
Research Article
Online Sequential Projection Vector Machine with
Adaptive Data Mean Update

Lin Chen,1 Ji-Ting Jia,1 Qiong Zhang,1 Wan-Yu Deng,1 and Wei Wei2

1School of Computer, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
2School of Computer Science and Engineering, Xian University of Technology, Xi’an 710048, China

Correspondence should be addressed to Wei Wei; weiwei@xaut.edu.cn

Received 30 October 2015; Accepted 11 January 2016

Academic Editor: J. A. Hernández

Copyright © 2016 Lin Chen et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a simple online learning algorithm especial for high-dimensional data.The algorithm is referred to as online sequential
projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or
chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly.
In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and
output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of
hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was
made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted
stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver
(Pegasos), online sequential extreme learningmachine (OSELM), and SVD+OSELM (feature selection based on SVD is performed
before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

1. Introduction

In many real applications, such as text mining, visual track-
ing, and dynamical interest perception, there are always two
problems: (1) new data arriving sequentially and (2) the data
which is in high-dimensional space. For the first problem,
many online sequential algorithms have been proposed [1–
13]. SGBP [1] is one of the main variants of BP for sequential
learning applications in which the network parameters are
learned iteratively on the basis of first-order information.
Crammer and Lee [7] proposed a new family of online
learning algorithms based upon constraining the velocity
flow over a distribution of weight vectors. Hoi et al. [8]
proposed an online multiple kernel classification algorithm
which learns a kernel-based prediction function by selecting
a subset of predefined kernel functions in an online learning
fashion. Wang et al. [9] proposed a Fourier online gradient
descent algorithm that applies the random Fourier features
for approximating kernel functions. Zhao et al. [14] proposed
a fast bounded online gradient descent algorithm for scalable
kernel-based applications that aims to constrain the number

of support vectors by a predefined budget. Zhang et al.
[11] proposed an online kernel learning algorithm which
measures the difficulty in correctly classifying a training
example by the derivative of a smooth loss function and
gave more chance to a difficult example to be a support
vector than an easy one via a sampling scheme. Shalev-
Shwartz et al. [12] proposed a simple and effective stochastic
subgradient descent algorithm primal estimated subgradient
solver (Pegasos) for solving the optimization problem cast by
Support Vector Machines (SVMs). Wang et al. [13] proposed
an adaptive multihyperplane machine (AMM) model that
consists of a set of linear hyperplanes (weights), each assigned
to one of the multiple classes and predicts based on the asso-
ciated class of the weight that provides the largest prediction.
Wang et al. [10] proposed a budgeted stochastic gradient
descent (BSGD) approach for training SVMs which keeps
the number of support vectors bounded during training
through several budget maintenance strategies. OSELM [15]
is a very fast sequential algorithmderived frombatch extreme
learning machine (ELM) [16] in which the input weights are
randomly generated and the output weights are determined

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 5197932, 13 pages
http://dx.doi.org/10.1155/2016/5197932

2 Computational Intelligence and Neuroscience

by incremental least square. The aforementioned algorithms
have their own advantages, respectively, in solving online
learning problems for new data. However, they all thought
that data preprocessing is independent on the model online
learning. Different to these approaches, we propose an online
learning algorithm OSPVM (online sequential projection
vector machine) based on batch-PVM which enjoys the
properties of combining data preprocessing (data centering
and dimension reduction) and the model learning as a total.
In our earlier work we have proposed incremental PVM
[17] which can learn PVM incrementally; however, it cannot
update data mean automatically. Data mean update is very
important for improving the generalized performance of
OSPVM. When new samples arrive, if the data mean is not
updated, the components (features) obtained by SVD/PCA
will shift and degrade the generalized performance. The
proposed OSPVM algorithm enjoys three prosperities: (1)
the mean of data can be updated dynamically, (2) projection
vectors can be updated incrementally to capture more useful
features from new data, and (3) the number of hidden
nodes can be adjusted adaptively to ensure enough learning
capability.

The paper is organized as follows. Section 2 gives a brief
review of the batch-PVM. Section 3 presents the derivation
of OSPVM. Performance evaluation of OSPVM is shown
in Section 4 based on the benchmark problems in different
areas. Conclusions based on the study and experiments are
made in Section 5.

2. Review of Projection Vector Machine

This section briefly reviews the batch-PVM developed by
Deng et al. [18] to provide the necessary background for the
development of OSPVM in Section 3. In order tomake it easy
to read, some symbols are defined:

(i) [A,B]: horizontal concatenation of matrix A and B;
(ii) [A;B]: vertical concatenation of matrix A and B;
(iii) A = (∑

𝑛

𝑖=1
x
𝑖
)/𝑛: mean vector of A;

(iv) 1
1×𝑛

= [1, 1, . . . , 1]
1×𝑛

.

2.1. Single Hidden Layer Feedforward Neural Network (SLFN).
For 𝑛 arbitrary distinct samples ℵ = {(x

𝑖
, t
𝑖
)}
𝑛

𝑖=1
, where x

𝑖
=

[𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑚
]
𝑇

∈ R𝑚 and t
𝑖
= [𝑡
𝑖1
, 𝑡
𝑖2
, . . . , 𝑡

𝑖ℓ
]
𝑇

∈ Rℓ, a
standard SLFN with 𝑁̃ hidden nodes and activation function
𝑔(𝑥) are mathematically modeled as

𝑁̃

∑
𝑖=1

𝛽
𝑖
𝑔
𝑖
(x
𝑘
) =

𝑁̃

∑
𝑖=1

𝛽
𝑖
𝑔
𝑖
(w
𝑖
⋅ x
𝑘
+ 𝑏
𝑖
) = o
𝑘
,

𝑘 = 1, 2, . . . , 𝑛,

(1)

where w
𝑖
= [𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑚
]
𝑇

∈ R𝑚 is the input weight
vector connected with the 𝑖th hidden nodes and the input
nodes, 𝑏

𝑖
∈ R is the threshold of 𝑖th hidden nodes, and

𝛽
𝑖
= [𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖ℓ
]
𝑇

∈ Rℓ is the output weight vector
connecting with the 𝑖th hidden nodes and the output nodes.

w
𝑖
⋅ x
𝑘
denotes the inner product of w

𝑖
and x
𝑘
. If 𝑏
𝑖
is treated

input weights and denoted as𝑤
𝑖(𝑚+1)

, thenw
𝑖
can be extended

tow
𝑖
= [𝑤
𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑚
, 𝑤
𝑖(𝑚+1)

]
𝑇

∈ R𝑚+1 and the sample x
𝑘

is extended to [x
𝑘
; 1]. Equation (1) can be transformed as

𝑁̃

∑
𝑖=1

𝛽
𝑖
𝑔
𝑖
(w
𝑖
⋅ [x
𝑘
; 1]) = o

𝑘
, 𝑘 = 1, 2, . . . , 𝑛. (2)

The above 𝑛 equations can be written compactly as

𝑔 (H
𝑖𝑛
)𝛽 = T, (3)

where

𝑔 (H
𝑖𝑛
) = 𝑔 (W [X; 1])

=

[
[
[
[

[

𝑔 (w
1
⋅ [x
1
; 1]) ⋅ ⋅ ⋅ 𝑔 (w

𝑁̃
⋅ [x
1
; 1])

... ⋅ ⋅ ⋅
...

𝑔 (w
1
⋅ [x
𝑘
; 1]) ⋅ ⋅ ⋅ 𝑔 (w

𝑁̃
⋅ [x
𝑘
; 1])

]
]
]
]

]𝑛×𝑁̃

,
(4)

W = [w
𝑖
,w
2
, . . . ,w

𝑁̃
]
𝑇, 𝛽 = [𝛽

1
,𝛽
2
, . . . ,𝛽

𝑁̃
]
𝑇, X = [x

1
, . . . ,

x
𝑛
]
𝑇, and T = [t

1
, . . . , t

𝑛
]
𝑇. To train an SLFN, one may wish

to find specificW, 𝛽 to minimize the following cost function:

𝜉 (W,𝛽) =
󵄩󵄩󵄩󵄩𝑔 (W [X, 1])𝛽 − T󵄩󵄩󵄩󵄩 . (5)

Gradient-based learning algorithms [19] are generally used
to search (W,𝛽) by minimizing 𝜉(W,𝛽), but they are time-
consuming and maybe stop at a local minima. Extreme
learning machine (ELM) [16, 20] randomly chooses input
weights W and analytically determines the output weights
𝛽 byMoore-Penrose generalized inverse. ELM can learn hun-
dreds of times faster than gradient-based learning algorithms.
But for the high-dimension and small-sample data, ELM will
become unstable seriously especially when the data is sparse
(there aremany zero features). In order to tackle this problem,
we have proposed batch projection vector machine (Batch-
PVM) [18].

2.2. Batch Projection Vector Machine (Batch-PVM). Batch-
PVMcombines SLFN togetherwith SVD seamlessly, inwhich
the input weights of SLFNs are calculated from SVD. Given
data X, through data centralization and extension, the data is
transformed as [X − 1

𝑛×1
X; 1] and its low rank SVD is

[X − 1
𝑛×1

X; 1] svd
←󳨀󳨀 U

𝑑
Λ
𝑑
V𝑇
𝑑
, (6)

where 𝑑 is the truncated rank,U𝑇
𝑑
is the projection vectors by

which the data [X − 1
𝑛×1

X; 1] is mapped into low-dimension
space:

U𝑇
𝑑
[X − 1

𝑛×1
X; 1] = Λ

𝑑
V𝑇
𝑑
. (7)

Since the role of input weights of SLFN can be treated as
dimension reduction, thus they can be directly obtained by

W = U𝑇
𝑑
. (8)

Computational Intelligence and Neuroscience 3

Naturally, the number of hidden nodes is determined by

𝑁̃ = 𝑑. (9)

The problem becomes linear problem, and thus the output
weights 𝛽 can be obtained by

𝛽 = 𝑔 (H
𝑖𝑛
)
† T = 𝑔 ([X − 1

𝑛×1
X; 1]U𝑇

𝑑
)

= 𝑔 (Λ
𝑑
V𝑇
𝑑
)
†

T.
(10)

The experimental results in many classification and regres-
sion problems show that Batch-PVM is faster and more
accurate than the familiar two-stage methods in which
dimension reduction and SLFN training are independent.
The batch-PVM assumes that all the training data (samples)
are available, but, in real applications, some training data has
been accumulated but at the same time new data will arrive
chunk-by-chunk or one-by-one (a special case of chunk).The
batch-PVM has to be modified for this case so as to make it
able to learn online sequentially [21, 22].

3. The Proposed Online Sequential Algorithm

The seamless combination of dimension reduction and SLFN
training facilitates the design of sequential online learning.
Once the SVD is updated for new samples, the dimension
reduction projectionmatrix and all the parameters {W,𝛽, 𝑁̃}

of SLFN can be updated conveniently.

3.1. Data Mean and Projection Vectors Update. Assume that
𝑛
𝑎
training samples ℵ

𝑎
= {(x
𝑖
, t
𝑖
)}
𝑛
𝑎

𝑖=1
have been available so

far, the inputs and targets are denoted asA = [x
1
, x
2
, . . . , x

𝑛
𝑎

]
𝑇

and T
𝑎
= [t
1
, t
2
, . . . , t

𝑛
𝑎

]
𝑇, respectively. By centralization

(subtracting the mean of the inputs) and extension, the data
can be transformed as

Â = [A − A1
1×𝑛
𝑎

; 1] . (11)

The SVD of Â with the truncated rank 𝑟
𝑎
is

Â svd
←󳨀󳨀 U

𝑟
𝑎

Λ
𝑟
𝑎

V𝑇
𝑟
𝑎

, 𝑟
𝑎
≪ 𝑚. (12)

Assume that 𝑘th chunk of data ℵ
𝑏
= {(x
𝑖
, t
𝑖
)}
𝑛
𝑏

𝑖=1
is presented

where the new inputs and targets are denoted as B
𝑘

=

[x
1
, x
2
, . . . , x

𝑛
𝑏

] and T
𝑏
= [t
1
, t
2
, . . . , t

𝑛
𝑏

], respectively, and
the horizontal concatenation of A and B

𝑘
is denoted as C =

[A,B
𝑘
]
𝑚×(𝑛
𝑎
+𝑛
𝑏
)
.

The update task is to get the newmeanC and SVD of [C−
1
(𝑛
𝑎
+𝑛
𝑏
)×1

C; 1]; that is,

[C − 1
(𝑛
𝑎
+𝑛
𝑏
)×1

C; 1] svd
←󳨀󳨀 U

𝑟
𝑐

Λ
𝑟
𝑐

V𝑇
𝑟
𝑐

. (13)

There are many sophisticated algorithms that have been
developed to efficiently update SVD as more data arrive [23].
However, most approaches assume that the sample mean
is fixed when updating the eigenbasis or equivalently that

the data is inherently zero-mean. This assumption does not
hold in many applications. New samples will lead to the
change of data mean and thus the mean needs to be recom-
puted before updating SVD. One approach proposed by Hall
et al. [24] considered the change of the mean while updating
SVD as one set of new data arrives. However the high
computational cost is a bottleneck of this method applied to
many applications.Herewewill extend Sequential Karhunen-
Loeve [25] algorithm to make it suitable for updating SVD
efficiently with mean update simultaneously.

First we update the mean. The mean vector of A and B
𝑘

is A = (∑
𝑛
𝑎

𝑖=1
x
𝑖
)/𝑛
𝑎
, B
𝑘
= (∑
𝑛
𝑏

𝑖=1
x
𝑖
)/𝑛
𝑏
, so the mean vector of

C is

C =
∑
𝑛
𝑎
+𝑛
𝑏

𝑖=1
x
𝑖

𝑛
𝑎
+ 𝑛
𝑏

=
∑
𝑛
𝑎

𝑖=1
x
𝑖
+ ∑
𝑛
𝑏

𝑖=1
x
𝑖

𝑛
𝑎
+ 𝑛
𝑏

=
𝑛
𝑎
𝐴 + 𝑛
𝑏
𝐵
𝑘

𝑛
𝑎
+ 𝑛
𝑏

. (14)

It is not difficult to find that

[C − C1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 1]

= [[A − A1
1×𝑛
𝑎

; 1] , [B
𝑘
− A1
1×𝑛
𝑏

; 1]]

+ [(A − C) 1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 0]

= [Â, B̂
𝑘
] + [(A − C) 1

1×(𝑛
𝑎
+𝑛
𝑏
)
; 0] ,

(15)

where Â = [A−A1
1×𝑛
𝑎

; 1] and B̂
𝑘
= [B
𝑘
−A1
1×𝑛
𝑏

; 1]. Since the
SVD of Â has been known, this means that we can compute
the SVD of [Â, B̂

𝑘
] by incremental algorithm [18]:

[Â, B̂
𝑘
] = ÛΛ̂V̂𝑇. (16)

Denote V̇𝑇 = V̂𝑇 − V̂𝑇1
1×(𝑛
𝑎
+𝑛
𝑏
)
; then we have V̂𝑇 = V̇𝑇 +

V̂𝑇1
1×(𝑛
𝑎
+𝑛
𝑏
)
. Therefore,

[Â, B̂
𝑘
] = ÛΛ̂(V̇𝑇 + V̂𝑇1

1×(𝑛
𝑎
+𝑛
𝑏
)
)

= ÛΛ̂V̇𝑇 + ÛΛ̂V̂𝑇1
1×(𝑛
𝑎
+𝑛
𝑏
)

= ÛΛ̂V̇𝑇 + [Â, B̂
𝑘
]1
1×(𝑛
𝑎
+𝑛
𝑏
)

= ÛΛ̂V̇𝑇

+ [[A − A1
1×𝑛
𝑎

; 1] , [B
𝑘
− A1
1×𝑛
𝑏

; 1]]1
1×(𝑛
𝑎
+𝑛
𝑏
)

= ÛΛ̂V̇𝑇 + ([[A,B
𝑘
] − [A,A]; 0]) 1

1×(𝑛
𝑎
+𝑛
𝑏
)

= ÛΛ̂V̇𝑇 + [(C − A) 1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 0] .

(17)

4 Computational Intelligence and Neuroscience

Substituting it into (15), we have

[C − C1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 1] = ÛΛ̂V̇𝑇

+ [(C − A) 1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 0]

+ [(A − C) 1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 0]

= ÛΛ̂V̇𝑇.

(18)

It is obvious that the SVD of [C − 1
(𝑛
𝑎
+𝑛
𝑏
)×1

C; 1] can be
calculated based on the SVD of ÛΛ̂V̇𝑇. Perform QR-decom-
position of V̇,

V̇ = Q̇Ṙ. (19)

Substituting (19) into (18) we have

[C − C1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 1] = (ÛΛ̂Ṙ𝑇) Q̇𝑇. (20)

Perform SVD on ÛΛ̂Ṙ𝑇:

U
𝑓
Λ
𝑓
V𝑇
𝑓
= ÛΛ̂Ṙ𝑇. (21)

Substituting (21) into (20) we get the SVD of [C −

C1
1×(𝑛
𝑎
+𝑛
𝑏
)
; 1]:

C − C1
1×(𝑛
𝑎
+𝑛
𝑏
)
= U
𝑓⏟⏟⏟⏟⏟⏟⏟

U

Λ
𝑓⏟⏟⏟⏟⏟⏟⏟
Λ

(V
𝑓
Q̇)
𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

V𝑇

. (22)

Go back to the SVD of [Â, B̂
𝑘
]. Let B̃

𝑘
be component of B̂

𝑘

orthogonal to U
𝑟
𝑎

; that is,

B̃
𝑘
←󳨀 orth (B̂

𝑘
− U
𝑟
𝑎

U𝑇
𝑟
𝑎

B̂
𝑘
) . (23)

We can get the following partitioned form:

[Â, B̂
𝑘
]

svd
←󳨀󳨀 [U

𝑟
𝑎

B̃
𝑘
] [
Λ
𝑟
𝑎

U𝑇
𝑟
𝑎

B̂
𝑘

0 B̃𝑇
𝑘
B̂
𝑘

][
V𝑇
𝑟
𝑎

0
0 I

] . (24)

Let M = [
Λ
𝑟𝑎

U𝑇
𝑟𝑎

B̂
𝑘

0 B̃𝑇B̂
𝑘

]. The SVD of M can be computed in
constant time regardless of the following:

M svd
←󳨀󳨀 ŨΛ̃Ṽ𝑇. (25)

So we get the SVD of [Â, B̂
𝑘
],

[Â, B̂
𝑘
]

svd
←󳨀󳨀 ([UB̃

𝑘
] Ũ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Û

Λ̃⏟⏟⏟⏟⏟⏟⏟
̂Λ

(Ṽ𝑇 [
V𝑇 0
0 I

])
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

V̂𝑇

.
(26)

3.2. Hidden Nodes Update Adaptively. The number of hidden
nodes is very important for SLFN [6]. Too many hidden
nodes lead to overfitting while too few hidden nodes might
lead to insufficiency of learning capability. When new train-
ing samples are presented the hidden nodes should be added
to ensure the SLFNmodel possesses enough learning capabil-
ity. OP-ELM [26] ranked the hidden nodes by multiresponse

sparse regression (MRSR) and then make the final decision
over the appropriate number of nodes by Leave-One-Out
(LOO) validation method. I-ELM [27] increase random
hidden nodes one-by-one until the residual error is smaller
than one given threshold value. EI-ELM [28] selected the
optimized random hidden nodes from one random hidden
nodes set before increasing hidden node one-by-one. C-ELM
[29] associate each model term to a regularized parameter;
as a result, insignificant ones are automatically penalized and
unselected. Since, in PVM, the number of hidden nodes 𝑁̃ is
equal to the target low rank 𝑑 of SVD, we will adopt accumu-
lation ratio of principle components to determine the number
of nodes.The accumulation ratio is defined by [30] as follows:

𝛾 (𝑁̃) =
∑
𝑁̃

𝑖=1
𝜎
𝑖

∑
𝑟
𝑐

𝑖=1
𝜎
𝑖

, (27)

where 𝜎
𝑖
denotes the singular value constituting the singular

value diagonal matrix Λ
𝑟
𝑐

= Diag{𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑟
𝑐

}, 𝑁̃ denotes
the number of hidden nodes, and 𝑟

𝑐
is number of nonzero

singular values. By choosing one proper value 𝑁̃ that makes
𝛾(𝑁̃) < 𝜃 hold, where 𝜃 is a given threshold value, we can get
the new number of hidden nodes.The new input weights can
be updated by

W = U
𝑁̃new

. (28)

The output weight is updated by

𝛽 = 𝑔 (Λ
𝑁̃new

V𝑇
𝑁̃new

)
†

[
T
𝑎

T
𝑏

] . (29)

The algorithm can be summarized as Algorithm 1.

3.3. Theoretical Analysis: OSPVM versus OSELM. It is very
difficult to prove OSPVM is better than OSELM strictly. So
here we just give some theoretical analysis about OSPVM
being better than OSELM from feature learning opinion.

As discussed in literature [31], minimizing reconstruction
error is one very important condition to learn useful features.
Reconstruction error of OSELM can be written as

𝐸OSELM =
󵄩󵄩󵄩󵄩󵄩
X − XWrandW

†

rand
󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (30)

whereX ∈ R𝑛×𝑚 is inputs (𝑛 is the number of instances and𝑚
is the dimensionality of data),Xrand ∈ R𝑚×𝑁 (𝑁 is the number
of hidden nodes) is input weights which are random values,
and ‖⋅‖2

𝐹
is Frobenius norm. Reconstruction error of OSPVM

can be written as

𝐸OSPVM =
󵄩󵄩󵄩󵄩󵄩
X − XWSVDW

𝑇

SVD
󵄩󵄩󵄩󵄩󵄩

2

𝐹

; (31)

WSVD is input weights and obtained by singular value
decomposition (SVD) as follows:

U
𝑁̃
S
𝑁̃
V𝑇
𝑁̃

𝑁̃-rank SVD
←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀 X

s.t. U𝑇
𝑁̃
U
𝑁̃
= I,

V𝑇
𝑁̃
V
𝑁̃
= I,

WSVD ←󳨀 V
𝑁̃
.

(32)

Computational Intelligence and Neuroscience 5

Initial Phase: Given the initial training data A, the accumulation ratio 𝜃.
(1) Compute the data mean A and get Â = [A − A1

1×𝑛
𝑎

; 1];
(2) Compute SVD of Â : Â svd

←󳨀󳨀 UΛV𝑇;
(3) Get the hidden nodes 𝑁̃ by making 𝛾(𝑁̃) > 𝜃;
(4) Obtain input weightsW = U𝑇

𝑁̃
;

(5) Compute the output weights 𝛽 = 𝑔(Λ
𝑁̃
V𝑇
𝑁̃
)
†T
𝑎

Online learning phase: Given the 𝑘th chunk of data B
𝑘
,

(1) Compute B̂
𝑘
= [B
𝑘
− A1
1×𝑛
𝑏

; 1];
(2) Compute B̃

𝑘
← orth(B̂

𝑘
− U
𝑁̃
U𝑇
𝑁̃
B̂
𝑘
);

(3) SetM = [
Λ
𝑟𝑎

U𝑇
𝑟𝑎
B̂
𝑘

0 B̃𝑇
𝑘
B̂
𝑘

]

(4) ComputeM svd
←󳨀󳨀 ŨΛ̃Ṽ𝑇

(5) Compute [Â, B̂
𝑘
]

svd
←󳨀󳨀 ([UB̃

𝑘
]Ũ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Û

Λ̃⏟⏟⏟⏟⏟⏟⏟
̂Λ

(Ṽ𝑇 [V𝑇 0
0 I])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

V̂𝑇

;

(6) Compute V̇𝑇 = V̂𝑇 − V̂𝑇1
1×(𝑛
𝑎
+𝑛
𝑏
)
;

(7) Compute the QR-decomposition of V̇ = Q̇Ṙ
(8) Compute SVD of ÛΛ̂Ṙ𝑇 :U

𝑓
Λ
𝑓
V𝑇
𝑓
= ÛΛ̂Ṙ𝑇

(9) Get the updated SVD :C − C1
1×(𝑛
𝑎
+𝑛
𝑏
)
= U
𝑓
Λ
𝑓
(V
𝑓
Q̇)𝑇;

(10) Get the new number of hidden nodes 𝑁̃new by making 𝛾(𝑁̃new) > 𝜃

(11) Update input weightsW = U𝑇
𝑁̃new

;
(12) Update the output weights 𝛽 = 𝑔(Λ

𝑁̃new
V𝑇
𝑁̃new

)† [
T
𝑎

T
𝑏

]

Algorithm 1: OSPVM algorithm.

SubstitutingWSVD ← V
𝑁̃
into 𝐸OSPVM, we have

𝐸OSPVM =
󵄩󵄩󵄩󵄩󵄩
X − XV

𝑁̃
V𝑇
𝑁̃

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
󵄩󵄩󵄩󵄩󵄩
X − (U

𝑁̃
S
𝑁̃
V𝑇
𝑁̃
)V
𝑁̃
V𝑇
𝑁̃

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
󵄩󵄩󵄩󵄩󵄩
X − (U

𝑁̃
S
𝑁̃
) (V𝑇
𝑁̃
V
𝑁̃
)V𝑇
𝑁̃

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
󵄩󵄩󵄩󵄩󵄩
X − (U

𝑁̃
S
𝑁̃
) IV𝑇
𝑁̃

󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
󵄩󵄩󵄩󵄩󵄩
X − U

𝑁̃
S
𝑁̃
V𝑇
𝑁̃

󵄩󵄩󵄩󵄩󵄩

2

𝐹

;

(33)

‖X − U
𝑁̃
S
𝑁̃
V𝑇
𝑁̃
‖2
𝐹
is the error of optimized rank-𝑁̃ approx-

imation of X; that is, ‖X − U
𝑁̃
S
𝑁̃
V𝑇
𝑁̃
‖2
𝐹
is the minima of

reconstruction error with rank 𝑁̃. Therefore, the reconstruc-
tion error 𝐸OSELM of OSELM must be larger than that of
OSPVM: 𝐸OSELM > 𝐸OSPVM. In summary, when OSELM
and OSPVM are with the same number of hidden nodes
𝑁̃ ≪ 𝑛, 𝐸OSPVM is always smaller than 𝐸OSELM. Another
condition to obtain better generalization performance is
to make the hidden nodes 𝑁̃ as few as possible (Occam’s
Razor theory). Considering these two conditions, we can
get the inferences: (1) when OSPVM and OSELM are with
the same number of hidden nodes and satisfying 𝑁 ≪ 𝑛,
the reconstruction error of OSPVM is smaller than OSELM
(𝐸OSPVM < 𝐸OSELM). This will help OSPVM to obtain better
generalization performance in general, and (2) for the same
reconstruction error OSPVM always needs less hidden nodes
than OSELM. According to Occam’s Razor theory, OSPVM
will produce better generalization performance than OSELM
with less hidden nodes.

Table 1: The specifications of the benchmark problems.

Dataset #Training set #Testing set #Attributes #Classes
Face 200 200 1600 10
Secom 1254 313 590 2
Arcene 400 500 10000 2
Dexter 1400 1200 20000 2
Multi.fea. 400 1600 650 10
News20 3993 15935 62061 20
Sector 3207 6412 55197 105

Next, we briefly explainwhyOSPVM is better than SVD+
OSELM in generalization performance in most cases. Similar
to OSPVM, SVD + OSELM represents the data by SVD
to obtain more useful features. However, SVD + OSELM
discards the projection vectors obtained by SVD and still
uses randomly values as input weights. In contrast, OSPVM
uses the resulted projection vectors as input weights and thus
can avoid the instability of random weights. So OSPVM can
produce better generalization performance than SVD + ELM
in most cases.

4. Performance Evaluation

4.1. Datasets and Experimental Settings. We select OSELM,
BSGD, AMM, and Pegasos to compare with OSPVM on
various UCI benchmark problems as shown in Table 1.
For fair comparison, the feature selection by SVD is first
conducted before these algorithms. The number of reduced

6 Computational Intelligence and Neuroscience

dimensions 𝑑 and the number of hidden nodes 𝑁̃ are
both gradually increased by an interval of 5 and the nearly
optimal combinations (𝑑, 𝑁̃) are selected by cross-validation
method. OSELM code is downloaded from ELM homepage
(http://www.ntu.edu.sg/home/egbhuang/). BSGD,AMM, and
Pegasos are downloaded from the BudgetedSVM website
(http://www.dabi.temple.edu/budgetedsvm/). OSPVM and
SVD + OSELM are implemented by ourselves. For OSELM
and Batch-PVM, the number of hidden nodes is gradually
increased by an interval of 5 and the nearly optimal one
is then selected by cross-validation method. For OSPVM,
the accumulation rate threshold 𝜃 is chosen in the range
of [0.95, 0.99] by cross-validation method for every especial
application. The activation functions for OSELM, OSPVM,
SVD + OSELM, and Batch-PVM are all set as sigmoid
function 𝑔(𝑥) = 1/(1 + 𝑒

−𝑥

). For BSGD we set the kernel
as Gaussian kernel K(x

𝑖
, x
𝑗
) = exp(−(1/𝜎)‖x

𝑖
− x
𝑗
‖2), the

budget maintenance strategy is set as “merging” which is
more accurate than another alternate “removing,” and the
number of budgeted support vectors is determined by cross-
validation method. For AMM, the limit on the number of
weights per class in AMM is determined by cross-validation
method, and the learning rate is set to 0.0001. All the simula-
tions are running in MATLAB 7, Pentium i7 920@2.67GHZ
CPU, and 6G RAM environment. Average results of 20 trials
of simulations for each fixed size of SLFN are obtained and
then finally the best performance including training accuracy,
testing accuracy, training time, testing time, and 𝑡-test is
reported in this paper. 𝑡-test [32] is used to evaluate the
performance difference of the algorithms. Denoting testing
accuracies on the five datasets of 𝑖th algorithm as a

𝑖
= 𝑎
𝑖,1
,

𝑎
𝑖,2
, . . . , 𝑎

𝑖,5
, 𝑡 value can be computed as follows:

𝑡 =
a
𝑖
− a
𝑗

√V2
𝑖
/𝑛
𝑖
+ V2
𝑗
/𝑛
𝑗

, (34)

where a
𝑖
and a

𝑗
denote mean value of a

𝑖
and a

𝑗
, V2
𝑖
and V2

𝑗

represent the variance of a
𝑖
and a
𝑗
, and 𝑛

𝑖
and 𝑛

𝑗
denote the

number of datasets (here 𝑛
𝑖
= 𝑛
𝑗
= 5). By checking 𝑡-table,

we can obtain the significant level 𝑝. Notice that the smaller
the 𝑝 value the more significant the difference.

OSPVM is first comparedwith Bach-PVM,BSGD,AMM,
and Pegasos in this section. The number of hidden nodes,
training time, testing time, training accuracy, and testing
accuracy are reported in Table 2. The 𝑡-test results including
𝑡 value and significant level 𝑝 are summarized in Table 3. We
can find from Table 2 that OSPVM can achieve nearly the
same generalization to Batch-PVM while the training time
is longer than Batch-PVM. The 16-by-16 mode is faster than
one-by-one. Taking “Face” dataset as an example, the training
time of OSELM is about 1.5 seconds and 13.07 seconds in
16-by-16 and 1-by-1 model, respectively. The reason lies in
the fact that the bigger the chunk size, the fewer the update
frequency. Batch-PVM just needs 0.46 seconds for “Face”
dataset. In fact, Batch-PVM is one extreme case that initial
data is entire data and does not need any update. For new

samples, OSPVM can learn incrementally while Batch-PVM
has to be retrained from the start. Taking “Face” dataset
as an example, the average updating time of OSPVM for
every sample is around 1.5/200 = 0.0075 seconds, while, for
Batch-PVM, since it has to be retrained from the start, the
updating time for every sample will be about 0.460 seconds.
OSPVM ismuch faster than Batch-PVM in updating time for
each sample. Table 2 also reported the results of considered
algorithms BSGD, AMM, and Pegasos. The training time of
BSGD, AMM, and Pegasos consists of the costs of dimension
reduction and model training. From Tables 2 and 3 we
can find that OSPVM can obtain competitive generalization
performance in comparison to BSGD with 𝑡 = 0.183 and
𝑝 > 0.1 and significantly better than AMM (𝑡 = 4.141 and
0.01 > 𝑝 > 0.001) and Pegasos (𝑡 = 2.267 and 0.1 > 𝑝 >

0.05) while taking shorter training time. Still taking “Face”
dataset as an example, BSGD, AMM, and Pegasos need 1.542,
1.99, and 1.530 seconds to obtain 91.63%, 88.75%, and 86.38%
testing accuracy while OSPVM takes 1.50 seconds for 92.87%
accuracy.

4.2. One-by-One. In this section we will compare OSPVM,
OSELM, and SVD + OSELM in one-by-one case. Their
training and testing accuracy are reported in Table 4, 𝑡 values
are shown in Table 6 and training time and testing time
are reported in Table 5. As observed from Tables 4 and 5,
although OSELM can learn at the fastest speed, OSPVM
can produce better generalization performance than OSELM
with 𝑡 = 0.950 and 𝑝 > 0.1. OSPVM obtained improved
performance inmost cases compared to SVD+OSELMwhile
saving training time. Taking “Face” dataset as an example,
SVD+OSELM takes 22.40 s to produce 91.0% accuracy while
OSPVM takes 13.07 s to reach 91.2% accuracy.The reason lies
in the fact that OSPVM can learn useful features similar to
SVD + ELM and remove the redundancy between dimension
reduction and neural network training. For SVD + OSELM,
two control parameters including target dimensions and the
number of hidden nodes need to be tuned, while for OSPVM
only one parameter needs to be determined. This will make
OSPVM more simple to determine parameter settings and
more convenient for usage in real applications than SVD +
OSELM. As shown in Table 7 where the hidden nodes and
target dimension are reported, OSPVM needs less hidden
nodes than OSELM and SVD + OSELM. This means that
OSPVM can achieve better responding ability than other
algorithms.

4.3. Chunk-by-Chunk. The performance of OSPVM, SVD +
OSPVM, and OS-ELM in chunk-by-chunk mode (here we
select 16-by-16 as an example) is reported in Tables 8, 9, 10,
and 11. The results are similar to one-by-one model. Table 9
shows that OSPVM needs longer training time than OSELM
but shorter training time than SVD + OSELM. Tables 8,
10, and 11 show that OSPVM obtained better generalization
performance and more compact structure than OSELM and
SVD + OSELM in most cases. This means that OSPVM can
improve the stability of OSELM in solving small-sample and
high-dimensional problems and inherits the advantage of
OSELM in aspect of learning efficiency.

Computational Intelligence and Neuroscience 7

Table 2: Comparison of OSPVM, Batch-PVM, BSGD, AMM, and Pegasos.

Dataset Algorithms Nodes (𝜃) Training time (s) Testing time (s) Training accuracy Testing accuracy

Face

OSPVM (40, 16-by-16) 51 (0.96) 1.50 s 0.0004 s 99.89% 92.87%
OSPVM (40, 1-by-1) 43 (0.99) 13.07 s 0.0005 s 99.20% 91.20%

Batch-PVM 65 0.460 s 0.0005 s 99.81% 92.30%
SVD + BSGD [10] 200 1.542 s 0.0835 s 99.92% 91.63%

SVD + AMMOnline [13] 200 1.990 s 0.0300 s 99.82% 88.75%
SVD + Pegasos [12] — 1.530 s 0.0240 s 99.11% 86.38%

Secom

OSPVM (40, 16-by-16) 61 (0.96) 1.67 s 0.007 s 94.08% 93.14%
OSPVM (40, 1-by-1) 16 (0.96) 4.01 s 0.0004 s 94.14% 93.3%

Batch-PVM 60 0.525 s 0.0073 s 93.37% 93.35%
SVD + BSGD 100 1.801 s 0.0083 s 95.12% 93.13%

SVD + AMMOnline 100 12.19 s 0.031 s 94.11% 87.87%
SVD + Pegasos — 1.660 s 0.026 s 93.16% 89.12%

Arcene

OSPVM (40, 16-by-16) 106 (0.96) 61.17 s 0.0005 s 95.88% 90.50%
OSPVM (40, 1-by-1) 39 (0.96) 130.6 s 0.0004 s 93.5% 86.7%

Batch-PVM 85 5.06 s 0.00038 s 94.63% 90.80%
SVD + BSGD 200 65.22 s 0.0335 s 95.92% 90.43%

SVD + AMMOnline 200 81.69 s 0.06 s 94.89% 87.75%
SVD + Pegasos — 56.41 s 0.044 s 94.42% 86.31%

Dexter

OSPVM (40, 16-by-16) 176 (0.96) 131.1 s 0.004 s 97.88% 92.25%
OSPVM (40, 1-by-1) 86 (0.96) 619.3 s 0.004 s 96.0% 91.20%

Batch-PVM 160 10.36 s 0.005 s 98.38% 91.25%
SVD + BSGD 200 148.54 s 0.003 s 97.98% 92.63%

SVD + AMMOnline 200 178.19 s 0.003 s 96.81% 89.95%
SVD + Pegasos — 119.40 s 0.004 s 95.87% 87.36%

Multi.fea.

OSPVM (40, 16-by-16) 55 (0.96) 4.93 s 0.0053 s 98.16% 94.40%
OSPVM (40, 1-by-1) 38 (0.96) 13.4 s 0.0047 s 96.6% 93.4%

Batch-PVM 160 1.83 s 0.0192 s 99.98% 95.67%
SVD + BSGD 200 5.54 s 0.0095 s 98.42% 94.63%

SVD + AMMOnline 200 10.79 s 0.03 s 99.82% 92.15%
SVD + Pegasos — 4.46 s 0.034 s 99.82% 91.88%

News20

OSPVM (40, 16-by-16) 1110 (0.96) 1283 s 19.8 s 85.26% 83.10%
OSPVM (40, 1-by-1) 1100 (0.96) 1949 s 19.9 s 85.6% 83.14%

Batch-PVM 1000 1060 s 19.2 s 84.89% 83.12%
SVD + BSGD 1200 2289 s 18.6 s 83.52% 82.33%

SVD + AMMOnline 1200 2679 s 21.3 s 83.83% 82.25%
SVD + Pegasos — 1679 s 19.2 s 83.22% 81.81%

Sector

OSPVM (40, 16-by-16) 130 (0.96) 10.12 s 0.20 s 88.86% 78.40%
OSPVM (40, 1-by-1) 150 (0.96) 18.4 s 0.21 s 86.6% 79.04%

Batch-PVM 160 2.13 s 0.21 s 87.98% 79.01%
SVD + BSGD 200 7.53 s 0.34 s 87.44% 76.68%

SVD + AMMOnline 200 12.69 s 0.33 s 86.81% 76.65%
SVD + Pegasos — 6.45 s 0.34 s 86.12% 75.88%

Note: since OSPVM is equivalent to PVM rather than an approximation, if it has the same experimental setting (same number of hidden nodes and same
training and testing splits), OSPVM and PVM would obtain the same performance (training accuracy and testing accuracy).

Table 3: 𝑡 value and significant level of OSPVM versus BSGD, AMM, and Pegasos.

SVD + BSGD (88.78%) SVD + AMM (86.47%) SVD + Pegasos (85.53%)
OSPVM (16-by-16) (89.23%) 𝑡 = 0.183, 𝑝 > 0.1 𝑡 = 4.141, 0.01 > 𝑝 > 0.001 𝑡 = 2.267, 0.1 > 𝑝 > 0.05
OSPVM (1-by-1) (88.18%) 𝑡 = 1.434, 𝑝 > 0.1 𝑡 = 1.958, 0.1 > 𝑝 > 0.05 𝑡 = 2.932, 0.05 > 𝑝 > 0.01

8 Computational Intelligence and Neuroscience

Table 4: Comparison of training and testing accuracy (in %) (one-by-one).

Dataset SVD + OSELM OSPVM OSELM
Training accuracy Testing accuracy Training accuracy Testing accuracy Training accuracy Testing accuracy

Face 99.8% 91.0% 99.2% 91.2% 98.1% 88.5%
Secom 93.3% 93.0% 94.14% 93.3% 93.2% 92.4%
Arcene 93.0% 83.0% 93.5% 86.7% 86.1% 81.1%
Dexter 95.7% 91.4% 96.0% 91.2% 75.6% 86.2%
Multi.fea. 99.0% 92.8% 96.6% 93.4% 96.5% 93.0%
News20 85.12% 82.9% 85.6% 83.14% 85.5% 83.0%
Sector 89.11% 77.8% 88.6% 79.04% 89.1% 78.1%

Table 5: Comparison of training and testing time (in seconds) (one-by-one).

Dataset SVD + OSELM OSPVM OSELM
Training time Testing time Training time Testing time Training time Testing time

Face 22.40 s 0.0006 s 13.07 s 0.0005 s 0.156 s 0.035 s
Secom 7.809 s 0.015 s 4.010 s 0.0004 s 0.346 s 0.029 s
Arcene 131.5 s 0.0004 s 130.6 s 0.0004 s 4.390 s 0.337 s
Dexter 619.3 s 0.001 s 519.8 s 0.0006 s 9.218 s 0.281 s
Multi.fea. 13.51 s 0.042 s 13.40 s 0.0167 s 1.164 s 0.097 s
News20 1987 s 19.1 s 1949 s 19.9 s 611 s 19.7 s
Sector 18.79 s 0.22 s 18.4 s 0.21 s 3.34 s 0.39 s

Table 6: 𝑡 value and significant level of OSPVM versus SVD + ELM
(1-by-1) and OSELM (1-by-1).

SVD + OSELM
(1-by-1) (86.73%)

OSELM (1-by-1)
(86.04%)

OSPVM
(1-by-1)
(88.18%)

𝑡 = 0.7858, 𝑝 > 0.1 𝑡 = 0.950, 𝑝 > 0.1

Table 7: The number of hidden nodes (one-by-one).

Dataset
SVD + OSELM

OSPVM OSELM#Target
dimensions

#Hidden
nodes

Face 43 60 43 72
Secom 16 60 16 72
Arcene 39 110 39 160
Dexter 86 170 86 200
Multi.fea. 38 180 38 160
News20 780 1200 1100 1200
Sector 90 150 150 250

4.4. Adaptive Increase of the Number of Hidden Nodes.
Figure 1(a) shows the curve of hidden nodes changing with
increase of training samples. We can find that the hidden
nodes of OSPVM grow adaptively when the new samples
(chunk size is 40) are presented. Figure 1(b) shows the
curve of training accuracy and testing accuracy change with

increase of the samples. We can observe that the cover
capability (training accuracy) and generalized performance
(testing accuracy) of the model always remain stable.

4.5. Equivalence of OSPVM and PVM. Data mean update
together with projection vectors update is to ensure the
obtained OSPVM is an accurate model which is equiv-
alent to PVM rather than an approximation (if there is
no data mean update, an approximate model would be
obtained). This means that if having the same parameter
setting (same number of hidden nodes, same training and
testing splits, etc.), OSPVM and PVMwould obtain the same
performance (training accuracy and testing accuracy). To
verify the equivalence of them, we run these two algorithms
at the same setting on the benchmarks. From the results
shown in Table 12, it can be found that OSPVM will obtain
the same training accuracy and testing accuracy as PVM.
This illustrates from experimental aspect that OSPVM is
equivalent to PVM instead of an approximation and thus can
obtain the same generalized ability.

4.6. The Influence of Mean Update to Generalized Perfor-
mance of OSPVM. To display the influence of the mean
update to the generalized performance of OSPVM, we run
OSPVM with two different settings, respectively, that is,
“with mean update” and “no mean update,” on the same
datasets including Face, Secom, Arcene, Dexter, and
Multi.fea. For “with mean update” setting, the data is
centralized to mean and dynamically adjusted as well when
the subsequent chunk of data arrives. The variation curves of

Computational Intelligence and Neuroscience 9

Table 8: Comparison of training and testing accuracy (in %) (16-by-16).

Dataset SVD + OSELM OSPVM OSELM
Training accuracy Testing accuracy Training accuracy Testing accuracy Training accuracy Testing accuracy

Face 99.82% 91.50% 99.89% 92.07% 98.22% 87.7%
Secom 93.34% 93.36% 94.08% 93.14% 93.32% 93.3%
Arcene 93.63% 89.90% 95.88% 90.50% 94.1% 89.7%
Dexter 89.75% 91.90% 97.88% 92.25% 72.6% 88.5%
Multi.fea. 99.48% 93.49% 98.16% 94.40% 96.78% 93.0%
News20 86.11% 83.09% 85.26% 83.10% 85.24% 81.0%
Sector 89.18% 78.19% 88.86% 78.40% 88.78% 76.20%

Table 9: Comparison of training and testing time (in seconds) (16-by-16).

Dataset SVD + OSELM OSPVM OSELM
Training time Testing time Training time Testing time Training time Testing time

Face 1.58 s 0.0005 s 1.5 s 0.0004 s 0.078 s 0.035 s
Secom 1.85 s 0.018 s 1.67 s 0.007 s 0.061 s 0.040 s
Arcene 61.4 s 0.0008 s 61.17 s 0.0005 s 2.03 s 0.55 s
Dexter 135.7 s 0.0006 s 131.1 s 0.0004 s 4.88 s 0.718 s
Multi.fea. 5.15 s 0.0218 s 4.93 s 0.0053 s 0.26 s 0.098 s
News20 1283 s 19.8 s 1283 s 19.8 s 0.26 s 0.098 s
Sector 10.7 0.21 s 10.12 0.20 s 5.26 s 0.38 s

Table 10: 𝑡 value and significant level (𝑝) of OSPVM versus SVD +
ELM (16-by-16) and OSELM (16-by-16).

SVD + OSELM
(16-by-16) (88.7%) OSELM (16-by-16) (87.05%)

OSPVM
(16-by-16)
(89.23%)

𝑡 = 0.7900, 𝑝 > 0.1 𝑡 = 2.45, 0.05 > 𝑝 > 0.01

Table 11: The number of hidden nodes (16-by-16).

Dataset
SVD + OSELM

OSPVM OSELM#Target
dimensions

#Hidden
nodes

Face 62 60 62 72
Secom 54 60 54 72
Arcene 110 110 106 300
Dexter 176 170 176 400
Multi.fea. 55 180 55 160
News20 780 1200 1100 1200
Sector 90 150 150 250

the testing accuracy with respect to the chunk of training data
under these two different settings are illustrated in Figure 2
(labeled as “with mean update” and “no mean update,” resp.).
It can be found that, on each dataset, OSPVM with mean
update always obtains better generalized performance than

no mean update. Take Face dataset as an example, on the first
40 training samples, OSPVMwith mean update attains 73.5%
in terms of testing accuracy while “no mean update” attains
72.3%. Along with the arrival of the subsequent training
data, OSPVM with mean update is also always superior to
no mean update. In time of the last chunk of data arrival,
the obtained testing accuracy “with mean update” reaches
94% while “no mean update” reaches 90%. From the point of
view of theoretical analysis, the performance improvement is
possibly due to two aspects:

(i) From principle component analysis perspective, the
useful features are those directions with maximum
variance [33]. In order to capture these directions, the
data should be firstly centralized because, if there is
no centralization, the first obtained direction which
is from the origin to the centre will be shifted and the
successive directions are also shifted consequently.

(ii) On the other hand, from multivariate probability
distribution perspective [34], the datasets are usually
treated as a multivariate Gaussian distribution that
is represented as the amount of the mean plus the
variation along the principal vectors. By centering the
data to the mean, the variational component of the
data can be cancelled out and thus capture purely
variational component of the data.

These experimental and theoretical analyses show that mean
update has important positive influence to the generalized
performance of OSPVM.With help ofmean update, OSPVM
can process dynamical data more adaptively and effectively.

10 Computational Intelligence and Neuroscience

Table 12: Training and testing accuracy of PVM and OSPVM with the same hidden nodes.

Dataset Algorithms #Hidden nodes Training accuracy Testing accuracy

Face OSPVM (1-by-1 and 16-by-16) 65 99.81% 92.30%
Batch-PVM 65 99.81% 92.30%

Secom OSPVM (1-by-1 and 16-by-16) 60 93.37% 93.35%
Batch-PVM 60 93.37% 93.35%

Arcene OSPVM (1-by-1 and 16-by-16) 85 94.63% 90.80%
Batch-PVM 85 94.63% 90.80%

Dexter OSPVM (1-by-1 and 16-by-16) 160 98.38% 91.25%
Batch-PVM 160 98.38% 91.25%

Multi.fea. OSPVM (1-by-1 and 16-by-16) 160 99.98% 95.67%
Batch-PVM 160 99.98% 95.67%

News20 OSPVM (1-by-1 and 16-by-16) 1000 84.89% 83.12%
Batch-PVM 1000 84.89% 83.12%

Sector OSPVM (1-by-1 and 16-by-16) 160 87.98% 79.01%
Batch-PVM 160 87.98% 79.01%

20

40

60

80

100

120

140

N
um

be
r o

f h
id

de
n

no
de

s

80 120 160 200 24040
Number of training samples

(a) The hidden nodes increase with respect to the new chunk (chunk
size is 40) of samples

Training accuracy
Testing accuracy

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

80 120 160 200 24040
Number of training samples

(b) Training/testing accuracy changes with respect to the new chunk
(chunk size is 40) of samples

Figure 1: Adaptive model updating with respect to new samples (on Face dataset).

5. Conclusion and Future Work

In this paper, an effective online sequential learning algo-
rithm (OSPVM) has been proposed for high-dimensional
and no-stationary data. Data mean, projection vectors, and
neural network model can be updated simultaneously by
one time pass of new samples. The algorithm can handle
the new data arriving by one-by-one and chunk-by-chunk.
Apart from setting the threshold value of accumulation ratio,
no other parameter needs to be determined. Performance

of OSPVM including training time and generalized per-
formance is compared with some several typical online
learning algorithms on real world benchmark problems. The
results show that OSPVM can produce better generalization
performance with more compact network structure than
other algorithms in most cases. In our next work, we would
further study how to improve computational efficiency to
make it suitable for large data analytic. Additionally wewould
studymore smartmethod to determine the threshold value of
accumulation ratio adaptively.

Computational Intelligence and Neuroscience 11

With mean update
No mean update

70

75

80

85

90

95

Te
sti

ng
 ac

cu
ra

cy
 (%

)

80 120 160 200 24040
Number of training samples

(a) Face

With mean update
No mean update

454 654 854 1054 1254254
Number of training samples

76

78

80

82

84

86

88

90

92

94

Te
sti

ng
 ac

cu
ra

cy
 (%

)

(b) Secom

With mean update
No mean update

160 220 280 340 400100
Number of training samples

74

76

78

80

82

84

86

88

90

92

Te
sti

ng
 ac

cu
ra

cy
 (%

)

(c) Arcene

With mean update
No mean update

70

75

80

85

90

95

Te
sti

ng
 ac

cu
ra

cy
 (%

)

600 800 1000 1200 1400400
Number of training samples

(d) Dexter

With mean update
No mean update

160 220 280 340 400100
Number of training samples

60

65

70

75

80

85

90

95

100

Te
sti

ng
 ac

cu
ra

cy
 (%

)

(e) Multi.fea.

With mean update
No mean update

1993 2493 2993 3493 39931493
Number of training samples

55

60

65

70

75

80

85

Te
sti

ng
 ac

cu
ra

cy
 (%

)

(f) News20

Figure 2: Continued.

12 Computational Intelligence and Neuroscience

With mean update
No mean update

50

55

60

65

70

75

80

Te
sti

ng
 ac

cu
ra

cy
 (%

)

1207 1707 2207 2707 3207707
Number of training samples

(g) Sector

Figure 2: The influence of mean update to OSPVM.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The research was supported by National Science Foundation
of China under Grant no. 61572399; Shaanxi Provincial
Youth Science and Technology Star Plan under Grant no.
2013KJXX-29; New Star Team of Xi’an University of Posts &
Telecommunications; Provincial Key Disciplines Construc-
tion Fund of General Institutions of Higher Education in
Shaanxi.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[2] J. Platt, “A resource-allocating network for function interpola-
tion,” Neural Computation, vol. 3, no. 2, pp. 213–225, 1991.

[3] V. Kadirkamanathan and M. Niranjan, “A function estimation
approach to sequential learning with neural networks,” Neural
Computation, vol. 5, no. 6, pp. 954–975, 1993.

[4] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequen-
tial learning scheme for function approximation using minimal
radial basis function neural networks,” Neural Computation,
vol. 9, no. 2, pp. 461–478, 1997.

[5] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An
efficient sequential learning algorithm for growing and pruning
RBF (GAP-RBF) networks,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 6, pp.
2284–2292, 2004.

[6] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A gener-
alized growing and pruning RBF (GGAP-RBF) neural network
for function approximation,” IEEE Transactions on Neural
Networks, vol. 16, no. 1, pp. 57–67, 2005.

[7] K. Crammer and D. D. Lee, “Learning via gaussian herding,”
in Advances in Neural Information Processing Systems, pp. 1–9,
2010.

[8] S. C. Hoi, R. Jin, P. Zhao, and T. Yang, “Online multiple kernel
classification,” Machine Learning, vol. 90, no. 2, pp. 289–316,
2013.

[9] J. Wang, S. C. H. Hoi, P. Zhao, J. Zhuang, and Z.-Y. Liu, “Large
scale online kernel classification,” in Proceedings of the 23rd
International Joint Conference onArtificial Intelligence, pp. 1750–
1756, Beijing, China, August 2013.

[10] Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of
kernelization: budgeted stochastic gradient descent for large-
scale SVM training,” Journal of Machine Learning Research, vol.
13, no. 1, pp. 3103–3131, 2012.

[11] L. Zhang, J. Yi, R. Jin,M. Lin, andX.He, “Online kernel learning
with a near optimal sparsity bound,” in Proceedings of the 30th
International Conference on Machine Learning (ICML ’13), pp.
621–629, Atlanta, Ga, USA, June 2013.

[12] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos:
primal estimated sub-gradient solver for SVM,” Mathematical
Programming, vol. 127, no. 1, pp. 3–30, 2011.

[13] Z. Wang, N. Djuric, K. Crammer, and S. Vucetic, “Trading rep-
resentability for scalability: adaptive multi-hyperplanemachine
for nonlinear classification,” in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and
DataMining (KDD ’11), pp. 24–32, ACM, SanDiego, Calif, USA,
August 2011.

[14] P. Zhao, J. Wang, P. Wu, R. Jin, and S. C. H. Hoi, “Fast
bounded online gradient descent algorithms for scalable kernel-
based online learning,” in Proceedings of the 29th International
Conference on Machine Learning, pp. 1–8, Edinburgh, UK, July
2012.

[15] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundarara-
jan, “A fast and accurate online sequential learning algorithm
for feedforward networks,” IEEE Transactions on Neural Net-
works, vol. 17, no. 6, pp. 1411–1423, 2006.

Computational Intelligence and Neuroscience 13

[16] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,”Neurocomputing, vol. 70, no.
1–3, pp. 489–501, 2006.

[17] Q. Zheng, X. Wang, W. Deng, J. Liu, and X. Wu, “Incremental
projection vector machine: a one-stage learning algorithm for
high-dimension large-sample dataset,” in AI 2010: Advances in
Artificial Intelligence, vol. 6464 of Lecture Notes in Computer
Science, pp. 132–141, Springer, Berlin, Germany, 2011.

[18] W. Deng, Q. Zheng, S. Lian, L. Chen, and X. Wang, “Projec-
tion Vector Machine: one-stage learning algorithm for high-
dimension smallsample data,” in Proceedings of the IEEE Inter-
national Joint Conference on Neural Networks (IJCNN ’10), pp.
1–8, Barcelona, Spain, July 2010.

[19] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice-Hall, Upper Saddle River, NJ, USA, 3rd edition, 2007.

[20] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme
learning machine for regression and multiclass classification,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 42, no. 2, pp. 513–529, 2012.

[21] W. Wei and Y. Qi, “Information potential fields navigation in
wireless Ad-Hoc sensor networks,” Sensors, vol. 11, no. 5, pp.
4794–4807, 2011.

[22] W. Wei, Q. Xu, L. Wang et al., “GI/Geom/1 queue based
on communication model for mesh networks,” International
Journal of Communication Systems, vol. 27, no. 11, pp. 3013–3029,
2013.

[23] M. Brand, “Incremental singular value decomposition of uncer-
tain data with missing values,” in Computer Vision—ECCV
2002, vol. 2350 of Lecture Notes in Computer Science, pp. 707–
720, Springer, Berlin, Germany, 2002.

[24] P. Hall, D. Marshall, and R. Martin, “Adding and subtracting
eigenspaces with eigenvalue decomposition and singular value
decomposition,” Image and Vision Computing, vol. 20, no. 13-14,
pp. 1009–1016, 2002.

[25] A. Levy and M. Lindenbaum, “Sequential Karhunen-Loeve
basis extraction and its application to images,” IEEE Transac-
tions on Image Processing, vol. 9, no. 8, pp. 1371–1374, 2000.

[26] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and
A. Lendasse, “OP-ELM: optimally pruned extreme learning
machine,” IEEE Transactions on Neural Networks, vol. 21, no. 1,
pp. 158–162, 2010.

[27] G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, “Incremental
extreme learning machine with fully complex hidden nodes,”
Neurocomputing, vol. 71, no. 4–6, pp. 576–583, 2008.

[28] G.-B. Huang and L. Chen, “Enhanced random search based
incremental extreme learning machine,” Neurocomputing, vol.
71, no. 16–18, pp. 3460–3468, 2008.

[29] K. Li, J. Deng, H.-B. He, and D.-J. Du, “Compact extreme
learning machines for biological systems,” International Journal
of Computational Biology and Drug Design, vol. 3, no. 2, pp. 112–
132, 2010.

[30] S. Ozawa, S. Pang, and N. Kasabov, “Incremental learning
of chunk data for online pattern classification systems,” IEEE
Transactions on Neural Networks, vol. 19, no. 6, pp. 1061–1074,
2008.

[31] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol, “Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol. 11, pp.
3371–3408, 2010.

[32] J. A. Rice, Mathematical Statistics and Data Analysis, Duxbury
Advanced, Duxbury Press, 3rd edition, 2006.

[33] H. Abdi and L. J. Williams, “Principal component analysis,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2,
no. 4, pp. 433–459, 2010.

[34] I. T. Jolliffe, Principal Component Analysis, Springer Series in
Statistics, Springer, New York, NY, USA, 2nd edition, 2002.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

