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Lifelong machine learning (LML) models learn with experience maintaining a knowledge-base, without user intervention. Unlike
traditional single-domainmodels they can easily scale up to explore big data.The existing LMLmodels have high data dependency,
consumemore resources, and donot support streaming data.This paper proposes online LMLmodel (OAMC) to support streaming
data with reduced data dependency. With engineering the knowledge-base and introducing new knowledge features the learning
pattern of the model is improved for data arriving in pieces. OAMC improves accuracy as topic coherence by 7% for streaming data
while reducing the processing cost to half.

1. Introduction

Machine learning (ML) topic models are popularly used for
different Natural Language Processing (NLP) related tasks.
Although it ignores word semantics, topic models provide
better results with least user involvement. Unsupervised topic
models are frequently used for domain exploration in many
research areas where training data is not available or is expen-
sive to produce. Topic models are the statistics based tech-
niques, evaluating words cooccurrence probabilities, where
the results improve with the size of data. The relation based
techniques struggle with the richness of natural language,
to explore all possible forms that a word can have. Lifelong
learning models put an end to the traditional single-shot
learning with the aim of improving the accuracy of single-
domain data. The big textual data has large volume and has
variety of domains discussed and the data is being poured
in continuously and is expected to have inconsistencies and
noise. Keeping up with the amount and flow of content,
lifelong learningmodels can help build practical applications.

The unsupervised topic models extract incoherent top-
ics as well along with the coherent topics [1–5]. Different
extensions of topic models are proposed to improve their

accuracy. The semisupervised topic models used manually
provided seed aspects to help find more relevant product
aspects [6–9]. Supervised topic models are trained for a
domain to achieve high accuracy at it. Hybrid models are
trained on small labeled data to predict suitable initial values
for topic model [10–15]. Knowledge-based topic models are
guided by domain experts with knowledge rules instead of
seed terms to deal with incoherent topics [16–18]. Transfer-
learning based topic models are trained on one domain and
tested on another single target domain closely related to it that
is known prior to analysis. However, all of these models dealt
with improving the accuracy for a single domain. Therefore,
they lack scalability and cannot be used for big data consisting
of multiple unknown domains. Despite their high accuracy,
these models have limited application as they are devised for
a single-domain analysis.

Lifelong machine learning model takes a completely new
dimension to use a model that can process many unknown
domains. It incorporates automatically generated knowledge
to improve the quality and coherence of topics without
requiring any external support. The model maintains its
own knowledge-base that grows with experience and so the
model matures in decisions to attain improved accuracy.
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LML models are the computational systems that process
tasks and retain popular patterns from it. This approach is
also called human-like learning or never ending learning in
the literature. Lifelong learning is only recently introduced
to NLP tasks. Never Ending Language Learner (NELL) is
considered the first attempt to use lifelong learning for
NLP [19]. It extracts information from web sources to
extend a knowledge-base in an endless manner, aiming to
achieve improved performancewith experience. Unlike other
machine learning approaches, there is little research work
available on lifelong machine learning for NLP related tasks.

There are four main components of LML models that
are knowledge representation, extraction, transfer, retention,
and maintenance, discussed in [20]. These components are
strongly connected and analyzing them for quality improve-
ment is called knowledge engineering. The knowledge learnt
is represented through an abstracted set of features. The
extraction component focuses on identifying popular pat-
terns and mining them as potential knowledge. The transfer
component is responsible for transferring the impact of
knowledge into the modeling process when suitable. The
retention andmaintenancemodule deals with storing knowl-
edge for future use. The objective is to use knowledge to
reduce the number of incoherent topics. Topic coherence
means that the words in a topic do not semantically hold
well together. Topic incoherence can be of various types, that
is, chained, intruded, random, and unbalanced, as explained
by [21]. Chained problem refers to the case where there are
word pairs having strong interconnection forming a chain
but there is no collective relatedness among the words of a
topic. Intruded topics have set of words with good corelation
within the set but not fitting well with the rest of the words
in the topic. Random topics do not make any sense while
unbalanced topics have a mix of general and specific terms
that does not hold good together. With the incoherence
problems known, themodules of LMLmodel can bemodified
to closely focus on them.

Lifelong learning topic models are introduced to benefit
from the knowledge-base while keeping it independent of
domain specific manual tuning. This makes it possible for
topic models to mine topics from big data with many
domains. Automatic Knowledge Learning (AKL) model [22]
is the first such model that used automatic knowledge
learning for topic models. Later, there are different lifelong
learning models proposed where the process of knowledge
extraction and transfer is refined for improved accuracy
and performance. However, they still have limitations to
be addressed. The existing LML models lack a knowledge
maintenance and retention module. Therefore, they have
to load topics from all tasks performed to sample relevant
knowledge for the current task. The knowledge learnt is lim-
ited which was initially consisting of must-links as word pairs
having strong positive corelation. In later models cannot-
links were also added as word pairs with strong negative
corelation. Following batch processing approach, they expect
the big data to be available prior to analysis. If topics of an
already performed task are removed, the learning curve of the
model is affected. Therefore, existing state-of-the-art models

consume more storage and processing resources and do not
provide support for streaming data arriving in pieces.

The proposed model is online, that is, processing one
domain at a time, as they are received. Each domain is
processed only once, with the knowledge available at that
time. After processing each domain, the knowledge-base is
updated. With a knowledge retention module, it does not
require loading all the topics from the previously processed
domains. It makes the model lightweight without compro-
mising accuracy. The model has low data dependency where
it only has to load the occurrences of relevant knowledge
maintained in abstract form. The contributions of this paper
are highlighted below.

2. Highlights

(1)With online approach, it processes the data as it is received
in intervals. Itmakes the proposedmodel closer to the essence
of big data streaming from different sources.

(2) Knowledge retention module is introduced to store
knowledge in abstract form. Unlike existing models to load
topics from all domains, it only consults the knowledge-base,
thus reducing dependency on data.Therefore, it is efficient in
performance and resource utilization.

(3) Must-links and cannot-links are extracted with a
single mechanism, that is, normalized Pointwise Mutual
Information (PMI) as nPMI [23]. They are stored, main-
tained, and transferred irrespective of their orientation for
improved performance.

(4) Being online the proposed model has limited data at
a time to learn from and is expected to learn low quality
knowledge. Knowledge freshness, utility, and confidence
are introduced to monitor, prioritize, and even filter out
knowledge if not contributing considerably.

(5) Knowledge representation and abstraction are
improved to resolve word sense disambiguation without
consulting all the processed domains. Knowledge rules are
supported with background, representing top topic words
from which the rule is mined. Reasonable overlap between
the current domain and a knowledge background suggests
same word sense.

3. Related Work

Probabilistic topic models based on Latent Dirichlet Alloca-
tion (LDA) extract corelations among words through statisti-
cal computations by calculating probabilities of words coex-
istence [24]. It uses Markov Chain Monte Carlo (MCMC)
inference to combine words under topics having a thematic
relevance. Following bag-of-words (BOW) approach it con-
siderswords presence and their positions. Initially introduced
with variational Bayesian technique, mostly Gibbs sampling
is used for inference to converge the analysis towards more
probable groupings in the given number of iterations mostly
kept high in thousands. The accuracy of topic models relies
on the initial values for hyperparameters as well; however,
it generally performs well for larger datasets. Probabilistic
Latent Semantic Analysis (pLSA) [25] having extensions is
also used for topic modeling; however, LDA is preferred for
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adjustable priors to closely refer to the nature of specific
documents and topics. LDA holds the advantage of identify-
ing and aggregating topics together, where they are separate
steps in other approaches, for example, dictionary based and
relation based. The extensions of unsupervised LDA used for
aspect and sentiment terms extraction as topics are [1–5].The
hybrid topic models used for topic extraction and sentiment
analysis are [10–15].The semisupervised LDAmodels guided
with initial seed aspect terms for topic extraction as product
aspects are [6–9].

To improve the accuracy of topic models while keeping
the user involvement tominimum, knowledge-based semisu-
pervised models are proposed. The purpose of these models
is to provide domain specific knowledge rules that guide
the extraction process to reduce the number of incoherent
topics extracted. Dirichlet Forest priors based LDA (DF-
LDA) was introduced as a knowledge-based topic model, to
which knowledge rules are provided in the form of must-
link and cannot-link [16]. It changed the perspective towards
topic extraction as the accuracy was dependent on the quality
of knowledge. The knowledge rules guided the model to
put terms under the same or different topics based on the
intuition. A must-link increases the probability of word pairs
to coexist under the same topic while a cannot-link works
opposite to it. DF-LDA, being transitive, could not handle
multiple senses of a word, which was not addressed in their
later model [17] as well. The knowledge rules are assumed to
be accurate, with no refinement mechanism, and are applied
with equal priority. The rules were relaxed to insets in [18],
having topic labels for words and thus avoiding one-to-
one relationships for word coexistence.These semisupervised
knowledge-based topic models are manually provided with
domain specific knowledge and cannot scale up to big data.
The knowledge provided is assumed to be accurate, having
no mechanism for verifying and rectifying knowledge, if
provided by mediocre domain experts.

Lifelong machine learning is used for various tasks in
the works of [26–29]; however, none of them has used LML
for topic modeling. Automatic knowledge-based models are
introduced to incorporate a knowledge module with topic
models to have more semantically corelated topics.The auto-
matic LML models learn and apply knowledge automatically
without external support and can be directly applied to
big data. Overlap among different domains is exploited for
learning and transferring knowledge. AKL [22] was the first
attempt to introduce lifelong machine learning with topic
modeling.Themodel processes all the domains in the dataset
with baseline LDA to extract initial topics. The extracted
topics are clustered to learn and utilize knowledge. Lifelong
Topic Model (LTM) [30] improved the performance and
accuracy of LML topic mining by using Frequent Itemset
Mining (FIM) for knowledge extraction and Generalized
Polya Urn (GPU) model for transferring it to future task.
Manual support was provided to set threshold for Frequent
Itemset Mining (FIM); however, it could not address the
problem of mining local knowledge. A large threshold value
means mining only global knowledge while a low value
that focuses on local knowledge brings many irrelevant

knowledge rules as well. They both used positively corelated
words only as knowledge, that is, must-links.

In [20] automatic must-links cannot-links (AMC) model
is proposed to address the problems of earlier automatic LML
models. Unlike other LML models it used both must-link
and cannot-link knowledge types. The knowledge rules are
extracted with FIM with multiple support (MS-FIM) to con-
sider both global and local knowledge while avoiding irrele-
vant knowledge rules. Since the cannot-links are believed to
be very high due to the large size of vocabulary the model
only extracts cannot-links for the current domain. In order
to ensure their quality, the must-links and cannot-links are
verified from topics of all domains. For transferring the learnt
knowledge into the inference technique Multigeneralized
Polya Urn (M-GPU) model is used. For a word drawn from a
topic, if there are relevantmust-links all the pairedwords get a
pushup in the topic whereas a penalty is applied to the paired
words in cannot-links. M-GPU provides the bias supported
by knowledge in order to help distributions with topics
having semantically corelatedwords.The transitivity problem
is addressed with a graph connecting knowledge rules that
share a common word which is used in the same sense.

The existing state-of-the-art LML models follow batch
processing approach. They expect all the domains to be
available prior to analysis. The big data is processed with
baseline LDA to extract topics in first parse. In the second
parse each domain is processed again with knowledge. Topics
from all domains are loaded for each task to learn relevant
knowledge that is verified frommany domains. Itmakes these
models highly dependent on data, as they require topics from
all domains to be available at all times. All the knowledge
rules extracted are treated equally, whereas some knowledge
rules have high confidence while others marginally cross
threshold. There is no mechanism to prioritize knowledge
rules. These models lack a knowledge maintenance module
and have to load topics from all domains for each task and
thus consume more resources.

4. Proposed Model (OAMC)

An online LML model (OAMC) is proposed to address the
issues discussed. It is more closely related to the essence of
big data analysis by expecting data to arrive continuously in
chunks. It is less dependent on data, therefore consuming
limited storage and processing resources. Efficiency of the
model is associated with the knowledge-base instead of
topics from all domains.With a newly introduced knowledge
maintenance and retentionmodule, the harvested knowledge
rules are stored in an abstract form. The knowledge-base
is maintained after each task to keep it consistent. New
knowledge rules are mined while existing rules are updated
or even filtered as a continuous process. Additional features
of knowledge are introduced to help maintain and prioritize
them. The working of the model is shown in Figure 1. With
the online sources producing textual content continuously,
the proposedmodel can keep up with processing needs of the
data in hand.Thismakes itmore practical for developing real-
world monitoring and analysis applications.



4 Computational Intelligence and Neuroscience

OAMCModel (Dt, V, N, knowledge-base)
(1) procedure onlineAMCModel (𝐷𝑡, 𝑉,𝑁, knowledge-base)
(2) relRules← sampleRelevantKnowledge (𝑉, Knowledge-base)
(3) if (#relRules = 0) then // without knowledge
(4) topics← LDA (𝐷𝑡, 𝑉,𝑁, 0)
(5) end if
(6) if (#relRules > 0) then // with relevant knowledge
(7) topics← GibbsSampler (𝐷𝑡, 𝑉,𝑁, relRules)
(8) end if
(9) rulesrefined ← refineRules (𝐷𝑡, 𝑉, topics, relRules, knowledge-base)
(10) rulesnew ←mineRules (𝐷𝑡, topics)
(11) knowledge-base← rulesrefined ∪ rulesnew
(12) end procedure

Algorithm 1: OAMCmodel.

M Docs
Domain 1

M Docs
Domain 2

M Docs

LDA OAMCOAMCTopics Topics Topics

Knowledge-base

Learning module Learning module Learning module

Domain N

Figure 1: Proposedmodel (OAMC) using online knowledge extrac-
tion and transfer mechanism.

The OAMC model can operate both with and without
knowledge. In case there is no relevant knowledge available,
the model operates as baseline LDA. However, as the model
matures, its knowledge-base grows to support a variety of
future tasks. With relevant knowledge, the model shows
improved performance by grouping semantically related
words under topics with the help of knowledge learnt from
previous tasks. The working of OAMC model is shown
in Algorithm 1. The set of documents in current domain
are 𝐷

𝑡
= {𝐷

1
, 𝐷
2
, . . . , 𝐷

𝑛
}. 𝑉 is the vocabulary of the

current task while 𝑁 is the number of iterations for Gibbs
sampler [13] used as inference technique. Knowledge-base
has the knowledge rules as must-links and cannot-links. The
knowledge-base has a variety of must-links and cannot-links
learnt through experience. In step (2) only those must-links
and cannot-links are selected that are relevant to the current
task; that is, both the words in must-link and cannot-link
exist in the vocabulary of the current domain. The rules
relevant to the current domain are stored as relRules. If no
relevant rules are found, the current task is processed with
baseline LDA as shown in step (4). In step (4) 0means that no
relevant knowledge is found for the current task and therefore

the baseline LDA model is to be used for the current task.
It may happen at low experience when the knowledge-base
has limited rules and the current task is about a completely
different subject. When relevant rules are found, step (7)
has Gibbs sampler [20] used for incorporating knowledge to
guide the inference.Theknowledge-basemaintains itself after
each task to be consistent. Step (9) refines relRules to grow
their confidence and utility as a token of their services for
the current domain. All rules in the knowledge-base get a
task older. As part of the continuous learning process, the
model harvests new knowledge rules after processing each
task, in step (10). The new rules are merged with the existing
rules and are added to the knowledge-base, which is ready to
process a new task.

4.1. Knowledge Representation. Additional features are added
to knowledge rules to help maintain the knowledge-base
and keep it consistent by continuously weeding out wrong
or irrelevant knowledge. In previous models the knowledge
rules are maintained as separate lists of must-links and
cannot-links, each with a word pair and a confidence value.
Our OAMC model stores them together as knowledge rules
irrespective of their orientation. However, the orientation
is communicated through a positive or negative sign used
with the confidence value. New rule features are added as
utility, freshness, and background to strictly monitor the
contribution of each rule. To survive longer, a knowledge
rule kRule(𝑤

1
, 𝑤
2
) needs to maintain high utility in the tasks

that follows. The confidence of a rule is also expected to be
assured by future domains which adds to the net confidence.
The utility and freshness of a rule maintain a check on its
contribution and relevance. A rule with high confidence but
low usage and freshness is also expected to be filtered. These
newly added features keep the knowledge-base consistent
with quality knowledge. The background feature helps to
resolve word sense disambiguation by providing the context
of the knowledge rule. A knowledge rule in the knowledge-
base is stored as shown in Figure 2.

4.2. Knowledge Extraction. The proposed model has access
to only limited big data for a task, that is, domain of the
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MineRules (Dt, N, topics)
(1) procedureMineRules (𝐷𝑡,𝑁, topics)
(2) for (t: all topics) do
(3) for (i, j: all word pairs in a topic) do
(4) if (nPMI(i, j) < 𝜇1) then
(5) Rules

𝑗
← Rules (𝑖, 𝑗, nPMI(𝑖, 𝑗), topic) // learn as negative rule

(6) end if
(7) if (nPMI(i, j) > 𝜇2) then
(8) Rules

𝑗
← Rule (𝑖, 𝑗, nPMI(𝑖, 𝑗), topic) // learn as positive rule

(9) end if
(10) end for
(11) end for
(12) end procedure

Algorithm 2: Mine rules.

Knowledge-base

Background

Orientation

Freshness

Utility

Confidence

KRule(w1, w2)

Figure 2: Representation of a knowledge rule as word pair in
knowledge-base. Utility, freshness, and background are the newly
introduced knowledge features to monitor their quality.

current task. Therefore, the model does not have enough
instances to verify the quality of knowledge and is expected
to learn low quality knowledge as well. A knowledge rule
can be of low quality if it has enough support in data from
where it was learnt but is not supported by future tasks. Itmay
happen due to noise or high bias in a domain.The refinement
technique deals with it until it is removed. In order to extract
new knowledge rules kRule(𝑤

1
, 𝑤
2
) normalized PMI [23] as

nPMI(𝑤
1
, 𝑤
2
) is used as given in

kRule (𝑤
1
, 𝑤
2
) = nPMI (𝑤

1
, 𝑤
2
) =

PMI (𝑤
1
, 𝑤
2
)

log𝑝 (𝑤
1
, 𝑤
2
)
, (1)

where nPMI gives a value [−1, 1] range. All candidate word
pairs are evaluated through nPMI. For a word pair if the score
is close to 1, the knowledge rule (must-link) is stored with
its nPMI score as confidence. Word pair having it close to −1
is stored as a negative rule (cannot-link) with nPMI score as
confidence. PMI in (1) can be evaluated as

PMI (𝑤
1
, 𝑤
2
) = log

𝑝 (𝑤
1
, 𝑤
2
)

𝑝 (𝑤
1
) 𝑝 (𝑤

2
)
, (2)

where 𝑝(𝑤
1
, 𝑤
2
) is the coexistence probability of 𝑤

1
and 𝑤

2
,

while 𝑝(𝑤
1
) and 𝑝(𝑤

2
) are probabilities of their existence in

the current domain. Coexistence is the presence of two words
in a conceptual document irrespective of their frequency.
Calculating coexistence probability and individual probabil-
ities is shown in (3), where𝐷𝑡 show all documents while #𝐷𝑡
is total number of documents,

𝑝 (𝑤
1
, 𝑤
2
) =

#𝐷𝑡 (𝑤
1
, 𝑤
2
)

#𝐷𝑡
,

𝑝 (𝑤) =
#𝐷𝑡 (𝑤)
#𝐷𝑡

.

(3)

Freshness and utility are initialized while topic of the word
pair is added to the background of the rule. The two
thresholds 𝜇

1
and 𝜇

2
used are set to harvest word pairs with

nPMI scores at either of the two extremes, given in

nPMI (𝑤
1
, 𝑤
2
) =

{

{

{

⟨𝜇
1
∨⟩ 𝜇
2

learn

else ignore.
(4)

When nPMI gives a value that is too high, that is, close
to 1, or too low, that is, close to −1, then it is considered
to be of significance. This untypical behavior is learnt as
knowledge while the values close to zero are ignored as
they have not shown any considerable corelation. Word pairs
having nPMI below 𝜇

1
are learnt as knowledge (cannot-links)

while the values above 𝜇
2
are also learnt (must-links). The

threshold values are mentioned in Setup. Our contribution
in knowledge extraction is to use nPMI(𝑤

1
, 𝑤
2
) as a very

lightweight extractionmechanism. Secondly bothmust-links
and cannot-links are extracted together in a single step.
MS-FIM was previously used to harvest knowledge which
was causing a performance bottleneck. The rule mining
mechanism is mentioned in Algorithm 2. It generates word
pairs within each topic and evaluates them for possible
knowledge from step (2) to step (11). Satisfying either of the
thresholds in step (4) and step (7), the word pair is mined as
positive or negative knowledge rule.

4.3. Knowledge Transfer. The knowledge transfer mechanism
selects relevant knowledge rules each time a word is sampled
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to have its probability increased under a topic. The effect
of relevant knowledge rules is added as bias into the topic
model to push up positively corelated words under the same
topic and vice versa. Since the current task has limited data,
knowledge from previous tasks is incorporated to guide the
inference. For a sampled word 𝑤

1
in topic 𝑡, if a rule exists

for it then the associated word 𝑤
2
has probability updated in

current topic 𝑡 as shown in

𝑝 (rule
𝑖
= rule | 𝑡) ∝ 𝑝 (𝑤

1
| 𝑡) × 𝑝 (𝑤

2
| 𝑡) , (5)

where 𝑤
1
and 𝑤

2
are the two words of a rule rule

𝑖
(must-

link or cannot-link).When the model inference increases the
probability of a word 𝑤

1
for a topic 𝑡, the probability of 𝑤

2

is increased for topic 𝑡 in case of must-link and decreased
for cannot-link. To address word sense disambiguation the
following equation is proposed:

# (𝑉 ∪ ruleBackground)
#ruleBackground

> 𝜉. (6)

Here 𝜉 is the threshold that has to be satisfied for overlap
between the vocabulary of the current task and the rule
background.The rule background represents the set of words
in topic from which the rule was learnt. Comparing the
rule background with the current vocabulary is to ensure
that the rule is used in the same context in which it was
mined. For example, the word Bank has different contexts
when used with Accounts and Sea, respectively. Topics of all
processed tasks were previously used for the same purpose.
The net confidence and utility of a knowledge rule are used
to transfer the impact of knowledge rule in topic sampling.
Multigeneralized Polya Urn (M-GPU) model [20] is used to
transfer the effect of knowledge into the current status of
Markov chain in Gibbs sampler in

𝑝 (𝑤 | 𝑡) ∝
∑
𝑉

𝑤
󸀠
=1
(𝜐
𝑤,𝑤
󸀠/𝜌) × 𝑛

𝑡𝑤
󸀠 + 𝛽

∑
𝑉

V=1 (∑
𝑉

𝑤
󸀠
=1
(𝜐V,𝑤󸀠/𝜌) × 𝑛𝑡𝑤󸀠 + 𝛽)

. (7)

Equation (7) shows the amount of update in the probability by
a factor 𝜐

𝑤,𝑤
󸀠/𝜌 for the other word in knowledge rule. When

the probability of a sampled word is increased for a topic,
using the rules, the probability of all thewords associatedwith
the sampled word is also increased.The following equation is
updated to incorporate both positive and negatively corelated
rules in a single step as

𝑝 (𝑧
𝑖
= 𝑡 | 𝑧

−𝑖
, 𝑤, 𝛼, 𝛽, 𝜆)

∝
𝑛
𝑑,𝑡

−𝑖
+ 𝛼

∑
𝑇

𝑡=1
(𝑛
𝑑,𝑡

−𝑖
+ 𝛼)

×

∑
𝑤
󸀠
,𝑤𝑖∈rule (𝜐𝑤󸀠 ,𝑤𝑖/𝜌) × 𝑛𝑡,𝑤󸀠

−𝑖
+ 𝛽

∑
𝑉

V=1 (∑𝑤󸀠 ,V∈rule (𝜐𝑤󸀠 ,V/𝜌) × 𝑛𝑘,𝑤󸀠
−𝑖
+ 𝛽)

.

(8)

For word sampled 𝑤, the other word 𝑤
󸀠 sharing the same

rule with it gets a push as strong as the net confidence in the
direction of its orientation. The objective is to increase the
probability of positively corelated words to appear together
as top words under the same topic and vice versa.

Table 1: OAMC positive and negative knowledge rules with high
utility.

Type Knowledge

+ive

(tech, support), (cable, usb), (pro, con), (customer,
support), (batter, charge), (video, card), (high, long),
(connection, vga), (operating, system), (monitor,
macbook), (mac, support), (cd, dvd), (windows, xp),
(money, worth), (inch, picture), (input, output),
(friend, mine), (big, deal)

−ive

(sound, money), (feature, battery), (battery, price),
(feature, battery), (price, device), (screen, sound),
(review, screen), (worse, digital), (price, easy), (gas,
screen), (signal, easy), (home, gps), (hotel, traffic),
(driver, cooler), (monitor, processor), (monitor,
speed)

4.4. KnowledgeMaintenance andRetention. Supportedwith a
knowledgemaintenance and retentionmodule, useful knowl-
edge rules are stored until they justify their existence. The
knowledge-base is refined after each task to keep it consistent.
They all get older by a task.The relevant knowledge rules grow
in confidence supported by current domain and have higher
utility. After updating the state of each knowledge rule, they
are passed through a threshold again to justify their existence
as proposed in

nPMI (𝑤
1
, 𝑤
2
)

=

{

{

{

𝜐 × 𝜌

𝜆
> 𝜇
1
or

𝜐 × 𝜌

𝜆
< 𝜇
2

remove

otherwise retain,

(9)

where 𝜐 is net confidence, 𝜌 is utility, and 1/𝜆 is freshness for
a knowledge rule. If the confidence of a knowledge rule in
current task is above its net confidence 𝜐, the current domain
is allowed to update the knowledge background to better
represent its context, as proposed in

kRule (𝑤
1
, 𝑤
2
) =

{

{

{

conf > 𝜐 update background

otherwise unchanged,
(10)

where background is updated by adding words from sup-
porting topic in the current task. New rules are mined
while existing rules are evolved as a continuous process.
The newly added knowledge features are used to rank and
prioritize knowledge rules. The difference in rank of good
and bad knowledge rules widens as the model matures with
experience. Algorithm 3 is used to refine existing knowledge,
with step (2) having relevant knowledge as Rule󸀠. In steps (4)
to (7) all relevant rules get their net confidence updated and
utility incremented. Step (8) has all rules aged by a task. Some
of the popular rules from knowledge-base of OAMC model
are shown in Table 1.

5. Experimental Results

The proposed model (OAMC) contributes to the application
of lifelong learning forNLP tasks, specifically used to improve
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RefineRules (Dt, N, topics, V, Rules)
(1) procedure RefineRules (𝐷𝑡,𝑁, topics, 𝑉, Rules)
(2) Rules󸀠 ← relevantRules (𝑉, knowledge-base) // set of relevant rules
(3) for (r: all Rules) do
(4) if (Rules󸀠 contains r) do
(5) 𝜐 ← nPMI(𝑟) // add to cumulative confidence
(6) 𝜌 ← +1 // Rules utility increased by 1
(7) end if
(8) end for
(12) end procedure

Algorithm 3: Refine rules.

topic coherence for big streaming data. Various experiments
are performed to highlight the improvement in accuracy
and performance of lifelong topic mining as product aspects.
Unlike traditional ML models it operates on big data with a
variety of domains. The standard dataset used by previous
LML models is used to evaluate the proposed model in
comparison to the other state-of-the-art models. The data
consists of 50 domains each of electronic products. To high-
light the improvement in the OAMC model the dataset was
provided with decreasing number of domains. The models
are evaluated in topic coherence for accuracy and time in
minutes for performance. The number of knowledge rules is
used as quality of knowledge where fewer rules producing
better results are considered to be of better quality.

5.1. Setup. To set up the test environment an HP Pavilion
DM4 machine is used with Intel 2.4GHz Core i5, having
8GB RAM and 500GB hard drive. Following the evaluation
approach in existing models, 15 topics are extracted per
domain for all models, while, as in previous models, top 30
words per topic are considered to calculate topic coherence
of the proposedmodel also.The hyperparameters are kept the
same for all models. The number of Gibbs sampler iterations
is kept the same (2000) as used in previous models. The
models are configured and initialized as used in their original
work. The proposed OAMC has its thresholds 𝜇

1
and 𝜇

2

set to 0.8 and −0.9, respectively, to learn knowledge and
select relevant knowledge for a given task. Since negative
corelations are too many as compared to positive rules, the
threshold is set to focus more on positive rules. In order
to choose relevant rule the overlap threshold is set to 0.3
between the vocabulary and knowledge background.

5.2. Results. The accuracy of lifelong models and topic
models in general is evaluated through topic coherence. It has
high corelation with human evaluation. All of the models are
given the same number of documents in a domain for both
learning and evaluation. The existing models drop accuracy
when it has to learn from a smaller dataset with documents
in hundreds per domain while compromising accuracy when
evaluated on larger dataset with thousands of documents.
Therefore, the previous models were given large datasets to
learn from and were evaluated on smaller datasets. However,
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Figure 3:The proposed model (OAMC) produces highest accuracy
(as topic coherence) among lifelong learning models for streaming
big data.

for fairness to all models, they are provided with the test set
only to learn from and to test on.

Topic coherence of the models compared has interesting
outcome. LTM surprisingly could not maintain a better topic
coherence when it had to learn from a smaller dataset. It even
dropped below the baseline. AMC and AMC-M performed
well; however, the proposed OAMC beat them when a
number of domains in the dataset were dropped below 10 as
shown in Figure 3. AMC and AMC-M hardly learn anything
with fewer domains which makes them ineffective towards
streaming data. Therefore, their accuracy continuously went
down towards baseline. On the other hand LTM has its
learning pattern badly affected by limited variety of domains
and learnt wrong knowledge which dropped its accuracy.
The knowledge rules learnt by AMC and AMC-M were
100 and below per domain for less than 10 domains in the
dataset which grow up to more than 2000 for 50 domains.
It is because of the overreliance of the existing models on
large volumes of data to be available at once, which makes
them least effective towards streaming data. It shows that
they only learn better knowledge and produce better results
when there are many domains in the dataset and they are
all available prior to analysis. With a robust knowledge
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Figure 4: The proposed model (OAMC) has the highest perfor-
mance efficiency among LML topic models.

storing mechanism OAMC learnt more knowledge, refined
it, and used it to improve topic coherence with few domains
available. The OAMC model shows on average 7% with a
maximum of 10% improvement in topic coherence when
there is one domain at a time.

OAMC learns wrong knowledge too as it considers
only the current domain for harvesting it. However, with a
robust knowledge retention module, after performing few
tasks only good quality knowledge survives through the
filtering mechanism. Knowledge rules with less confidence
from future tasks or limited utility are pushed down and
finally filtered out. Knowledge that is getting confidence
reenforced from future tasks and has growing utility stays
longer. To evaluate relevance of a knowledge rule with the
current task, the domain of the current task must have the
rule words, confidence above threshold, and overlap with the
rule background higher than threshold. The online OAMC
models truly learn like humans having no idea of future tasks,
unlike existing models. Its learning is dependent on the past
experience as the domains processed only and uses it for a
future task. It is less dependent on data, parses it once, and
considers the knowledge module with abstract rules only to
sample relevant rules and therefore shows improvement of up
to 50% in performance as shown in Figure 4.

For the discussed intrinsic evaluation, the models are
also compared through PMI mean and median values that
had relevance with topic coherence values. The extrinsic
WordNet based techniques used in the literature (WuPalmer,
Resnik, Path, Lin, LeacockChodorow, Lesk, JiangConrath, and
HirstStOnge) were inconclusive to differentiate among the
qualities of topics extracted due to the specialized nature of
electronic products domains.

5.3. Evaluation. OAMC improving performance of AMC
by 50% as shown in Figure 4 is attributed to the following
reasons. OAMC does not extract relevant knowledge for each
task and rather chooses from a well maintained knowledge
module. Each domain is parsed only once. With a knowledge
filtering mechanism only good quality knowledge rules are
maintained.There are generally two performance bottlenecks
in existing LML models, that is, FIM for knowledge extrac-
tion and higher iterations of Gibbs sampling. The OAMC
model uses nPMI [23] which is highly efficient to extract

knowledge. Secondly it learns both must-links and cannot-
links together with a single mechanism as rules. Even with
50 domains in the dataset OAMC performed better than
AMC for certain individual domains by producing higher
topic coherence while using fewer knowledge rules as shown
in Figure 5. Table 1 shows some of the most frequently used
knowledge rules of OAMC. Through manual evaluation of
topics from all the domains, it was observed that the knowl-
edge learnt by LMLmodels is more effective towards random
and intruded types of topic incoherence but less effective
towards chained and unbalanced type of incoherence. In fact
the knowledge-based models can at times enhance chained
topic incoherence if there are many knowledge rule pairs
sharing common words.

5.4. Knowledge Analysis. The accuracy of LML models
depends upon the quality of its knowledge. The previous
models did not provide a discussion on the quality of
knowledge. In fact improved topic coherence was considered
as reason for good quality knowledge. The knowledge rules
shown in Table 1 have utility above 10 as a token of their
quality. The ratio of use of knowledge rules per domain by
AMC and OAMC is 5 : 1, signifying the quality of knowledge
produced by OAMC. Net confidence of rules also shows
that most of the relevant domains enforced the rule and
increased its confidence (above 0.8with 1 asmaximum). Since
this information is not available for the existing models, the
values cannot be matched. It is still very difficult to explore
the impact of each knowledge rule separately; however, the
discussed features in general keep track of good quality
knowledge. The knowledge learnt is of two types only cap-
turing positive and negative word corelations. However, more
varieties of knowledge can be introduced for further insights.
By introducing “the type of relationship” as knowledge, the
unbalanced topic incoherence problem can be addressed.
Along with correlation between words, the nature of their
correlationmay also be explored for better analysis.This type
of knowledge is also useful for finding hierarchical topics.
The knowledge rules extracted are isolated, while knowledge
as complex network can be more effective for a variety of
analyses. AMC uses a small graph only to associate must-
links sharing common word in the same context. Knowledge
extraction, transfer, representation, and retention are only
introduced to NLP tasks in 2010 and require mature ideas
from other fields of research.

6. Conclusion

LML models are structured to process big data having many
domains and therefore it is the only suitable solution, despite
its shortcomings. LML models are recently introduced to big
data topic extraction and are far from mature. The existing
LML topic models had limited application due to following
batch processing approach andoverreliance ondata.Our pro-
posed model named as OAMC follows online approach for
LML topic modeling that can support streaming data. With
an efficient learning mechanism our OAMCmodel has lower
dependency on data and therefore improved performance by
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Figure 5: The proposed model (OAMC) in comparison to the state-of-the-art LML model (a) produces better accuracy as topic coherence
for individual domains while (b) using fewer knowledge rules.

50% as compared to state-of-the-art LML models. Velocity is
an important feature of big data as it is believed to be received
continuously at high speed. The OAMC model is designed
to process the data in hand only and therefore outperforms
existing models for streaming data. As the data is expected
to have noise, OAMC is supported with a strict monitoring
and filteringmechanism tomaintain a consistent knowledge-
base. The rules are made to compete for survival based on
utility, freshness, and net confidence. OAMC being blind to
the future gets higher bumps in accuracy when current task
has low relevance to past experience. This is very common
to a human-like learning approach. However, the tendency
of such tasks for which limited relevant knowledge available
drops with experience considerably. OAMCmodel shows 7%
improvement in accuracy on average for streaming big data
but up to 10% for certain individual domains as compared to
state of the art.

In the future we will be working on introducing more
varieties of knowledge. Through complex network analysis
the knowledge rules can be stored in association with each
other. Cooccurrence can mean many things and, therefore,
the relationship type should also be considered in future. It
will help to associate aspects with products, sentiments to
aspects, and reasons to sentiments. To improve the perfor-
mance and attempt for near real-time analysis, Gibbs sam-
pling should be replaced with a lighter inference technique.
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