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Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in
a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters
the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when
it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of
determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression
coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to
the least squares and robust statistical methods. We also provide a model selection based technique to determine the number
of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and
selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell
marking in neuroscience to illustrate and interpret the method.

1. Introduction

Regression and clustering are probably two of the most
important statistical data mining methods used in practice
including artificial intelligence and neuroscience. However,
regression clustering, a data mining method integrating the
two, has rarely been studied as a single entity despite its
great potential for practical use. It is, thus, the intention of
this paper to focus on statistical estimation, selection, and
computing of regression clustering. In this section, we briefly
review cluster analysis but not the familiar regression analysis
and then introduce the regression clustering problem.

(1) Cluster Analysis. Cluster analysis is an important unsu-
pervised statistical learning and data mining technique for
clustering homogeneous observations from data. Its main
objective is to divide a collection of data points, often of
multivariate nature, into subsets or “clusters” such that obser-
vations within one cluster are more “similar” (homogeneous)
to each other than to observations in different clusters.

Cluster analysis is usually used in situations where clustering
information is not observed on the data points and one wants
to get this information from the data to explicitly group them.

Many approaches have been developed in cluster anal-
ysis, which in general fall into two categories: hierarchical
and partitive. A hierarchical approach proceeds by either a
sequence of “agglomerative” stages or a sequence of “divisive”
ones. At each agglomerative stage, clusters are produced by
merging or retaining the clusters produced at the immediate
previous stage, where clusters at the initial stage may simply
be taken to be those individual data points. Contrarily, at each
divisive stage, clusters are produced by splitting or retaining
the clusters produced at the immediate previous stage, where
onemay assume a single cluster containing all the data points
at the initial stage. The key feature of a hierarchical approach
is that clusters obtained at one stage are derived from those
in the immediate previous stage. On the other hand, partitive
approaches refer to those nonhierarchical ones which may be
further classified according to other features of clustering.
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Figure 1: Pairwise scatterplots for the Iris data.

The outcome of a hierarchical clustering is often repre-
sented by a graph called dendrogram in which each stage
of merging or splitting is determined by optimizing some
similarity or dissimilarity criterion. A significant drawback
of hierarchical clustering methods is that the divisions or
fusions, oncemade, are irrevocable.That is, when an agglom-
erative algorithm has joined two objects into one cluster,
they cannot subsequently be separated, and when a divisive
algorithm has made an unwanted split, the objects involved
can no longer be recombined into one cluster. Kaufman and
Rousseeuw [1] comment on this as follows: “A hierarchical
method suffers from the defect that it can never repair what
was done in previous steps.”

In contrast, a partitive clustering constructs a fixed num-
ber of clusters often by an iterative procedure. It imposes two
requirements in the procedure: (i) each cluster must contain
at least one object and (ii) each object must belong to exactly
one cluster. In addition, the number of clusters constructed
stays fixed during the iterations and an initial partition is
required to start the iteration. At each iteration, a tentative
partition is constructed by relocating the data points to opti-
mize a conditional criterion. This procedure continues until
certain convergence or stability of partition occurs. Com-
monly used partitive clustering approaches include those 𝑘-
means type of methods: 𝑘-means, 𝑘-modes, 𝑘-medians, and
𝑘-medoids [2, 3]. New developments in this regard can be

Table 1: Confusion matrix between 𝑘-means clustering and species
information.

setosa versicolor virginica
Cluster 1 50 0 0
Cluster 2 0 48 14
Cluster 3 0 2 36

found in Hastie et al. [4, section 14.3] and Clarke et al. [5,
Chapter 8], for example.

We present an example here to illustrate the use of 𝑘-
means method for clustering. The example uses the well-
known Iris data from Anderson [6] which was analyzed by
Fisher [7] and many others. The data give the measurements
in centimeters of the variables sepal length and width and
petal length and width, respectively, for 50 flowers from each
of the 3 species of Iris: setosa, versicolor, and virginica. The
data which can be retrieved from statistics package R [8] are
displayed in Figure 1, where we see the data of sepal length
and width and petal length and width distributed in clusters.
So we use the 𝑘-means algorithm of Hartigan and Wong [3]
to find a partition of 3 clusters for the data and compare the
partition with the species information given. The computing
is done in R with a random initial partition determined by
set.seed(123). The result is summarized in Table 1, from
which we see a perfect match between cluster 1 and species
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setosa and some mismatch between clusters 2 and 3 and
species versicolor and virginica.

(2) Regression Clustering. In this paper, we will focus on
regression clustering, a data miningmethod which iteratively
clusters data into clusters according to the available regression
pattern and then updates the regression in each cluster simul-
taneously until equilibrium is attained. It is commonly known
that regression is for studying the relationship between a
dependent variable and a set of explanatory variables which
have observations on a sample of objects. If the samples come
from different populations and the variable indexing the
populations also has an effect on the dependent variable, the
regression should be performed on individual populations
separately through the corresponding subsamples observed,
or by including the population effect in the model, in order
to make valid or more reliable statistical inference. However,
the population indexing variable sometimes is not observed
or unobservable. In such situations, it is necessary to cluster
the sample objects to conform to their respective populations
as much as possible and then apply regression to each cluster.
We refer to this procedure as regression clustering if our focus
is clustering the data points or as cluster regression if it is
studying the unobserved regression patterns in the data.

Before getting into details of regression clustering, we
review various measures of similarity or dissimilarity used in
general cluster analysis. Note that to identify possible clusters
of observations in data it is essential to be able to measure
how close or how far individual data objects are to/from each
other. Current measures include the single linkage (nearest
neighbour) and complete linkage (further neighbour) (cf. [1])
and the 𝑘-means. These are usually considered as descriptive
since they do not involve any probability distribution and
use only descriptive statistics as the measures of similarity or
dissimilarity between observations. An obvious disadvantage
of using a descriptive measure is one cannot make statistical
inference on results of clustering; thus, one is not able to
assess the variability involved in the results. To enablemaking
statistical inference, probability distributions or models are
postulated for the clusters of data, and it is deemed that data
in the same cluster have the same probability distribution.
Hence, the similarity or dissimilarity measures to be used are
assigned a probability distribution, and the significance and
variability of clustering can be readily derived. Probability
model based approaches can be applied in both hierarchical
and partitive types of clustering. We choose to use the prob-
ability model for partitive regression clustering here.

Note that there is no absolute boundary between descrip-
tive and probability model based clustering methods. Some
clustering methods were heuristically motivated, but later
on, statisticians studied their performance from a proba-
bilistic perspective. For instance, MacQueen [2] and Pollard
[9] studied the asymptotic behaviour of 𝑘-means using a
probability model based approach; Hartigan [10] and Wong
[11] investigated themathematical relationship between high-
density clusters and the single-linkage clustering method.

Consider a finite set of 𝑛 objects O = {1, . . . , 𝑛} together
with data z
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separately. A probability model based clustering approach
assumes that the observed data z
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respective random vectors Z
1
, . . . ,Z
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of populations indexed by Π. Thus, those Z
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with 𝑗 ∈

C
𝑖
, 𝑖 = 1, . . . , 𝑘, have the same probability distribution. The

specification of the probability distributions can be either
parametric or nonparametric.

(3) Organization of the Paper. In Section 2 we provide a
detailed formulation of regression clustering including mod-
eling, parameter estimation, and partition determination.
In Section 3 we present two procedures for estimating the
number of clusters in cluster linear regression. In Section 4,
a pointwise iterative assessing algorithm is developed for
implementing the regression clustering procedures. A simu-
lation study and an example are presented in Section 5. A real
data example on RGB cell marking clustering is analyzed in
Section 6. The paper ends with a Conclusion section.

2. Regression Clustering
Model and Optimization

Regression clustering becomes very useful when one intends
to recover or estimate the unobserved class-specific regres-
sion hyperplanes based on the sample data of dependent and
explanatory variables. Note that the notion of hyperplane
used here is a generic one, whichmeans it does not necessarily
pass through the origin in the space. It should be more
correctly called an affine set. But we do not distinguish them
in this paper.

For cluster regression or regression clustering problem,
the data have the form (𝑦

𝑗
, x󸀠
𝑗
), 𝑗 = 1, . . . , 𝑛, where x

𝑗
∈ R𝑝

is an explanatory column vector and 𝑦
𝑗
∈ R is a random

dependent variable for the 𝑗th object. The probability dis-
tribution of x

𝑗
does not provide any information on regres-

sion hyperplanes; thus, our statistical inference will be made
conditional on the observed x

𝑗
. In other words, we can simply

treat x
𝑗
as nonrandom. As in the general setting of prob-

ability model based cluster analysis, there are two different
approaches for regression clustering. One is the random
partition or soft partition approach in which each data point
is assigned a nonzero probability to fall into any of the clusters
or equivalently follows a mixture probability distribution.
The discussion can be found in DeSarbo and Cron [12]
and Quandt and Ramsey [13], among others. Another one
is the fixed partition or hard partition approach in which
each data point is assigned a cluster membership or label
through certain optimization procedure, so a data point
belongs to only one cluster. As discussed in Bock [14, 15] and
Späth [16, 17], the probability distribution or classification
likelihood function of a data point in a fixed partition
approach of regression clustering, with an unknown partition
Π = (C
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where in many situations we can assume 𝜙(x󸀠
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a normal density with mean x󸀠
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and variance 𝜎2

𝑖
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equivalent to describing the data by a group of linear models:
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(2)

Since the partition Π is unknown and the number of
possible such partitions depends on 𝑛, the model (2) is
a nonparametric one. Actually, it can be proved that the
total number of nondegenerate partitions of form Π is
equal to the Stirling number of the second kind 𝑆(𝑛, 𝑘) =
(1/𝑘!) ∑

𝑘

𝑗=0
(−1)
𝑘−𝑗
(
𝑘

𝑗 ) 𝑗
𝑛; confer Tomescu [18]. Also, the

linear regression function in (2) can be extended to a non-
linear one including spline and local polynomial regression
and so forth under this regression clustering setting. This
extension will not be pursued in this paper. Further, the true
distribution of 𝑒

𝑗
need not be the normal. Namely, we use

𝑁(0, 𝜎
2

𝑖
) only as a “working” distribution for 𝑒

𝑗
.Then the cor-

responding least squares or maximum likelihood approach
becomes the quasi-likelihood one that still possesses many
optimality properties (cf. chapter 9 of [19]). We resort to
using a robust approach in this paper instead to deal with the
violation of normality assumption.

Given the regression clustering model introduced above,
we need to estimate the parameters (𝛽

𝑖
, 𝜎
2

𝑖
)
𝑖=1,...,𝑘

and find
the best partition Π together with 𝑘 for application. Optimal
parameter estimation and partition can be achieved using the
maximum likelihood principle, while finding the optimal 𝑘
can be done based on an information criterion. The latter
will be explained in next section. Now, we proceed to do
parameter estimation and partition.

Under the fixed partition model (2), the log-likelihood
function is given by
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(3)

It is clear that the best estimates of the parameters and
the partition should be those maximizing the log-likelihood
(3) for given 𝑘. However, the number of possible partitions
𝑆(𝑛, 𝑘) is astronomic even for moderate 𝑛 and 𝑘; for example,
𝑆(20, 3) = 580, 606, 446 and 𝑆(50, 3) ≈ 1.2 × 1023. Therefore,
it is almost impossible to find the global optimal partition
by enumeration. Here, we propose an iterative estimation
method to find local optimal estimates of (𝛽

𝑖
, 𝜎
2

𝑖
)
𝑖=1,...,𝑘

and
Π for a given 𝑘.This method extends the exchange method of
Späth [16, 17].
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𝑖
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likelihood functions for homogeneous linear regressions
within clusters. Hence, it is maximized at the least squares
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𝑖
obtained based on the data points within Ĉ
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(5)

Then, log 𝐿̂
𝑛
is monotonically increased if the steps (4) and

(5) are carried out alternately. This procedure leads to a local
maximum in finitely many steps. It is expected to be a good
approximation of the global maximum if an initial partition
is properly chosen. In practice, we often assume that the
variance parameters 𝜎2

𝑖
, 𝑖 = 1, . . . , 𝑘, have a common value

𝜎
2 and estimate 𝜎2 by a pooled estimator. This modification

tends to return a more robust partition than otherwise.
Note that the work in this section so far can be extended

to multivariate regression clustering without any theoreti-
cal difficulty. The essential difference between multivariate
regression and multiple regression is that the former has a
vector response variable while the latter has a univariate one.
Hence, (3) to (5) and the relevant ones in the rest of the paper
can be easily modified to incorporate the vector response
variable, from which it is ready to perform multivariate
regression clustering.Wewill not get into the technical details
involved but will provide a real data example in Section 6 to
perform multivariate regression clustering.

It is well-known that the least squares method is very
sensitive to outliers and violation of the normality assump-
tion in the data. Robust methods can be developed to
overcome this vulnerability. Among them, procedures based
on𝑀-estimation are considered here.𝑀-estimation can be
regarded as a generalization of the maximum likelihood
estimation. A particular one is the maximum likelihood
estimation based on Huber’s least favourable distribution,
whose density function is the normal at around the origin
and the exponential in the tails. Using Huber’s𝑀-estimation
method, we can drop the assumption 𝑒
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) in (2)
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where 𝑐 is determined by the scale parameter in Huber’s least
favourable distribution. We find that assuming a constant
scale parameter across all clusters tends to give better robust
results, so we adopt this assumption in this paper. Now for
given estimates 𝛽̂

𝑖
, 𝑖 = 1, . . . , 𝑘, each data point 𝑗 is assigned

or reassigned to cluster Ĉ
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Figure 2: Assignment independence (a) versus assignment dependence (b).

the above two𝑀-estimation steps are carried out alternately.
This gives a robust counterpart of the likelihood-based local
optimal estimation and selection introduced earlier in this
section.

To conclude this section, note that the fixed partition
approach has a particular advantage over the random par-
tition one in the context of regression clustering or clus-
ter regression. As observed by Hennig [20], the mixture
probability model involved in random partitioning presumes
implicitly an assignment independence of each object to
clusters with respect to the covariate vectors x

𝑗
. That is, the

clusters keep the same proportions {𝜋
𝑖
, 𝑖 = 1, . . . , 𝑘} for every

fixed covariate vector x
𝑗
. In other words, the probability of a

point (𝑦
𝑗
, x󸀠
𝑗
) to be generated by cluster 𝑖 is independent of x

and 𝑗. This is generally not true as shown in Figure 2, which
is adapted from Hennig [20]. On the other hand, the fixed
partition model (2) supposes that the cluster membership of
each object or cluster labels are explicitly parameterized and
are determined by the estimation of 𝛽̂

𝑖
and 𝜎̂2

𝑖
through the

points (𝑦
𝑗
, x󸀠
𝑗
) , 𝑗 ∈ C

𝑖
. Hence, the fixed partitionmodel does

take care of the problem of possible assignment dependence
between the 𝑗th object and the associated covariate x

𝑗
. In

principle, the random partition approach can be generalized
to account for the assignment dependence, for example, by
allowing {𝜋

𝑖
, 𝑖 = 1, . . . , 𝑘} to depend on x

𝑗
. But the resultant

probability model will be much more difficult to be analyzed
both algebraically and numerically; and no such study can be
found in literature so far to our knowledge.

3. Estimating the Number of Clusters

The number of clusters to be used in regression clustering
is normally unknown so it should also be estimated. In this
sectionwe provide two procedures for estimating the number

of clusters, one based on least squares estimation and the
other on robust𝑀-estimation.

We use a more detailed notation O(𝑛) = {1, 2, . . . , 𝑛} to
denote the 𝑛 data objects which have observations (𝑦

1
, x󸀠
1
),

. . . , (𝑦
𝑛
, x󸀠
𝑛
) as described in previous sections. Recall that

these 𝑛 objects are assumed to be a random sample coming
from a structured population, which consists of a fixed (but
unknown) number, say 𝑘

0
, of subpopulations, each of which

is characterized by a regression hyperplane with class-specific
unknown parameters. Therefore, for the 𝑛 observations from
this population, there exists an underlying partition Π(𝑛)

𝑘0
=

{O
(𝑛)

1
, . . . ,O
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parameter vectors; and 𝛽
0𝑖
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0
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distinct from one another. It is clear that 𝑛 = 𝑛
1
+ ⋅ ⋅ ⋅ + 𝑛

𝑘0
.

In the following, we assume that 𝑘
0
≤ 𝐾, where 𝐾 is a

known positive integer. Note that in (7) we have suppressed
the 𝑛 in O

(𝑛)

𝑖
for simplicity of presentation. Also note that the

normality assumption for the random errors eO𝑖 , although
reasonable inmany situations, is just a “working” distribution
and not really required for applying the least squares method.

In order to estimate 𝑘
0
, we fit a regression clustering

model to the data for each 𝑘 ≤ 𝐾 using the methods
developed in Section 2. A criterion function of 𝑘 can be
obtained from the cluster regression fitting. Then 𝑘

0
is

estimated as the minimizer of the criterion function. Shao
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and Wu [21] have used this idea to develop an information-
based criterion for estimating 𝑘

0
. Let Π(𝑛)

𝑘
= {C
(𝑛)

1
, . . . ,C

(𝑛)

𝑘
}

be an arbitrary 𝑘-cluster partition of the 𝑛 observations. Shao
and Wu’s information criterion is defined as

𝐷
𝑛
(Π
(𝑛)

𝑘
) =

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩
y
C
(𝑛)

𝑖

− 𝑋
C
(𝑛)

𝑖

𝛽̂
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝑞 (𝑘) 𝐴
𝑛
, (8)

where 𝑞(𝑘) is a strictly increasing positive function of 𝑘,
𝐴
𝑛
is a sequence of positive constants, 𝛽̂

𝑖
are least squares

estimators, and ‖⋅‖ is the Euclideannorm.Typically, 𝑞(𝑘) = 𝑘𝑝
and𝐴

𝑛
∝ log(𝑛) or𝐴

𝑛
∝ log log(𝑛) are chosen.Then 𝑘̂

𝑛
, the

estimate of 𝑘
0
, is the integer thatminimizes this criterion, that

is,

𝐷
𝑛
(𝑘̂
𝑛
) = min
1≤𝑘≤𝐾

min
Π
(𝑛)

𝑘

𝐷
𝑛
(Π
(𝑛)

𝑘
) . (9)

It can be seen that in (8) the first term is the sum of residual
squares which measures the goodness of fit of the model and
the second term is the penalty for overfitting. Moreover, the
criterion (9) shows that one determines the optimal number
of clusters and the corresponding partitioning simultane-
ously. We shall call (8) together with (9) Criterion LS-C in
the sequel, which stands for clustering by the LS method.

Under some mild conditions, it is shown in Shao andWu
[21] that the proposed Criterion LS-C selects the true number
of regression hyperplanes with probability one among all
class-growing sequences of classifications, when the number
of observations 𝑛 from the population increases to infinity.

Concerning the robustness of regression clustering, one
can use a robust criterion to estimate the underlying number
of clusters 𝑘

0
, where we assume that each cluster O

𝑖
≜

{𝑖
1
, . . . , 𝑖

𝑛𝑖
} ⊆ O(𝑛) is characterized by a linear model:

𝑦
𝑗,O𝑖
= x󸀠
𝑗,O𝑖
𝛽
0𝑖
+ 𝑒
𝑗,O𝑖
, 𝑗 ∈ O

𝑖
, (10)

with the random error 𝑒
𝑗,O𝑖

not following any specific dis-
tribution contrary to that in the linear model (7). In par-
ticular, Rao et al. [22] have developed the following robust
information criterion function for estimating 𝑘

0
:

𝑅
𝑛
(Π
(𝑛)

𝑘
) =

𝑘

∑

𝑠=1

∑

𝑗∈C𝑠

𝜌
𝑐
(𝑦
𝑗,C𝑠
− x󸀠
𝑗,C𝑠
𝛽̂
𝑠
) + 𝑞 (𝑘) 𝐴

𝑛
, (11)

where 𝜌
𝑐
is Huber’s discrepancy function and 𝛽̂

𝑠
are the𝑀-

estimators described in Section 2 or equivalently satisfying

∑

𝑗∈C𝑠

𝜌
𝑐
(𝑦
𝑗,C𝑠
− x󸀠
𝑗,C𝑠
𝛽̂
𝑠
)

= min
𝛽
𝑠

∑

𝑗∈C𝑠

𝜌
𝑐
(𝑦
𝑗,C𝑠
− x󸀠
𝑗,C𝑠
𝛽
𝑠
) .

(12)

It can be seen that similar to that in (8) the first term in
(11) is a generalization of a minimum negative log-likelihood
function derived from Huber’s least favourable distribution,
and the second term is the penalty for overfitting.

Using (11), the estimate 𝑘̂
𝑛
of the underlying number of

clusters 𝑘
0
is the one satisfying

𝑅
𝑛
(𝑘̂
𝑛
) = min
1≤𝑘≤𝐾

min
Π
(𝑛)

𝑘

𝑅
𝑛
(Π
(𝑛)

𝑘
) . (13)

We shall call (11) together with (13) Criterion RM-C, which
stands for the clustering based on robust 𝑀-estimation.
Similar to Criterion LS-C, Criterion RM-C implies that one
determines the optimal number of clusters and the corre-
sponding partitioning simultaneously.

In Rao et al. [22], it is shown that the true clustering and
the associated regression hyperplanes are attained with prob-
ability 1 by RM-C when 𝑛 increases to infinity and under
certain mild conditions. In particular, normal distribution
assumption is not required for the random errors in each
regression cluster.

4. Pointwise Iterative Algorithms for
Regression Clustering Estimation, Partition,
and Selection

Computing algorithms can be written to implement the
regression clustering methods described in Sections 2 and 3.
Recall that in themethods we first estimate the optimal parti-
tionΠ

𝑘
= {C
1
, . . . ,C

𝑘
} and the regression parameters simul-

taneously by minimizing certain within-cluster sum of resid-
ual squares sums (SRSS) or alike for each fixed 𝑘.The quantity
to be minimized is equivalent to

SRSS (Π
𝑘
,𝛽
1
, . . . ,𝛽

𝑘
) =

𝑘

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
yC𝑖 − 𝑋C𝑖

𝛽
𝑖

󵄩󵄩󵄩󵄩󵄩

2 (14)

for LS regression clustering or sum of robust residual squares
sums (RRSS)

RRSS (Π
𝑘
,𝛽
1
, . . . ,𝛽

𝑘
) =

𝑘

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

𝜌
𝑐
(𝑦
𝑗,C𝑖
− x󸀠
𝑗,C𝑖
𝛽
𝑖
) (15)

for an 𝑀-estimation based robust regression clustering.
Only local minimization results can be guaranteed here. We
process this local minimization for each candidate 𝑘 and use
Criterion LS-C or RM-C to determine the best 𝑘. The whole
procedure can be accomplished according to the following
algorithm:

(i) Label all the observations from 1 to 𝑛 (order does not
matter). Given an initial partition Π

𝑘
= {C
1
, . . . ,C

𝑘
}

of O = {1, . . . , 𝑛}, fit a regression model (or a robust
regression model with a 𝜌

𝑐
(⋅) function for RM-C

criterion) in each of the 𝑘 clusters and obtain the sum
of the residual squares sums SRSS

0
or RRSS

0
for this

partition. Let 𝑖 = 0.
(ii) Set 𝑖 = 𝑖 + 1, and reset 𝑖 = 1 if 𝑖 > 𝑛. IdentifyC

𝑗
such

that 𝑖 ∈ C
𝑗
.Thenmove 𝑖 intoC

ℎ
with ℎ = 1, . . . , 𝑘 and

ℎ ̸= 𝑗, respectively. For each of these 𝑘−1 relocations,
refit the model by regression clustering (or robust
regression clustering) and calculate the sum of the
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residual squares sums (or RRSS) accordingly. Denote
the smallest one by SRSS

ℎ
or RRSS

ℎ
. If SRSS

ℎ
< SRSS

0

(or RRSS
ℎ
< RRSS

0
in robust procedure), redefine

C
𝑗
= C
𝑗
− {𝑖} and C

ℎ
= C
ℎ
+ {𝑖}, and set SRSS

0
=

SRSS
ℎ
(or RRSS

0
= RRSS

ℎ
). Otherwise, return to the

beginning of (ii).
(iii) Repeat (ii) until the objective function (14) or (15)

does not decrease any further, which means that no
observation relocation is necessary and the optimal
clustering is achieved for this 𝑘.

(iv) Proceed with (i) to (iii) for each candidate 𝑘 and use
the Criterion LS-C or RM-C to find 𝑘̂

𝑛
, the optimal

number of clusters.

It is important to use a good initial partition of {1, . . . , 𝑛}
in running steps (i) to (iii) so that the global minimum of
(14) or (15), or its good approximation, can be achieved. We
propose to generate the initial partition of a dataset using the
following algorithm which we find works well in practice:

(I1) Consider the linear model

𝑦
𝑖
= x󸀠
𝑖
𝛽 + 𝑒
𝑖
. (16)

Based on the whole dataset, one estimates 𝛽 by a
robust method, for example, least median regression
or least trimmed squares method [23]. Note that
a random seed is implicitly used in such robust
methods.

(I2) Put into set 𝐶
1
those data points whose distances to

the regression hyperplane estimated in Step (I1) are
less than a predetermined number, say 𝛿. If |𝐶

1
| and

|𝐶
𝑐

1
| are both larger than a predetermined integer, say

𝑚, set ℓ = 1 and go to the next step; otherwise, set ℓ =
0 and go to Step (I5). Here, 𝐶𝑐

1
is the complementary

set of 𝐶
1
.

(I3) Based on the dataset ⋂ℓ
𝑖=1
𝐶
𝑐

𝑖
, one estimates 𝛽 in (16)

by the same robust method used in Step (I1).

(I4) Put into 𝐶
ℓ+1

those points in⋂ℓ
𝑖=1
𝐶
𝑐

𝑖
whose distances

to the regression hyperplane estimated in Step (I3) are
less than 𝛿. If |𝐶

ℓ+1
| and | ⋂ℓ+1

𝑖=1
𝐶
𝑐

𝑖
| are both larger than

𝑚, set ℓ = ℓ + 1 and repeat Step (I3); otherwise, go to
Step (I5).

(I5)The initial partition is {𝐶
1
, . . . , 𝐶

ℓ
, ⋂
ℓ

𝑖=1
𝐶
𝑐

𝑖
} if ℓ > 1 or

just the whole dataset itself if ℓ = 0.

One can adjust the values of 𝛿 and 𝑚 either in advance or
adaptively to get an initial partition of 𝑘 clusters for any given
𝑘. For example, set𝑚 to the integer part of 0.5𝑛/𝑘 and 𝛿 to the
best value such that two clusters can be obtained in (I2).

The above initial partition algorithm gives essentially an
iterated hierarchical binary clustering method, where each
binary clustering is realized through resistant regression such
as the least median regression. The resistant regression is
robust, having high breakdown threshold; thus, although not
being fully efficient, it is highly likely to produce a reasonable
initial partition through its iterated executions.

Table 2: Confusion matrix between sepal.length ∼

sepal.width regression clusters and species information.

setosa versicolor virginica
Cluster 1 50 1 1
Cluster 2 0 35 16
Cluster 3 0 14 33

Table 3: Confusion matrix between sepal.length ∼

sepal.width + petal.length + petal.width regression clus-
ters and species information.

setosa versicolor virginica
Cluster 1 25 17 14
Cluster 2 12 19 15
Cluster 3 13 14 21

The two algorithms consisting of Steps (I1) to (I5) and (i)
to (iv) may be named IPARC to reflect the iterative pointwise
assessing nature in regression clustering.

5. Example and Simulation Study

In this section, we first apply regression clustering to the Iris
data and provide a brief guideline on when to use themethod
properly. We then present a simulation study to assess the
finite sample performance of Criteria LS-C and RM-C.

5.1. The Iris Data Example. Recall the Iris data that we
analyzed using the 𝑘-means method in Section 1. Now we
want to use the regression relationship between sepal length
and sepal width variables to partition the 150 observations
of sepal length and width and petal length and width into 3
clusters. Statistics package R is used to implement our IPARC
procedure, where we set𝑚 = 2𝑝 and 𝛿 = 0.05 or 0.2 and ini-
tial random seed being determined by set.seed(123456),
and use only the least squares estimation in this example.
The partition result and its comparison with the species
information are summarized in Table 2. Comparing Tables
1 and 2, we see that the cluster information revealed by the
cluster regression sepal.length ∼ sepal.width is very
much the same as that by the 𝑘-means and conforms with the
species information.

When we use cluster regression sepal.length ∼
sepal.width + petal.length + petal.width to parti-
tion the data into 3 clusters, we get a result summarized
in Table 3 which is very different from Tables 1 and 2.
This confirms that the cluster label information obtained
from regression clustering has a different interpretation from
that obtained from the 𝑘-means. The former tells us how
differently regression performs across the clusters, while
the latter tells us how distances among data observations
themselves behave differently across the clusters. Fitting
this regression clustering to the data gives SRSS = 2.901
and coefficients of determination of 0.972, 0.958, and 0.971,
respectively, for the 3 regression hyperplanes. On the other
hand, when we fit the same regression model to the 3
clusters determined by the 𝑘-means, we get SRSS = 12.699
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Figure 3: Simulated data with two clusters.
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Figure 4: Simulated data with three clusters.

Table 4: Shorthand notation for six cases.

N1C2 Case 1 Two regression lines Normal error
T1C2 Case 2 Two regression lines 𝑡(3) error
C1C2 Case 3 Two regression lines Cauchy(0, 1) error
N1C3 Case 4 Three regression lines Normal error
T1C3 Case 5 Three regression lines 𝑡(3) error
C1C3 Case 6 Three regression lines Cauchy(0, 1) error

and coefficients of determination of 0.575, 0.525, and 0.578.
Similar results are obtained if the same regressionmodel is fit
to the 3 clusters determined by the species variable.Therefore,
regression clusteringmethod is fundamentally different from
the general cluster analysis methods such as the 𝑘-means.
One should use regression clustering if partitioning data to
conform to the regression pattern is of interest.

5.2. Simulation Study. We use simulated data sets to assess
the finite sample performance of Criteria LS-C and RM-C for
regression clustering. Two factors will be considered for this
simulation: number of clusters (2 or 3) and error distributions
(𝑁(0, 1), 𝑡(3), or Cauchy(0, 1)), so there are in total 6 cases
of data to be considered, which are summarized in Table 4.
There will be only one covariate involved in the regression
clustering and the covariate is generated from 𝑁(0, 1). The
parameters used for each case are given in Table 5. Then, the
fixed partition regression clustering model 𝑦

𝑗𝑖
= x󸀠
𝑗𝑖
𝛽
0𝑖
+ 𝑒
𝑗𝑖
,

𝑗 = 1, . . . , 𝑛
𝑖
, 𝑖 = 1, . . . , 𝑘

0
, is applied to generate the response

values 𝑦
𝑗𝑖
, where 𝑒

𝑗𝑖
is a random number originating from

𝑁(0, 1), 𝑡(3), or Cauchy(0, 1), and the first element of x
𝑗𝑖
is the

constant 1 corresponding to the intercept term in the model.
Figures 3 and 4 give us an intuition of what the data

typically look like for Cases 1–6 with normal, 𝑡(3), or Cauchy
errors. These figures show that the groupings of the linear
patterns are visible with standard normal random errors and
getting worse with 𝑡(3) random errors. The groupings are
hard to see with Cauchy(0, 1) random errors.

In this study, we set 𝑞(𝑘) = 𝑘𝑝, where 𝑝 is the number
of regression coefficients in the model and is a constant in
our study; 𝑘 is the unknown number of clusters that we are
seeking. It is noted that in an information model selection
criterion, a penalty function, which is 𝐴

𝑛
in (8) or (11), is

usually chosen as 𝑐 log(𝑛) or 𝑐 log log(𝑛)with a constant 𝑐 > 0.
In light of the fact that lim

𝜆→0
[(log 𝑛)𝜆 − 1]/𝜆 = log log 𝑛, we

set 𝐴
𝑛
= [(log 𝑛)3 − 1]/3.

The 𝜌
𝑐
function we employed for𝑀-estimation is 𝜌

𝑐
(𝑢) =

0.5𝑢
2 if |𝑢| ≤ 1.345 and 𝜌

𝑐
(𝑢) = 1.345|𝑢| − 0.5 × 1.345

2

otherwise (Huber𝜌
𝑐
). In the following,whenwe state the sim-

ulation results, Criterion RM-C means𝑀-estimation based
regression clustering procedure with Huber’s 𝜌

𝑐
exclusively.

For each of the six cases, we conduct 1000 simulations
using Criteria LS-C and RM-C separately. To apply the
algorithm IPARC, we set 𝛿 = 0.2 and𝑚 = 2𝑝. The algorithm
given in the previous section is then used to estimate the
number of clusters in cluster linear regression. In Tables 6 and
7, we summarize the results from the simulation study, where
each number represents the relative frequencies of selecting
the possible numbers of clusters 𝑘 out of 1000 replications.
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Table 5: Parameter values used in the simulation study of regression clustering.

Case 𝑘
0

Regression coefficients Number of observations

1–3 2 𝛽
01
= (
2

8

), 𝛽
02
= (
1

5

) 𝑛
1
= 70 , 𝑛

2
= 50

4–6 3 𝛽
01
= (
18

6

), 𝛽
02
= (
12

8

), 𝛽
03
= (
15

−2

) 𝑛
1
= 35 , 𝑛

2
= 35 , 𝑛

3
= 50

Table 6: Relative frequencies of selecting 𝑘 based on 1000 simulations for Cases 1–3.

𝑘
0
= 2

Case 1 (𝑁(0, 1) error) Case 2 (𝑡(3) error) Case 3 (Cauchy(0, 1) error)
LS-C RM-C LS-C RM-C LS-C RM-C

𝑘 = 1 0.000 0.000 0.001 0.001 0.005 0.006
𝑘 = 2 0.986 1.00 0.422 0.999 0.292 0.745
𝑘 = 3 0.014 0.000 0.488 0.000 0.415 0.183
𝑘 = 4 0.000 0.000 0.087 0.000 0.227 0.055
𝑘 = 5 0.000 0.000 0.002 0.000 0.061 0.011

Table 7: Relative frequencies of selecting 𝑘 based on 1000 simulations for Cases 4–6.

𝑘
0
= 3

Case 4 (𝑁(0, 1) error) Case 5 (𝑡(3) error) Case 6 (Cauchy(0, 1) error)
LS-C RM-C LS-C RM-C LS-C RM-C

𝑘 = 1 0.000 0.000 0.000 0.000 0.000 0.000
𝑘 = 2 0.000 0.000 0.000 0.002 0.117 0.012
𝑘 = 3 1.00 1.00 0.791 0.997 0.232 0.611
𝑘 = 4 0.000 0.000 0.207 0.001 0.566 0.350
𝑘 = 5 0.000 0.000 0.002 0.000 0.085 0.027

It is clear that Criterion LS-C performs almost perfectly
in Cases 1 and 4 since the errors are standard normal
distributed. However, when there exist outliers in the data
set or the normality of the data is violated, Criterion LS-C
performs poorly. On the contrary, as shown in Tables 6 and 7,
Criterion RM-C does as nearly perfect a job as Criterion LS-C
in Cases 1 and 4; at the same time, neither outliers nor abnor-
mality has much effect on its ability to detect the underlying
true number of regression hyperplanes in the data.

In addition to the robustness shown above in selecting the
number of clusters, the procedure of the𝑀-estimation based
regression clustering is also robust in partitioning the data.
Table 8 presents the estimation of the regression parameters
by applying LS-C and RM-C to the data shown in Figures 3
and 4. From the table, it can be seen that when the errors are
𝑡(3) or Cauchy(0, 1) distributed, the LS regression clustering
method is not able to capture the underlying groupings, while
the𝑀-estimation based regression clusteringmethod detects
the true linear patterns in the data, in spite of the abnormality
in the data.

6. Analysis of RGB Cell Tracking Data

Recently, a new technique called RGB marking has been
introduced to facilitate the identification of individual cell
clones in both in vivo and in vitro experiments [24]. RGB

marking introduces three lentiviral vectors in individual cells
encoding the basic colors red, green, and blue. Raw image
data representing 128 colorectal cancer cells are shown in
Figure 5; the same data are to be analyzed in detail in
this section. Since the colored cells are easily identifiable
within whole organ structures, scientists can track the cells
and determine their role during processes such as organ
regeneration, malignant outgrowth, or immune responses.

To this end, scientists are required to cluster cell types
according to some basic color combinations. Due to the
variability of the vector insertion, however, single RGB-
marked cells express fluorescent proteins at different and
very characteristic levels.The underlying principle of additive
color mixing, similar to that in computer or TV screens,
generates different color combinations that can be used
to discriminate individual cell clones. The main difficulty
in this kind of data is that the intrinsic variability of the
underlying biological mechanisms makes the actual number
of distinguishable colors generated by RGB marking in a
tissue difficult to predict. In addition, cell intensities for
different colors are known to vary depending on the cell area,
which is an indicator of cell morphology.

The data set analyzed in this section consists of mea-
surements on colorectal cancer cell lines expressing various
quantities of three different fluorescent proteins: Cerulean
(blue), Venus (yellow/green), and mCherry (red). The genes
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Table 8: The estimation of the regression parameters by applying LS-C and RM-C to the data shown in Figures 3 and 4.

𝑘
0

Case Clusters 𝛽
1

𝛽
2

𝛽
3

𝛽
4

True (
2

8

) (
1

5

)

1
LS-C (

2.12

8.02

) (
0.76

5.11

)

RM-C (
2.11

8.03

) (
0.78

5.10

)

2
2

LS-C (
1.48

5.56

) (
−1.13

5.87

) (
4.46

6.18

)

RM-C (
2.21

7.89

) (
0.73

4.89

)

3
LS-C (

2.40

6.66

) (
−46.33

−11.23

)

RM-C (
2.29

8.42

) (
0.59

5.17

)

True (
18

6

) (
12

8

) (
15

−2

)

4
LS-C (

18.05

6.06

) (
11.97

8.02

) (
14.66

−1.85

)

RM-C (
18.04

6.07

) (
11.95

8.03

) (
14.66

−1.87

)

3
5

LS-C (
17.74

6.14

) (
12.02

8.16

) (
10.73

−2.87

) (
15.54

−1.70

)

RM-C (
17.88

5.98

) (
12.14

8.14

) (
14.94

−1.88

)

6
LS-C (

18.23

6.29

) (
12.28

8.27

) (
15.20

−2.10

) (
32.17

−27.23

)

RM-C (
18.02

6.26

) (
12.24

7.99

) (
15.19

−2.09

)

coding for the fluorescent proteins were transferred into the
cells via lentivirus-mediated transduction at a less than 100%
efficiency so that most cells expressed different quantitative
combinations of all three fluorescent proteins as described by
Weber et al. [24]. The cells were imaged on a high-content
imager (Operetta, Perkin Elmer). The final data consisted of
fluorescent intensities of red, blue, and green color channels
(electromagnetic wavelength in nanometers, nm), morphol-
ogy parameters including cell areas, and spatial coordinates
for 128 cells.

Figure 5 shows the original data and clustering obtained
by the LS regression clustering approach defined in (14), using
multivariate regression with color intensities as the response
vector, with morphological predictor (cell area) being used
in (c), and without using any predictors in (d). Clustering
methods are relatively robust to the initial random seed (here
we used set.seed(111)) in both cases. When the cell area

predictor is included, the resulting clustering changes, thus
suggesting that the cell morphology information (cell area)
plays a role in separating different cells types. In Table 9, we
summarize the outcome for this LS regression clustering.

To select the optimal number of clusters, we used the
information criterion function (8) for LS and (11) for RM,
with 𝑞(𝑘) = 𝑘, where 𝑘 is the unknown number of clusters
that we are seeking for. Figure 6 shows the optimal numbers
of clusters using 𝐴

𝑛
= log log 𝑛 (C1) and 𝐴

𝑛
= log 𝑛 (C2)

for both clustering approaches. Robust clustering is carried
out using Huber’s discrepancy function (6) with the tuning
constant 𝑐 = 1.345 being chosen.The resulting optimal num-
ber of clusters based on C1 is 5 by both LS and RM regres-
sion clustering criteria, which is compatible with biological
considerations.

Finally, we assess the performances of the LS and RM
regression clustering and compare them with that of the
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(a) (b)

Green

Red

Blue
(c) (d)

Figure 5: (a) Raw spatial data on 128 colorectal cancer cells imaged on a high-content microscope imager (Operetta, Perkin Elmer). (b)
Spatial distribution of the 128 cells represented by the colored circles. The circles have 5 colors representing 5 clusters which resulted from
LS multivariate regression clustering minimizing (14). The size of each circle estimates the area of the corresponding cell. The clustering uses
RGB intensities as the response vector and cell area as the predictor. (c) 3D-scatterplot of the clustered RGB intensities of the 128 cells. Colors
of the points show the same 5 clusters shown in (b). (d) Spatial distribution of the 128 cells, with the colored circles showing the 5 clusters
given by the LS multivariate regression clustering not including any predictor.

Table 9: Summary statistics based on the 5 clusters obtained from
the multivariate LS regression clustering including the cell area
covariate: sample means and standard deviations of the 3-dimen-
sional response vector (i.e., RGB intensities on log scale), as well as
the number of observations (i.e., cells) in each cluster.

Cluster
Mean

(red, green, and
blue)

ŜD
(red, green, and

blue)
Cluster size

1 (4.99, 5.02, 5.78) (0.10, 0.17, 0.25) 25
2 (5.66, 5.83, 5.78) (0.23, 0.26, 0.18) 23
3 (5.40, 5.36, 5.57) (0.12, 0.18, 0.14) 20
4 (4.55, 4.19, 5.52) (0.28, 0.16, 0.11) 41
5 (6.32, 6.50, 5.92) (0.22, 0.24, 0.18) 19

𝑘-meansmethod.The prediction strength (PS) statistic intro-
duced by Tibshirani and Walther [25] is used for the assess-
ment.

For a candidate number of clusters 𝑘 (𝑘 = 5 in our case),
let Ĉte = {Ĉte,1, . . . , Ĉte,𝑘} denote the partition of the test
set resulting from regression clustering on all the data. Let
𝑛
1
, . . . , 𝑛

𝑘
be the number of observations in these clusters. Let

Ĉtr be the partition of the test set resulting from regression
clustering on the training set. In particular, in the latter case
each data point in the test set is clustered using (4) with
𝛽̂
𝑖
, 𝑖 = 1, . . . , 𝑘, produced by the training set.
Following notations of Tibshirani and Walther [25],

denote 𝐷[Ĉtr, Ĉte] as the 𝑛 × 𝑛 comembership matrix, with
𝑖𝑖
󸀠th element𝐷[Ĉtr, Ĉte]𝑖𝑖󸀠 = 1, if a pair of observations 𝑖 and
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Figure 6: Model selection based on information criterion (8) with
𝐴
𝑛
equal to log log 𝑛 (C1) and log 𝑛 (C2) for least squares (LS) and

robust𝑀-estimation (RM) based regression clustering approaches,
respectively. All criterion values are scaled between 0 and 1.

𝑖
󸀠 that belong to the same cluster in Ĉte (i.e., 𝑖 ̸= 𝑖

󸀠
∈ Ĉte,𝑗, 𝑗 =

1, . . . , 𝑘) also fall into the same cluster in Ĉtr, and 0 otherwise.
The prediction strength statistic can be written as

PS = min
1≤𝑗≤𝑘

1

𝑛
𝑗
(𝑛
𝑗
− 1)

∑

𝑖 ̸=𝑖
󸀠
∈Ĉte,𝑗

𝐷[Ĉtr, Ĉte]
𝑖𝑖
󸀠
. (17)

Therefore, the prediction strength is the proportion of obser-
vation pairs in the worst performing test cluster whose
clustering results remain unchangedwhen clustering themby
the training set clustering rule. Clearly, a regression clustering
result has higher predictive power if the associated PS is
higher.

For our data, we assess the clustering performance by
cross-validation using 4 random partitions of our sample.
Cross-validated prediction strength values for 𝑘-means, LS,
and RM regression clustering methods are 0.44, 0.80, and
0.66, respectively.This suggests that the LS regression cluster-
ing is superior to the 𝑘-means. Moreover, due to the absence
of strong deviations from the multivariate normal model for
these data, the out-of-sample prediction strength of the LS
regression clustering is larger than that of the robust RM
regression clustering approach.

7. Conclusion

In this paper, we review the general cluster analysis methods
and then focus on regression clustering which uses themodel
based fixed partition method and clusters the data based
on the dependence between the response and explanatory

variables.We provide both least squares based and robust𝑀-
estimation based methods for estimating parameters, parti-
tioning the data, and selecting the optimal number of clusters
in regression clustering. Algorithms have been developed to
implement thesemethods.The example and simulation study
conclude a satisfactory finite sample performance of the algo-
rithms. Applying our developed method to regression cluster
the RGB cells tracking data gives results compatible with
biological considerations. It is known that the methods can
only provide a local optimization solution and are computing
intensive especially when the sample size is large. Currently,
we are investigating these issues and expect to provide an
improved solution to be reported elsewhere in the near future.
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