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Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear
norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and
thus the rank may not be well approximated in practical problems. In this paper, we propose using a log-determinant (LogDet)
function as a smooth and closer, though nonconvex, approximation to rank for obtaining a low-rank representation in subspace
clustering. Augmented Lagrange multipliers strategy is applied to iteratively optimize the LogDet-based nonconvex objective
function on potentially large-scale data. By making use of the angular information of principal directions of the resultant low-
rank representation, an affinity graph matrix is constructed for spectral clustering. Experimental results on motion segmentation
and face clustering data demonstrate that the proposed method often outperforms state-of-the-art subspace clustering algorithms.

1. Introduction

Matrix rank minimizing [1] is ubiquitous in machine learn-
ing, computer vision, control, signal processing, and system
identification. For instance, low-rank representation based
subspace clustering [2–4] and matrix completion [5, 6]
methods have achieved great success recently. Subspace
clustering [7] is one of the fundamental topics with numerous
applications, for example, image representation [8, 9], face
clustering [3, 10], and motion segmentation [11, 12]. It is
assumed that high-dimensional data is more likely a union
of low-dimensional subspaces rather than one individual
subspace. For example, different subspaces are needed to
describe trajectories of different moving objects in a video
sequence. Subspace clustering is an intrinsically difficult
problem, since we need to simultaneously cluster all data
points into multiple groups and find a low-dimensional
subspace fitting each group of points.

Subspace clustering has been an active research topic
over the past decades. Four main categories of methods are
proposed [10]: iterative, algebraic, statistical, and spectral
clustering-basedmethods.The first three kinds of approaches
are sensitive to initialization, noise, and outliers; in addition,

they are difficult to optimize [10]. Spectral clustering-based
methods have achieved promising performance, where the
key is to learn a good affinity matrix of data points. For
instance, the algorithms of local subspace affinity (LSA) [13],
locally linear manifold clustering (LLMC) [14], and spectral
local best-fit flats (SLBF) [15] use local information around
each point to construct the affinity matrix, while spectral
curvature clustering (SCC) [16] method preserves the global
structures of the whole dataset in deriving the affinity matrix.
Subsequently, 𝐾-means [17] or Normalized Cuts (NCuts)
[18, 19] are applied to the affinity matrix to obtain clustering
results.

Recently, some spectral clustering-based methods, such
as sparse representation (SSC) [10] and low-rank represen-
tation (LRR) [3], have been proposed to obtain state-of-the-
art results in subspace clustering. SSC represents each data
point as a sparse linear combination of the other points
and solves an 𝑙1-norm regularized minimization problem for
sparsity. SSC shows promising results if the subspaces are
either independent or disjoint [20].

Thebasic idea of LRR is to learn a low-rank representation
of data by capturing the global Euclidean structure of the
whole data. In this scheme, each data point is represented
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as a linear combination of the examples in the data matrix
itself, and a convex nuclear norm minimization is used as
a surrogate of the rank function to obtain the desired low-
rank representation. Though its optimization is well studied
and has a global optimum, its performance may be far from
optimal in real applications because the nuclear norm might
not be a good approximation to the rank function. Compared
to the rank function towhich all nonzero singular values have
equal contributions, the nuclear norm treats those values
differently by simply adding them together. As a result, the
nuclear norm may be dominated by a few very large singular
values and significantly deviated from the true value of the
rank. Several papers have considered this problem of using
the nuclear norm and designed methods to alleviate it by
either thresholding or removing some of the singular values;
for instance, singular value thresholding [21] and truncated
nuclear norm [6] both considerably enhance the performance
of matrix completion.

In this paper, we propose using a log-determinant
(LogDet) function for rank approximation and study its min-
imization in subspace clustering. Different from the nuclear
norm-based approaches which minimize the summation
of all singular values, our approach aims to minimize the
rank by making the contribution to be much closer to one
from a big singular value, while being zero from a small
singular value. In this way, we can get closer and more
robust approximation to the rank function than the nuclear
norm. Since the LogDet function is nonconvex, we apply
the method of augmented Lagrange multipliers (ALM) to
solve the associated optimization for potentially large-scale
applications, in which the subproblem for minimizing the
LogDet function in each iteration has a closed-form solution.
To demonstrate the effectiveness of our LogDetminimization
method, we apply it to subspace clustering. By employing
a rather simple formulation based on the LogDet function,
we obtain a low-rank representation for subspace clustering.
Subsequently, we exploit the angular information of principal
directions of such a representation to further enhance the
separation ability of the affinitymatrix. In summary, ourmain
contributions of this work include the following.

(i) More accurate and robust rank approximation is used
to obtain the low-rank representation, which is able to
capture the global structure of the dataset.

(ii) An iterative optimization algorithm is designed for
minimizing this rank approximation-based objective
function. Theoretical analysis shows that our algo-
rithm converges to a stationary point. Specifically, the
proposed optimizationmethod is applied to subspace
clustering.

(iii) Angular information of principal directions of the
low-rank representation is employed to further
exploit the intrinsic local geometrical structure rele-
vant to the membership of data points.

(iv) Extensive experiments demonstrate the effectiveness
of the proposed LogDet minimization method for

rank approximation. Particularly, when used for sub-
space clustering, our simple formulation shows favor-
able performance compared to other state-of-the-
art methods, although we do not explicitly account
for outliers in our model. This demonstrates the
robustness of our approach.

The remainder of the paper is organized as follows: Section 2
provides a brief review of LRR and SSC. In Section 3, we
present the proposed approximation and design an effi-
cient optimization scheme. We give convergence analysis
in Section 4. Experimental results are shown in Section 5.
Finally, conclusions are drawn in Section 6.

2. Review of LRR and SCC

In this section, we give a brief review of SSC and LRR.
Let𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ R𝑑×𝑛 be a set of 𝑑-dimensional

data points drawn from an unknown union of 𝑘 linear
subspaces 𝑆1, 𝑆2, . . . , 𝑆𝑘. The task of subspace clustering is to
segment data points into 𝑘 subspaces.

LRR tries to seek the lowest rank representation among
many possible linear combinations of the bases in a given
dictionary, which typically is the data matrix itself. The
problem can be formulated as

min
𝑍

rank (𝑍)

s.t. 𝑋 = 𝑋𝑍,

(1)

where 𝑍 = [𝑧1, 𝑧2, . . . , 𝑧𝑛] is the coefficient matrix with each
𝑧
𝑖
being the representation of 𝑥

𝑖
. The above problem is NP-

hard due to the combinatorial nature of the rank function.
The tightest convex relaxation of the rank function [22] is

the nuclear norm. For a matrix 𝐷 ∈ R𝑚×𝑛, its nuclear norm
is defined as ‖𝐷‖

∗
= ∑

min(𝑚,𝑛)
𝑖=1 𝜎

𝑖
(𝐷), where 𝜎

𝑖
(𝐷)means the

𝑖th singular value of 𝐷. Using this relaxation, LRR solves the
following problem:

min
𝑍

‖𝑍‖
∗

s.t. 𝑋 = 𝑋𝑍.

(2)

After obtaining 𝑍, the affinity matrix𝑊 is defined as

𝑊 = |𝑍| +

𝑍
𝑇

. (3)

Then the spectral clustering algorithm,Normalized Cuts [18],
is used to produce the final segmentation.

SSC aims to find a sparse representation of 𝑋 by solving
the following convex optimization problem:

min
𝑍,𝐸,𝑆

‖𝑍‖1 +
𝛼

2
‖𝐸‖

2
𝐹
+ 𝛾 ‖𝑆‖1 ,

s.t. 𝑋 = 𝑋𝑍+𝐸+ 𝑆, diag (𝑍) = 0,
(4)

where ‖𝑆‖1 = ∑𝑖𝑗 |𝑆𝑖𝑗|, 𝑆 is a sparsematrix containing the gross
error, ‖𝐸‖2

𝐹
= ∑
𝑖
∑
𝑗
𝐸
2
𝑖𝑗
, and 𝐸 is a matrix of fitting residuals.

After obtaining𝑍, subsequent procedures are similar to LRR.
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3. LogDet Rank Approximation and Its
Minimization Algorithm

A function 𝑓 : R𝑛 → [−∞,∞] is absolutely symmetric
if 𝑓(𝑥) is invariant under arbitrary permutations and sign
changes of the elements of 𝑥. Based on this function 𝑓(𝑥),
we have the following theorem [23].

Theorem 1. Function 𝐹 : R𝑛1×𝑛2 → R is unitarily invariant
if 𝐹(𝑋) = 𝑓(𝜎(𝑋)) = 𝑓 ∘ 𝜎(𝑋), where 𝑋 ∈ R𝑛1×𝑛2 , whose
singular value decomposition is 𝑋 = 𝑈 diag({𝜎

𝑖
}1≤𝑖≤𝑛)𝑉

𝑇,
𝜎(𝑋) : R𝑛1×𝑛2 → R𝑛 are singular values of 𝑋, and 𝑛 =

min(𝑛1, 𝑛2). And the gradient of 𝐹(𝑋) at𝑋 is

𝜕𝐹 (𝑋)

𝜕𝑋
= 𝑈 diag (𝜃) 𝑉𝑇, (5)

where 𝜃 = 𝜕𝑓(𝑦)/𝜕𝑦|
𝑦=𝜎(𝑋)

.

Equation (5) can be obtained directly from Theorem 3.1
of [23].

In this work, we utilize unitarily invariant function
LogDet to achieve a closer, though not convex, rank relax-
ation than the nuclear norm. We apply the method of ALM
for LogDet rank approximation associated minimization. To
explain our method, we specifically consider using LogDet
as a rank surrogate in subspace clustering. We first obtain a
low-rank representation of high-dimensional data based on
the LogDet optimization.Thenwe construct an affinity graph
matrix for spectral clustering by using the angular informa-
tion of principal directions of the low-rank representation.

3.1. LogDet Rank Minimization. We use LogDet(𝐼 + 𝑍
𝑇

𝑍)

as a surrogate of the rank function of 𝑍. It is obvious that
LogDet(𝐼 + 𝑍

𝑇

𝑍) = ∑
𝑛

𝑖=1 log(1 + 𝜎
2
𝑖
(𝑍)). Because it can be

easily verified that log(1 + 𝜎2
𝑖
(𝑍)) ≤ 𝜎

𝑖
(𝑍) for any 𝜎

𝑖
(𝑍) ≥ 0,

we always have LogDet(𝐼+𝑍𝑇𝑍) ≤ ‖𝑍‖
∗
; particularly, if there

are large nonzero singular values, the LogDet function will be
much smaller than the nuclear norm since log(1 + 𝜎2

𝑖
(𝑍)) ≪

𝜎
𝑖
(𝑍) for a large 𝜎

𝑖
(𝑍) > 1. It is noted that, for small nonzero

singular values, their contribution to the LogDet function
will be significantly reduced compared to the nuclear norm.
Because small nonzero singular values are often regarded as
being from noise in the data, the LogDet function reduces
noise effect more compared to the nuclear norm.

It is worthwhile to note that a similar function
LogDet(𝑋 + 𝛿𝐼) was proposed in [24] to approximate
rank and iterative linearization was used to find a local
minimum. However, 𝛿 is a very small constant (e.g., 10−6),
which leads to biased approximation for small singular
values.

This LogDet function is differentiable with respect to
the singular values by Theorem 1, and even though it is
nonconvex, its minimization is rather simple by using
our optimization method. To explain its minimization, we
consider its specific application to subspace clustering. By
employing the above LogDet function, we simply formulate

the subspace clustering into the following unconstrained
nonconvex minimization problem:

min
𝑍

LogDet (𝐼 +𝑍𝑇𝑍)+𝜌 ‖𝑋−𝑋𝑍‖
2
𝐹
, (6)

where 𝐼 ∈ R𝑛×𝑛 is the identity matrix. The first term of (6)
is to minimize the rank of 𝑍, while the second is a relaxation
of 𝑋 = 𝑋𝑍, which is referred to as the self-expressiveness
of 𝑋 with 𝑍 representing the similarity between data points.
Because the LogDet function is not convex in 𝑍, we resort to
ALM technique to solve (6), by rewriting (6) as follows:

min
𝑍

LogDet (𝐼 +𝑍𝑇𝑍)+𝜌 ‖𝑋−𝑋𝑊‖
2
𝐹

s.t. 𝑍 = 𝑊.

(7)

We turn to the minimizing of the following augmented
Lagrangian function:

𝐿 (𝑌, 𝑍,𝑊, 𝛽) = LogDet (𝐼 +𝑍𝑇𝑍)+𝜌 ‖𝑋−𝑋𝑊‖
2
𝐹

+
𝛽

2
‖𝑍−𝑊‖

2
𝐹
+Tr (𝑌𝑇 (𝑍 −𝑊)) ,

(8)

where 𝛽 > 0 is a penalty parameter and 𝑌 is the Lagrangian
dual variable. With a sufficiently large 𝛽, the objective
function converges to objective function in (6). This can be
solved by updating 𝑍,𝑊, and 𝑌 alternatively while fixing the
other variables. Specifically, assume that at the 𝑘th iteration
we have obtained 𝑍

𝑘

,𝑊
𝑘, and 𝑌

𝑘; then, for the (𝑘 + 1)th
iteration, optimization problem (8) can be updated via the
following four steps.

Step 1. Compute 𝑊𝑘+1. Fix 𝑍
𝑘 and 𝑌

𝑘 and then calculate
𝑊
𝑘+1:

𝑊
𝑘+1

= argmin
𝑊

𝜌 ‖𝑋−𝑋𝑊‖
2
𝐹

+
𝛽
𝑘

2



𝑍
𝑘

−(𝑊−
1
𝛽
𝑘

𝑌
𝑘

)



2

𝐹

,

(9)

which has a closed-form solution:

𝑊
𝑘+1

= (𝛽
𝑘
𝐼 + 2𝜌𝑋𝑇𝑋)

−1
(2𝜌𝑋𝑇𝑋+𝑌

𝑘

+𝛽
𝑘
𝑍
𝑘

) . (10)

Step 2. Compute 𝑍
𝑘+1. Fix 𝑊

𝑘+1 and 𝑌
𝑘 and minimize

𝐿(𝑌
𝑘

, 𝑍,𝑊
𝑘+1

, 𝛽
𝑘
) as follows:

𝑍
𝑘+1

= argmin
𝑍

𝐿 (𝑌
𝑘

, 𝑍,𝑊
𝑘+1

, 𝛽
𝑘
)

= argmin
𝑍

LogDet (𝐼 + 𝑍𝑇𝑍)

+
𝛽
𝑘

2



𝑍−(𝑊
𝑘+1

−
1
𝛽
𝑘

𝑌
𝑘

)



2

𝐹

.

(11)

This can be converted to a scalar minimization problem due
to the following theorem. As we notice, this can also be
rewritten as a special case of the problem in a recent work
[25].
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Theorem 2. For unitarily invariant function 𝐹(𝑍) = 𝑓 ∘

𝜎(𝑍), assuming SVD of 𝐴 ∈ R𝑚×𝑛 is 𝐴 = 𝑈Σ
𝐴
𝑉
𝑇, Σ
𝐴
=

diag({𝜎
𝑖,𝐴
}
min(𝑚,𝑛)
𝑖=1 ), the optimal solution to the problem

min
𝑍

𝐹 (𝑍) +
𝛽

2
‖𝑍−𝐴‖

2
𝐹

(12)

is 𝑍∗ = 𝑈Σ
∗

𝑍
𝑉
𝑇, with Σ∗

𝑍
= diag({𝜎∗

𝑖
}
min(𝑚,𝑛)
𝑖=1 ) obtained by

solving scalar minimization problems

𝜎
∗

𝑖
= argmin

𝜎𝑖

𝑓 (𝜎
𝑖
) +

𝛽

2
(𝜎
𝑖
−𝜎
𝑖,𝐴
)
2
,

𝑖 = 1, . . . ,min (𝑚, 𝑛) .
(13)

Proof. Let 𝐴 = 𝑈Σ
𝐴
𝑉
𝑇 be SVD of 𝐴; then Σ

𝐴
= 𝑈
𝑇

𝐴𝑉.
Denoting 𝑋 = 𝑈

𝑇

𝑍𝑉 which has exactly the same singular
values as 𝑍, that is, Σ

𝑋
= Σ
𝑍
, we have

𝐹 (𝑍) +
𝛽

2
‖𝑍−𝐴‖

2
𝐹

(14)

= 𝐹 (𝑋) +
𝛽

2
𝑋−Σ

𝐴



2
𝐹

(15)

= 𝐹 (Σ
𝑋
) +

𝛽

2
𝑋−Σ

𝐴



2
𝐹

(16)

= 𝐹 (Σ
𝑋
) +

𝛽

2
(‖𝑋‖

2
𝐹
+
Σ𝐴



2
𝐹
− 2 ⟨𝑋, Σ

𝐴
⟩) (17)

≥ 𝐹 (Σ
𝑋
) +

𝛽

2
(
Σ𝑋



2
𝐹
+
Σ𝐴



2
𝐹
− 2 ⟨Σ

𝑋
, Σ
𝐴
⟩) (18)

= 𝐹 (Σ
𝑋
) +

𝛽

2
Σ𝑋 −Σ𝐴



2
𝐹

(19)

= 𝐹 (Σ
𝑍
) +

𝛽

2
Σ𝑍 −Σ𝐴



2
𝐹

(20)

= ∑

𝑖

[𝑓 (𝜎
𝑖
) +

𝛽

2
(𝜎
𝑖
−𝜎
𝑖,𝐴
)
2
] (21)

≥ ∑

𝑖

𝑓 (𝜎
∗

𝑖
) +

𝛽

2
(𝜎
∗

𝑖
−𝜎
𝑖,𝐴
)
2
. (22)

In the above, (15) holds because the Frobenius norm is unitary
invariant; (16) holds because 𝐹(𝑍) is unitary invariant; (17) is
true by vonNeumann’s inequality; and (20) holds asΣ

𝑋
= Σ
𝑍
.

The inequality between (15) and (19) can also be obtained by
the Hoffman-Wielandt inequality. Therefore, (20) is a lower
bound of (14), whereΣ∗

𝑍
is obtained byminimizing (20). Note

that the equality in (18) is attained if 𝑋 = Σ
𝑋
. Because Σ

𝑍
=

Σ
𝑋
= 𝑋 = 𝑈

𝑇

𝑍𝑉, the SVD of 𝑍 is 𝑍 = 𝑈Σ
𝑍
𝑉
𝑇, which is

the minimizer of problem (12). Hence the proof is completed.

The first-order optimality condition is that the gradient of
(13) with respect to each singular value should vanish. Thus,
for subproblem (11), we have

2𝜎
𝑖

1 + 𝜎2
𝑖

+𝛽
𝑘
(𝜎
𝑖
−Σ
𝑘

𝑖
) = 0,

s.t. 𝜎
𝑖
≥ 0, for 𝑖 = 1, . . . , 𝑛,

(23)

where SVD of 𝑊𝑘+1 − (1/𝛽
𝑘
)𝑌
𝑘 is 𝑈 diag({Σ𝑘

𝑖
}
𝑛

𝑖=1)𝑉
𝑇. The

above equation is cubic and gives three roots. In addition,
we need to enforce the nonnegativity of 𝜎

𝑖
. It is easily seen

that there exists at least one nonnegative root. And there is a
unique minimizer 𝜎∗

𝑖
∈ [0, Σ𝑘

𝑖
) if 𝛽
𝑘
> 1/4. Finally, we obtain

the update of 𝑍 variable with 𝑍𝑘+1 = 𝑈 diag(𝜎𝑘∗1 , . . . , 𝜎
∗

𝑛
)𝑉
𝑇.

Step 3. Compute 𝑌
𝑘+1. Fix 𝑍

𝑘+1 and 𝑊
𝑘+1, and then we

calculate 𝑌𝑘+1 as follows:

𝑌
𝑘+1

= 𝑌
𝑘

+𝛽
𝑘
(𝑍
𝑘+1

−𝑊
𝑘+1

) . (24)

Step 4. Update 𝛽
𝑘+1 as 𝛽𝑘+1 = 𝛾𝛽

𝑘
. The complete procedure

is summarized in Algorithm 1.
Problem (6) is nonconvex. It is difficult to give a rigorous

mathematical argument for convergence to (local) optimum.
We will provide a theoretical proof that our algorithm con-
verges to an accumulation point and this accumulation point
is a stationary point. Our empirical experiments confirm
the convergence of the proposed method on the benchmark
datasets. The experimental results are promising, despite the
fact that the solution obtained by the proposed optimization
method may be a local optimum.

3.2. Affinity Graph Matrix Construction. Now we will con-
struct an affinity matrix𝑊 for subspace clustering. Optimal
𝑍
∗ may not accurately describe the relationship between

samples if the data is severely corrupted.Therefore, in general,
it is not a good idea to construct 𝑊 by directly using 𝑍∗.
In the spirit of [3, 12], we construct an affinity matrix in the
following way.

Assuming the skinny SVD of𝑍∗ is𝑈∗Σ∗(𝑉∗)𝑇, we define
𝑀 = 𝑈

∗

(Σ
∗

)
1/2 and 𝑁 = (Σ

∗

)
1/2
(𝑉
∗

)
𝑇. Based on the

weighted eigenvectormatrix𝑀 or𝑁, we construct an affinity
matrix𝑊 as follows:

𝑊
𝑖𝑗
= (

𝑚
𝑇

𝑖
𝑚
𝑗

𝑚𝑖
2

𝑚
𝑗

2

)

2𝛼

or 𝑊
𝑖𝑗
= (

𝑛
𝑇

𝑖
𝑛
𝑗

𝑛𝑖
2

𝑛
𝑗

2

)

2𝛼

,

(25)

where 𝑚
𝑖
(𝑛
𝑖
) and 𝑚

𝑗
(𝑛
𝑗
) represent the 𝑖th and 𝑗th columns

(rows) of 𝑀 (𝑁), respectively, and parameter 𝛼 ∈ N tunes
the sharpness of the affinity between two points, with 𝛼 > 1
helping in separating the clusters. When 𝛼 increases, while
the between-cluster separability can be increased, the intra-
cluster cohesiveness would nevertheless be degraded. Thus,
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Input: data matrix𝑋, parameters 𝜌 > 0, 𝛾 > 1, and 𝛽0 > 0.
Initialize: 𝑍 = 𝐼 ∈ R𝑛×𝑛, 𝑌 = 0.
Repeat
(1) Update𝑊 as:

𝑊
𝑘+1

= (𝛽
𝑘
𝐼 + 2𝜌𝑋𝑇𝑋)

−1
(2𝜌𝑋𝑇𝑋 + 𝑌

𝑘

+ 𝛽
𝑘
𝑍
𝑘+1
).

(2) Solve 𝑍 using (11) and (23).
(3) Update the augmented multiplier 𝑌 and the augmented Lagrange multiplier 𝛽:

𝑌
𝑘+1

= 𝑌
𝑘

+ 𝛽
𝑘
(𝑍
𝑘+1

−𝑊
𝑘+1
),

𝛽
𝑘+1 = 𝛾𝛽𝑘.

Until stopping criterion is satisfied.
Return 𝑍

∗

= 𝑍
𝑘+1.

Algorithm 1: LogDet Rank Minimization.

Input: data matrix𝑋, number of subspaces 𝑘, parameters 𝜌 > 0, 𝛾 > 1, and 𝛽0 > 0.
(1) Obtain 𝑍∗ from Algorithm 1.
(2) Compute the skinny SVD 𝑍

∗

= 𝑈
∗

Σ
∗

(𝑉
∗

)
𝑇.

(3) Calculate𝑀 = 𝑈
∗

(Σ
∗

)
1/2 or𝑁 = (Σ

∗

)
1/2
(𝑉
∗

)
𝑇.

(4) Construct the affinity graph matrix𝑊 by (25).
(5) Apply𝑊 to perform NCuts.

Algorithm 2: The SCLD Algorithm.

a suitable 𝛼 needs to balance within-cluster cohesiveness
and between-cluster separability. In this paper, we set 𝛼 to
be 2. Then we have the same postprocessing as LRR. (For
LRR, we use (12) in [3] rather than (3) to construct 𝑊. We
also confirmed with an author of [3] that the power 2 of
(12) is a typo and it should be 4.) As 𝑈∗ or 𝑉∗ spans the
principal directions of 𝑍∗, we employ the angle information
or powered correlation coefficients of the examples, because
their lengths may be affected significantly by the noise or
outliers in the data.

Now using the resultant affinity matrix, we can apply
spectral clustering algorithm to do segmentation. In this
paper, we simply perform NCuts [18] on 𝑊. The proposed
subspace clustering procedure is summarized inAlgorithm 2.

4. Convergence Analysis

In this section, we give the convergence analysis for
Algorithm 1. We will show that our optimization algorithm
attains at least one stationary point of problem (7). We first
rewrite the objective function of (7) as

𝐺 (𝑍,𝑊) = 𝐹 (𝑍) + 𝜌 ‖𝑋−𝑋𝑊‖
2
𝐹

s.t. Z = 𝑊, (26)

𝐻(𝑍,𝑊,𝑌) = 𝐺 (𝑍,𝑊) + ⟨𝑍−𝑊,𝑌⟩ , (27)

𝐿 (𝑍,𝑊, 𝑌, 𝛽) = 𝐻 (𝑍,𝑊,𝑌) +
𝛽

2
‖𝑍−𝑊‖

2
𝐹
. (28)

Lemma 3. The sequence {𝑌
𝑘
} is bounded.

Proof. Tominimize𝑍 at step 𝑘+ 1, the optimal𝑍
𝑘+1 needs to

satisfy the first-order optimality condition

∇
𝑍
𝐿 (𝑍,𝑊

𝑘+1, 𝑌𝑘, 𝛽𝑘)
𝑍𝑘+1

= ∇
𝑍
𝐹 (𝑍)

𝑍𝑘+1
+𝛽
𝑘
(𝑍
𝑘+1 +

1
𝛽
𝑘

𝑌
𝑘
−𝑊
𝑘+1) = 0.

(29)

Note that the updating rule for 𝑌 is

𝑌
𝑘+1 = 𝑌𝑘 +𝛽𝑘 (𝑍𝑘+1 −𝑊𝑘+1) ; (30)

thus ∇
𝑍
𝐹(𝑍)|

𝑍𝑘+1
+ 𝑌
𝑘+1 = 0. We know from (5) that

∇
𝑍
𝐹 (𝑍)

𝑍𝑘+1
= 𝑈 diag( 2𝜎1

1 + 𝜎21
, . . . ,

2𝜎
𝑛

1 + 𝜎2
𝑛

)𝑉
𝑇

, (31)

and 0 ≤ 2𝜎
𝑖
/(1 + 𝜎2

𝑖
) ≤ 1, so ∇

𝑍
𝐹(𝑍)|

𝑍𝑘+1
is bounded. Then it

is seen that 𝑌
𝑘+1; that is, {𝑌𝑘} is bounded.

Lemma 4. {𝑊
𝑘
} and {𝑍

𝑘
} are bounded if ∑(𝛽

𝑘+1/𝛽
2
𝑘
) < ∞

and ∑(1/𝛽
𝑘
) < ∞.

Proof. Consider

𝐿 (𝑍
𝑘
,𝑊
𝑘
, 𝑌
𝑘
, 𝛽
𝑘
) = 𝐿 (𝑍

𝑘
,𝑊
𝑘
, 𝑌
𝑘−1, 𝛽𝑘−1)

+
𝛽
𝑘
− 𝛽
𝑘−1

2
𝑍𝑘 −𝑊𝑘



2
𝐹

+Tr ((𝑌
𝑘
−𝑌
𝑘−1) (𝑍𝑘 −W𝑘))

= 𝐿 (𝑍
𝑘
,𝑊
𝑘
, 𝑌
𝑘−1, 𝛽𝑘−1)

+
𝛽
𝑘
+ 𝛽
𝑘−1

2𝛽2
𝑘−1

𝑌𝑘 −𝑌𝑘−1


2
𝐹
.

(32)
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Thus,

𝐿 (𝑍
𝑘+1,𝑊𝑘+1, 𝑌𝑘, 𝛽𝑘)

≤ 𝐿 (𝑍
𝑘
,𝑊
𝑘+1, 𝑌𝑘, 𝛽𝑘)

≤ 𝐿 (𝑍
𝑘
,𝑊
𝑘
, 𝑌
𝑘
, 𝛽
𝑘
)

≤ 𝐿 (𝑍
𝑘
,𝑊
𝑘
, 𝑌
𝑘−1, 𝛽𝑘−1) +

𝛽
𝑘
+ 𝛽
𝑘−1

2𝛽2
𝑘−1

𝑌𝑘 −𝑌𝑘−1


2
𝐹

≤ ⋅ ⋅ ⋅

≤ 𝐿 (𝑍1,𝑊1, 𝑌0, 𝛽0) +
𝑘

∑

𝑖=1

𝛽
𝑖
+ 𝛽
𝑖−1

2𝛽2
𝑖−1

𝑌𝑖 −𝑌𝑖−1


2
𝐹
.

(33)

Since the second term in the above inequality is
finite, 𝐿(𝑍

𝑘+1,𝑊𝑘+1, 𝑌𝑘, 𝛽𝑘) is bounded. We can rewrite
𝐿(𝑍
𝑘+1,𝑊𝑘+1, 𝑌𝑘, 𝛽𝑘) as

𝐿 (𝑍
𝑘+1,𝑊𝑘+1, 𝑌𝑘, 𝛽𝑘) +

1
2𝛽
𝑘

𝑌𝑘


2
𝐹

= 𝐹 (𝑍
𝑘+1) + 𝜌

𝑋−𝑋𝑊
𝑘+1



2
𝐹

+
𝛽
𝑘

2



𝑍
𝑘+1 −𝑊𝑘+1 +

1
𝛽
𝑘

𝑌
𝑘



2

𝐹

.

(34)

Because 𝐿(𝑍
𝑘+1,𝑊𝑘+1, 𝑌𝑘, 𝛽𝑘) and (1/𝛽𝑘)‖𝑌𝑘‖

2
𝐹
are bounded

and each term on the right hand side of (34) is nonnegative,
each term will be bounded. 𝐹(𝑍

𝑘+1) = ∑
𝑖
log(1 + 𝜎2

𝑖
(𝑍
𝑘+1))

being bounded implies that all singular values of 𝑍
𝑘+1 are

bounded and 𝑍
𝑘+1 is bounded. Since (1/𝛽

𝑘
)(𝑌
𝑘+1 − 𝑌

𝑘
) =

𝑍
𝑘+1−𝑊𝑘+1, clearly we have bounded𝑊𝑘.Therefore {𝑊

𝑘
} and

{𝑍
𝑘
} are bounded.

Theorem 5. {𝑌
𝑘
,𝑊
𝑘
, 𝑍
𝑘
} has at least one accumulation point

{𝑌
∗

,𝑊
∗

, 𝑍
∗

}, and {𝑊∗, 𝑍∗} is a stationary point of optimiza-
tion problem (7) with the assumption that lim

𝑘→∞
𝛽
𝑘−1(𝑍𝑘 −

𝑍
𝑘−1) → 0.

Proof. {𝑌
𝑘
,𝑊
𝑘
, 𝑍
𝑘
} is a bounded sequence; hence, by the

Bolzano-Weierstrass theorem, theremust be at least one accu-
mulation point, which is denoted by {𝑌∗,𝑊∗, 𝑍∗}. Without
loss of generality, we assume that {𝑌

𝑘
,𝑊
𝑘
, 𝑍
𝑘
} itself converges

to {𝑌∗,𝑊∗, 𝑍∗}. Next, we prove that this accumulation point
is a stationary point of problem (26). As𝑌

𝑘
= 𝑌
𝑘−1+𝛽𝑘−1(𝑍𝑘−

𝑊
𝑘
), we have𝑍

𝑘
−𝑊
𝑘
= (1/𝛽

𝑘−1)(𝑌𝑘−𝑌𝑘−1). Because 𝛽𝑘−1 →

∞ and {𝑌
𝑘
} is bounded, we get 𝑍

𝑘
− 𝑊
𝑘
→ 0; that is, 𝑍∗ =

𝑊
∗. By first-order optimality condition and the definition of

𝑍
𝑘
, we have ∇

𝑍
𝐹(𝑍)|

𝑍𝑘
+𝑌
𝑘−1 +𝛽𝑘−1(𝑍𝑘 −𝑊𝑘) = ∇𝑍𝐹(𝑍)|𝑍𝑘 +

𝑌
𝑘
= 0. Letting 𝑘 → ∞, we get ∇

𝑍
𝐹(𝑍)|

𝑍
∗ + 𝑌

∗

= 0. At
the 𝑘th step, 𝑊

𝑘
satisfies (2𝜌𝑋𝑇𝑋 + 𝛽

𝑘−1𝐼)𝑊𝑘 = 2𝜌𝑋𝑇𝑋 +

𝛽
𝑘−1𝑍𝑘−1+𝑌𝑘−1; that is, 2𝜌𝑋

𝑇

𝑋(𝑊
𝑘
−𝐼) = 𝛽

𝑘−1𝑍𝑘−1−𝛽𝑘−1𝑊𝑘+
𝑌
𝑘−1 = 𝛽𝑘−1(𝑍𝑘 −𝑊𝑘) +𝛽𝑘−1(𝑍𝑘−1 −𝑍𝑘) +𝑌𝑘−1 = 𝛽𝑘−1(𝑍𝑘−1 −
𝑍
𝑘
) + 𝑌
𝑘
. With the assumption that 𝛽

𝑘−1(𝑍𝑘 − 𝑍
𝑘−1) → 0

[26], we get 2𝜌𝑋𝑇𝑋(𝑊∗ − 𝐼) = 𝑌∗.
Now we can see that {𝑌∗,𝑊∗, 𝑍∗} satisfies the KKT

conditions of 𝐿(𝑊,𝑍, 𝑌) and thus {𝑊∗, 𝑍∗} is a stationary
point of (7).
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Figure 1: The clustering error rate with different percentage of
corruption on synthetic data.The parameter 𝜌 is tuned to obtain the
best performance.

5. Experiments and Analysis

In this section, we conduct experiments on the subspace
clustering task with both synthetic and real data.

5.1. Experiments with Synthetic Data. We construct 5 inde-
pendent subspaces whose bases {𝑈

𝑖
}
5
𝑖=1 are generated by a

random rotation matrix 𝑅 through 𝑈
𝑖+1 = 𝑅𝑈

𝑖
, 1 ≤ 𝑖 ≤ 4,

where 𝑈1 ∈ R100 × 4 is a random orthogonal matrix [2]. We
sample 20 data vectors from each subspace by 𝑋

𝑗
= 𝑈
𝑗
𝑇
𝑗
,

1 ≤ 𝑗 ≤ 5, where 𝑇
𝑗
is a 4 × 20 i.i.d. N(0, 1) matrix. Some

data vectors are randomly chosen to corrupt; for example,
for a data vector 𝑥, it is corrupted by adding Gaussian noise
with zero mean and variance 0.2‖𝑥‖. We then use SCLD to
segment the data into 5 clusters. Subspace clustering error
rate defined as # of misclassified points/total # of points is
used to assess the performance.We report the clustering error
rate (averaged from 30 trials) with different corruption levels
in Figure 1.Without any corruption, SCLD can cluster all data
points correctly.

5.2. Experiments with Real Data. In this section, we evaluate
the effectiveness and robustness of SCLD on benchmark
datasets, Extended Yale B (EYaleB) [27, 28] and Hopkins 155
[29]. We compare the proposed method SCLD with several
state-of-the-art subspace clustering algorithms: LRR [3], SSC
[10], LRSC [4, 30], and local subspace affinity (LSA) [13]. For
these methods, we use the parameters given by the respective
authors. For our method, we also tune 𝜌 to obtain the best
performance. Generally, 𝜌 should be relatively large if the
data are slightly corrupted. 𝛽 and 𝛾 have little influence on
the clustering results, so we just set 𝛽0 = 0.3 to ensure
the uniqueness of minimizer and use 𝛾 = 1.1 empirically.
Other parameters are shown in Table 1. The experiments are
conducted onWindows 7with 16GMmemory and Intel Core
i5-2300 CPU.
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Table 1: Parameter settings of different algorithms.

Method Face clustering Motion segmentation
Scenario 1 Scenario 2

LRR 𝜆 = 0.18 𝜆 = 4
LSA 𝐾 = 3, 𝑑 = 5 𝐾 = 8, 𝑑 = 5
SSC 𝜆

𝑒
=

8
𝜇
𝑒

𝜆
𝑒
=
20
𝜇
𝑒

𝜆
𝑧
=
800
𝜇
𝑧

LRSC 𝜏 = 0.4, 𝛼 = 0.045 𝜏 = 0.045, 𝛼 = 0.045 𝜏 = 420, 𝛼 = 3000, or 𝛼 = 5000
SCLD 𝜌 = 0.08 𝜌 = 0.03 𝜌 = 55

Figure 2: Sample images from the Extended Yale B Database.

Table 2: Clustering error rate on the first 10 classes of EYaleB.

Method LRR SSC LSA LRSC SCLD
Error rate (%) 20.94 35 59.52 35.78 3.59

5.2.1. Face Clustering. Face clustering is to cluster a set of
face images from multiple individuals in a hope to reveal
the identity of these individuals. EYaleB Database includes
2414 frontal images of 38 individuals. For each individual,
the images are taken under 64 lighting conditions and can
be described by a low-dimensional subspace [31].The images
are resized to 48 × 42 pixels and each vectorized image
is regarded as a data point. Figure 2 shows some example
images from the database.

(1) First Experiment Scenario. As done in [2], we test the
algorithms on the first 10 classes of EYaleB, which consists
of 640 frontal face images. More than half of the images are
corrupted by shadow andnoise.Weuse this heavily corrupted
data to test the effectiveness of our method. As shown
in Table 2, SCLD significantly enhances the performance.
Specifically, it improves the clustering accuracy by at least
17% when compared to the other algorithms. Since the
only difference between our approach and LRR is rank
approximation, this improvement is due to LogDet.

(2) Second Experiment Scenario. For a fair comparison, we
have followed the experimental setup of [10]. We divide the
38 subjects into four groups: subjects 1 to 10, 11 to 20, 21 to
30, and 31 to 38. We consider all choices of 𝑛 ∈ {2, 3, 5, 8, 10}
subjects for the first three groups. For the last group, we
consider all choices of 𝑛 ∈ {2, 3, 5, 8}. We implement our
subspace clustering algorithm on each set of 𝑛 subjects. For
all experiments, the stopping criterion for 𝑍 is triggered by a
relative difference of 10−5 between two successive iterations
or by a maximum of 100 iterations.

The results are presented in Table 3. For other methods,
we cited the results from Table 5 of [10]. SCLD consistently
has low clustering error rates and ismore stable than the other
methods whose error rates increase drastically as the number

Table 3: Clustering error rates (%) on EYaleB.

Method LRR SSC LSA LRSC SCLD
2 subjects
Mean 2.54 1.86 32.80 5.32 2.79
Median 0.78 0.00 47.66 4.69 0.78

3 subjects
Mean 4.21 3.10 52.29 8.47 3.72
Median 2.60 1.04 50.00 7.81 1.56

5 subjects
Mean 6.90 4.31 58.02 12.24 4.83
Median 5.63 2.50 56.87 11.25 2.50

8 subjects
Mean 14.34 5.85 59.19 23.72 5.45
Median 10.06 4.49 58.59 28.03 3.52

10 subjects
Mean 22.92 10.94 60.42 30.36 6.25
Median 23.59 5.63 57.50 28.75 4.84

of subjects increases to 8 and 10. As shown in Figure 2, there
are many sparse within-sample outliers in the face images,
for example, shadows. Although LRR uses a regularization
term to count for corruptions, the regularization term does
not appear to be well suited to EYaleB. LSA has inferior
performance possibly because it does not explicitly exploit the
low-rank structure of the data.

(3) Third Experiment Scenario. In this section, we compare
SCLD with other algorithms with RPCA [32] as a prepro-
cessing step. In practice, we do not know the clustering of the
data beforehand and hence we apply RPCA to the collection
of all data points for each trial prior to clustering. As shown in
Table 4, SCLD is still superior to other methods though they
apply RPCA to deal with sparse outlying entries. Compared
to Table 3, only the clustering error rates of LRSC reduced
in some cases. We can conclude that applying RPCA to
all data points simultaneously is not effective in improving
clustering performance. This is due to the fact that RPCA
seeks a common low-rank subspace, which will decrease
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Figure 3: Example frames from four video sequences of the Hopkins 155 Dataset with traced feature points.

Table 4: Clustering error rates (%) on EYaleB after applying RPCA
simultaneously to all the data in each trial.

Method LRR SSC LSA LRSC SCLD
2 subjects

Mean 5.72 2.09 32.53 5.67 2.79
Median 3.91 0.78 47.66 4.69 0.78

3 subjects
Mean 10.01 3.77 53.02 8.72 3.72
Median 9.38 2.60 51.04 8.33 1.56

5 subjects
Mean 15.33 6.79 58.76 10.99 4.83
Median 15.94 5.31 56.87 10.94 2.50

8 subjects
Mean 28.67 10.28 62.32 16.14 5.45
Median 31.05 9.57 62.50 14.65 3.52

10 subjects
Mean 32.55 11.46 62.40 21.82 6.25
Median 30.00 11.09 62.50 25.00 4.84

the principal angles between subspaces and decrease the
distance between data points in different subjects [10].

5.2.2. Motion Segmentation. Motion segmentation is to seg-
ment the trajectories associated with 𝑛 different moving
objects into different groups according to their motions in
a video sequence. Because different motions can be treated
as different subspaces, we use the Hopkins 155 Dataset to
validate SCLD. This dataset is slightly corrupted as shown in
Figure 3. It consists of 155 sequences of two or three motions
and 1 sequence of 5 motions; the latter is regarded as outlier.
Each sequence is regarded as a separate clustering problem.

The experimental results are reported in Table 5. We also
used the results in Table 1 of [10]. It can be seen that SCLD
produces superior results compared to the other methods.
For all 155 sequences, the error rate is as low as 1.79%.
If we use all 156 sequences, the overall error rate of our
proposed algorithm will be 1.87%. We report the average
computation time for every sequence at the bottomof Table 5.
The computational cost of LRSC ismuch lower than the other
methods, while LRR, SSC, and SCLD are comparable.

To testify the influence of parameter 𝜌 in our algorithm,
we show the clustering error rates of SCLD for different 𝜌
over all 155 sequences in Figure 4. As we can see, when 𝜌 was
between 1 and 200, the clustering error varied between 1.79%

Table 5: Segmentation error rate (%) on the Hopkins 155 Dataset
(155 sequences).

Method LRR SSC LSA LRSC SCLD
2 motions
Mean 2.13 1.52 4.23 3.69 1.31
Median 0.00 0.00 0.56 0.29 0.00

3 motions
Mean 4.03 4.40 7.02 7.69 3.43
Median 1.43 0.56 1.45 3.80 0.56

All
Mean 2.56 2.18 4.86 4.59 1.79
Median 0.00 0.00 0.89 0.60 0.00

Time (sec) 1.30 1.04 3.40 0.16 1.49
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Figure 4: Changes in clustering error rate when varying 𝜌.

and 4.67%. This implies that SCLD performs well under a
wide range of values of 𝜌.

To test the dependence of SCLD on initialization, we
apply another two different initializations. First, we use the
solutions from LRR as initial guess for SCLD. Second, we
just generate some random numbers. We find that we can
still get the same results. Actually, it is recommended to use
convex relaxation solutions as initialization for nonconvex
formulations [33, 34].
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6. Conclusion

In this paper we propose using a log-determinant function
(LogDet) as a rank approximation to recover the low-rank
representation of high-dimensional data. When applied to
subspace clustering, the proposed algorithm, called SCLD,
exploits both global and local structures of the data through
the LogDet rank approximation and angle-based affinity
matrix. Consequently, it captures more intrinsic information
of the data that benefits subspace clustering. Our extensive
experimental results show that it outperforms other low-
rank representation algorithms based on the nuclear norm.
Therefore LogDet appears to be an effective rank approxima-
tion function well suited to subspace clustering applications.
Although our model is simple and with no explicit modeling
of outliers, it is resilient to various corruptions. Our future
research will consider modeling corruptions explicitly.
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