameters of the 𝐵

𝑟
and 𝐶

𝑟

(and𝐷
𝑟
if necessary) in (6) and (7). Hence, the total number

of elements that the GA will need to find is given by

𝑛
𝑝
= 𝑛
𝑟
⋅ 𝑚 + 𝑝 ⋅ 𝑛

𝑟
. (10)

It is to be noted that all of the parameters that the
GA will have to find are restricted to be real values. Now,
based on the number of unknown parameters (𝑛

𝑝
), the GA

creates a population of individuals, where each parameter
is basically an individual in this population. The population
consists of different “sets” of solutions. Each solution set is
called a chromosome, which contains 𝑛

𝑝
individuals. Given

a population size (𝑛pop), a matrix consisting of 𝑛pop rows is

p1 p2 p3

a1 a2 a3 a4 a5 a6 a7 a8 a9

Figure 1: A set of individuals in a GA chromosome.

formed with each row containing one set of solutions for the
unknown parameter values. This would result in a matrix
containing 𝑛pop × 𝑛𝑝 elements. Each element in this matrix
contains a value pertaining to one unknown parameter,
where each row presents one set of solutions.

The genetic algorithm used in this work will operate as
follows.

3.1. Initialization. An initial population comprising𝑁
𝑝
indi-

viduals is randomly generated. The GA type used in this
paper is a binary genetic algorithm, where each value in the
solution set consists of a number of bits (genes). The number
of bits used to encode each numerical value depends on
three variables, lower parameter bound (𝑝

𝑙
), upper parameter

bound (𝑝
𝑢
), and accuracy (𝜙). Hence, the number of bits used

is defined as follows [30]:

𝑛bits =
log
10
((𝑝
𝑢
− 𝑝
𝑙
) /𝜙)

log
10
(2)

. (11)

Given that each parameter value will consist of 𝑛bits number
of bits, each solution set will consist of 𝑛

𝑏,𝑡
= 𝑛
𝑝
⋅ 𝑛bits bits.

This represents one row of the entire 𝑛pop × 𝑛𝑏,𝑡 matrix.
The GA starts by randomly initializing a binary matrix

with 𝑛pop rows and 𝑛𝑏,𝑡 columns. Each row (set of solutions)
is made up of multiple values decoded into binary and
placed next to each other as illustrated in Figure 1 for one
chromosome.This chromosome consists of three parameters
(individuals) with each individual being made of three genes.
These genes (bits) can be later decoded back into decimal
values, which in return provide the desired parameters’
values.

The initial populationmatrix consists of randomnumbers
within the lower and the upper bounds of the parameters.
The population will be split into rows (chromosomes), each
constituting one solution set. These solution sets are each
taken to have their fitness evaluated, as seen next.

3.2. Evaluation. Thefitness, a nonnegativemeasure of quality,
is used as a measure to reflect the degree of goodness of
the individual and is calculated for each individual in the
population. This measure of quality is calculated based on
minimizing the following related cost function:

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑦
𝑟
(𝑘) (12)

which is the deviation between the full and reduced order
models’ responses given in (5) and (7). The fitness for each
chromosome (solution set) is then evaluated as follows [31]:

Fitness = 1

1 +MSE
× 100%, (13)

where

MSE = 1

𝑁

𝑁

∑

𝑖=1

[𝑦 (𝑖) − 𝑦
𝑟
(𝑖)]
2

, (14)
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Crossover point 1 Crossover point 2

Chromosome a
Chromosome b
Result of crossover:

Chromosome a

Chromosome b

a1

a1

a2

a2

a3 a4 a5

a3 a4 a5

a6 a7 a8

a6 a7 a8

b1 b2

b1 b2

b3

b3

b4

b4

b5

b5

b6 b7 b8

b6 b7 b8

Figure 2: Chromosomes random crossover operation.

where MSE is the mean-square-error and𝑁 is the number of
elements in the output vector(s).The higher this fitness is, the
closer the reduced model is to mimic the original model.

3.3. Selection. In the selection process, chromosomes are
chosen from the current population to enter a mating pool
devoted to the creation of new children (offspring) for the
next generation. The chance of a given individual to be
selected to mate is proportional to its relative fitness That
is, the larger the fitness value of a chromosome, the higher
the probability of the chromosome to contribute one or more
children in the next generation. First, the population fitness
and associated chromosomes are ranked from highest fitness
to lowest fitness. Then, only the best are selected to continue,
while the rest are left. The selection rate (𝑋

𝑟
) is a rank based

ratio, which is the percentage of the best rank individual that
should move to the mating pool where pairs of the mating
pool are selected for crossover process. Deciding how many
chromosomes to keep is somewhat arbitrary. Letting only a
few chromosomes survive to the next generation limits the
available genes in the offspring (children). Keeping too many
chromosomes gives bad performers a chance to contribute
their traits to the next generation. In the proposed algorithm,
an initial selection rate 𝑋

𝑟
= 0.60 was used and the top 60%

fitness chromosomes were placed in a mating pool.
There are several methods for choosing the chromosome

pairs to be mated from the mating pool. In the proposed
algorithm, randompairing was chosen, which uses a uniform
random number generator to select chromosomes that enter
the mating pool from kept chromosomes. The algorithm
randomly chooses chromosomes from the mating pool for
mating, while making sure that all pairs are unique. After
the chromosome pairs are chosen, the next operation will be
crossover.

3.4. Crossover. Crossover provides the means by which valu-
able information is shared among the population. In the
crossover operation, a pair of chromosomes is mated to
produce two offspring in the process that inherit genes from
their parents. To perform crossover, the chromosomes need
to be in their gene format (i.e., binary representation). The
two parent chromosomes are crossed over at random points
to segment each chromosome into a number of parts. These
parts of each chromosome pair are swapped between each
other to produce two new chromosomes, the offspring. This
is shown in Figure 2.

Crossover is not applied to all pairs of chromosomes
selected for mating. For every parent chromosome pair,

a crossover rate decides whether or not crossover occurs.
If crossover is not applied, children are produced simply
by duplicating the parents. This gives each chromosome a
chance of passing on its genes without the disruption of
crossover. In the proposed algorithm, the crossover rate is set
to 0.80, meaning that 80% of parent pairs produce offspring.
The number of crossover points for the parent chromosomes
is chosen as a random integer for each generation. As a
crossover result, a new children populationwill be performed
with the same size as the parent population.

3.5. Mutation. Mutation is often introduced to guard against
premature convergence. Generally, over a period of several
generations, the gene pool tends to become more and more
homogeneous. Therefore, further mutation is introduced to
the offspring to guarantee that the offspring will have new
qualities while retaining a similar overall structure. Mutation
is applied to each child individually after crossover, where
it randomly flips any bit (gene) with a small mutation
probability (between 0.1 and 0.001). Mutation provides a
small amount of random search to guard against premature
convergence. In the proposedmethodology, themutation rate
is set to 0.0125.

3.6. Replacement. Replacement operation takes place once
the crossover of all parent chromosome pairs is performed.
The parent population is totally or partially replaced by the
children population depending on the replacement scheme
used. This completes the life cycle of the population. At this
stage, the population is ready to enter the next generation
and undergo a new round genetic operation. The decision in
which offspring replaceswhich population individual ismade
based on the fitness evaluation. Fitness is evaluated for all the
resulting offspring as well as for all of the original population
individuals and a replacement factor decides how many of
the offspring with the highest fitness values are to replace
the main population individuals. In the proposed approach,
a replacement factor of 0.70 is used. This process continues
until reaching the end of the population size or best desired
fitness.

3.7. Termination. The GA is terminated when some con-
vergence criterion is met. The termination condition could
be considered as specified fitness value, reaching maximum
number of generations, or a set progress limit. As one
generation has gone by, depending on the genetic algorithm’s
termination condition, the algorithm could stop any time and
identifies the chromosome with the highest fitness value as
the optimal solution set. On the other hand, it may repeat
the entire process from the selection procedure to continue
another generation of the genetic algorithm.The termination
condition for the proposed algorithm is reaching a fitness
value of 99.999% and an average fitness value of at least 99.9%
in the entire population set. When the algorithm terminates,
the highest fitness chromosome is distributed across the 𝐵

𝑟
,

𝐶
𝑟
, and𝐷

𝑟
matrices to produce the reduced order model.
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4. Illustrative Examples

In this section, we consider a few discrete system examples,
which have been investigated by different researchers in
recent years. The examples are given as SISO and MIMO
linear time invariant systems. Results of investigations are
compared with the existing ones to show the potential of the
new approach.

Example 1. As a first example, we consider the following 7th
order SISO system investigated by Telescu et al. [32] given as

𝐺 (𝑧) = (2.0434𝑧
7
− 4.98255𝑧

6
+ 6.57𝑧

5
− 5.8189𝑧

4

+ 3.636𝑧
3
− 0.00088𝑧

2
− 1.4105𝑧 + 0.2997)

⋅ (𝑧
7
− 2.46

6
+ 3.433𝑧

5
− 3.333𝑧

4

+ 2.546𝑧
3
− 1.584𝑧

2
+ 0.7478𝑧 − 0.252)

−1

(15)

with system dynamics (poles): [0.8913, 0.6843 ± 0.5820𝑖,
0.2988 ± 0.7574𝑖, −0.1987 ± 0.6993𝑖]. Telescu et al. [32]
used the Laguerre functions for their proposed method and
obtained a 5th order reduced model:

𝐺
𝑟
(𝑧)

=
2.043𝑧

5
− 3.057𝑧

4
+ 2.195𝑧

3
− 1.545𝑧

2
+ 0.8617𝑧

𝑧5 − 1.518𝑧4 + 1.270𝑧3 − 1.032𝑧2 + 0.7539𝑧 − 0.3156

(16)

with poles given as [0.8320, −0.2318 ± 0.7612𝑖, 0.5748 ±
0.5183𝑖], which are unrelated to the original system dynam-
ics. On the other hand, our first advantage of the proposed
technique is that a lower dimension (3rd order) than the
Telescu reduced model was obtained:

𝐺
𝑟
(𝑧) =

1.51511𝑧
3
− 3.12377𝑧

2
+ 2.40413𝑧 − 0.63117

𝑧3 − 2.2598𝑧2 + 2.0266𝑧 − 0.71915

(17)

with poles given as [0.8913, 0.6843 ± 0.5820𝑖], which are
exactly the dominant dynamics of the full order system as
seen above, and this is our second advantage. The result was
obtained for a population of 1000 and 300 generations with a
fitness of 99.992. To investigate the system behavior, the full
and reduced order models were excited by an impulse input
(as performed by Telescu) with results of simulation shown
in Figure 3, which shows our third advantage as the propose
3rd order reduced model response converges in about one
second, which is much faster than the Telescu’s response.

Our fourth advantage is clearly seen when simulating the
full and reduced models to a step input. As seen in Figure 4,
Telescu et al. [32] 5th ordermodel has a huge steady state error
while the proposed 3rd ordermodel’s error can barely be seen
at the steady statewhich shows the robustness of the proposed
method.
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Figure 3: Impulse responses for the full and reduced order models.
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Figure 4: Step responses for the full and reduced order models.

Example 2. In this example, we consider the following 8th
order SISO system investigated by Yadav et al. [29]:

𝐺 (𝑧) = (0.1625𝑧
7
+ 0.125𝑧

6
− 0.0025𝑧

5
+ 0.00525𝑧

4

− 0.02263𝑧
3
− 0.00088𝑧

2
+ 0.003𝑧 − 0.000413)

⋅ (𝑧
8
− 0.6307𝑧

7
− 0.4185𝑧

6
+ 0.078𝑧

5
− 0.057𝑧

4

+ 0.1935𝑧
3
+ 0.09825𝑧

2
− 0.0165𝑧 + 0.00225)

−1

(18)
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Table 1: Model order reduction method comparison.

System Dominant dynamics

Original 8th order
0.8797 ± 0.2442𝑖, −0.5875 ± 0.0959𝑖
0.0773 ± 0.1078𝑖, −0.0542 ± 0.6558𝑖

Proposed 2nd order 0.8797 ± 0.2442𝑖
Artificial bee colony [24]
2nd order

0.8778 ± 0.2432𝑖

Differential evolution
[28] 2nd order

0.8768 ± 0.2484𝑖

Genetic algorithm [29]
2nd order

0.8854 ± 0.2398𝑖
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Figure 5: Step responses for the 8th and reduced 2nd order models.

with system dynamics: [0.8797 ± 0.2442𝑖, −0.0542 ± 0.6558𝑖,
−0.5875 ± 0.0959𝑖, 0.0773 ± 0.1078𝑖]. Using the proposed
method, the dominant dynamics [0.8797 ± 0.2442𝑖] are
preserved in the reduced order model which is given by

𝐺
𝑟
(𝑧) =

0.021129𝑧
2
+ 0.12259𝑧 − 0.063666

𝑧2 − 1.7594𝑧 + 0.83347
. (19)

For result evaluation, the proposed reduced order model was
compared with recent research for MOR, that is, artificial bee
colony [28], differential evolution optimization algorithm,
and real coded genetic algorithm [33]. Hence, we first
compare for dominant dynamics of the reduced ordermodels
with results obtained as in Table 1. As can be seen, the
proposed method provides the dominant dynamics of the
full order model retained exactly in the reduced order, while
in the other methods, the reduced order dynamics are close
to the full order model, but not as close as our proposed
method’s results.

As a second comparison, the full and reduced order
models were simulated for a step input with results as seen
in Figure 5. Observing the results in Figure 5, we can see that

0 1 2 3 4 5 6 7 8 9 10
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Proposed MORGA MOR
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−0.02

−0.01

Figure 6: Error comparison of the reduced order models with the
full order.

the 2nd order reducedmodel of all methods seems to be close
to the original full order model. However, when we take a
closer look, we see the differences very clearly as present in
Figure 6. In this figure, it is seen that the proposed approach
provides the least error among all. The error is seen a little
at the beginning and then, at about one second, the error
becomes very close to zero.

Example 3. In this example, we consider the 5th orderMIMO
discrete system investigated by Li [2] as given by the following
state space model:

𝑥 (𝑘 + 1)

=

[
[
[
[
[
[
[

[

0.5034 0.1768 −0.2340 −0.1406 0.5814

0.0096 0.5498 −0.0362 −0.6744 2.2496

0.0337 0.2546 0.0984 −0.4051 1.3599

−0.2709 0.1470 0.3249 0.0484 0.6356

−0.0909 0.0491 0.1075 −0.1019 0.5681

]
]
]
]
]
]
]

]

𝑥 (𝑘)

+

[
[
[
[
[
[
[
[

[

0.3306 0.1700

0.8951 0.3442

0.5487 0.2143

0.8748 0.8821

0.5217 0.4479

]
]
]
]
]
]
]
]

]

𝑢 (𝑘) ,

𝑦 (𝑘)

= [

3.0622 −0.9986 −0.7126 6.4339 −10.4291

3.0396 −0.9913 −0.7073 5.2369 −8.4887
] 𝑥 (𝑘)

+ [

0 0

0 0
] 𝑢 (𝑘) .

(20)
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This system is given with the dynamics [0.5614, 0.5008,
0.3389, 0.2295, 0.1375]. Li performed the Coprime Factor
MOR and obtained the following 4th order reduced model:

𝑥
𝑟
(𝑘 + 1) =

[
[
[
[
[

[

0.3830 0.0865 −0.3771 0.7548

−0.1633 0.6255 −0.0157 0.1556

−0.6731 0.5150 0.3777 −0.2194

−0.3692 0.2832 0.0094 0.2388

]
]
]
]
]

]

𝑥
𝑟
(𝑘)

+

[
[
[
[
[

[

1.0572 0.0349

−0.2642 −0.5105

−0.6643 −1.5790

0.9864 0.0412

]
]
]
]
]

]

𝑢 (𝑘) ,

𝑦 (𝑘) = [

−0.2745 −0.0669 −0.6423 −0.2425

−0.2725 −0.0664 −0.5228 −0.1973
] 𝑥
𝑟
(𝑘)

+ [

0 0

0 0
] 𝑢 (𝑘)

(21)

with poles [0.5567, 0.5004, 0.3385, 0.2294], which are close
to the full order model, but not the exact values. Using the
proposed approach, the following 4th order reduced model
was obtained:

𝑥
𝑟
(𝑘 + 1) =

[
[
[
[
[

[

0.5614 0 0 0

0 0.5008 0 0

0 0 0.3389 0

0 0 0 0.2295

]
]
]
]
]

]

𝑥
𝑟
(𝑘)

+

[
[
[
[
[

[

0.4285 0.2628

0.4157 0.2551

0.3405 0.2348

0.3111 0.2671

]
]
]
]
]

]

𝑢 (𝑘) ,

𝑦 (𝑘) = [

29.7314 −20.0311 −37.9382 27.0723

26.5158 −20.4912 −28.5003 21.6793
] 𝑥
𝑟
(𝑘)

+ 10
−3
[

0.0061 −0.1580

0.0046 −0.1191
] 𝑢 (𝑘)

(22)

with poles [0.5614, 0.5008, 0.3389, 0.2295], which are the
exact dominant dynamics of the original model. Hence, the
superiority of the proposed method is clearly seen. Next,
we investigate for quality performance of the new method
compared with the Li approached reduced order model.
Simulating the full and reduced order models for a mixed
type signal, the two system output responses are presented in
Figure 7. As seen in this figure, the two reduced order models
seem to perform with same quality. Therefore, in order to
observe the differences between the proposed and existed
methods, we present the response accuracy error, as seen in
Figures 8 and 9 for the two output responses.
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Figure 7: Full and reduced order model’s responses for mixed input
signals.
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Figure 8: Error of the reduced order models for the system first
output response.

In Figures 8 and 9, notice that theCoprimeFactormethod
response errors are much far from zero when compared with
the proposed method response errors. The response errors
of the proposed GA approach can barely be seen as they
are almost zeros, which clearly shows the superiority of the
proposed approach.

As seen in the three previous examples, the advantages
of the new approach are present in all three of them. That is,
the reduction process provides new reduced order models,
maintains the exact dominant dynamics of the originalmodel
in the reduced order model, and provides reduced order
models with the least response errors as compared with
other methods. In addition to that, an advantage that the
new approach is applicable to SISO and MIMO discrete type
systems.
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Figure 9: Error of the reduced order models for the system second
output response.

5. Conclusion

In this paper, a robust computational intelligence approach is
proposed using GA for MOR of discrete MIMO type systems
with the advantage of dominant dynamic preservation. The
reduction process is performed based on transforming the
system state matrix (in a state space model) while decou-
pling the multi-time-scale dynamics.The dominant dynamic
preservation is performed by retaining the dominant poles of
the original system as a subset in the reduced order model
utilizing the transformed system state matrix. Once the
reduced order model state matrix is designed, the GA MOR
new technique will search for the 𝐵, 𝐶, and𝐷matrices of the
reduced order model. Different examples are presented with
a comparison of recently published work, such as differential
evolution, artificial bee colony, and the Coprime FactorMOR
methods. Comparison results show the robustness of the
proposed method, as it outperforms such techniques, which
points out the potential of the new approach.
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