
Research Article
A New Approach for Mobile Advertising Click-Through Rate
Estimation Based on Deep Belief Nets

Jie-Hao Chen, Zi-Qian Zhao, Ji-Yun Shi, and Chong Zhao

School of Software, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Jie-Hao Chen; chenjiehaobit@163.com

Received 12 June 2017; Revised 1 September 2017; Accepted 26 September 2017; Published 25 October 2017

Academic Editor: Paolo Gastaldo

Copyright © 2017 Jie-Hao Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, with the rapid development of mobile Internet and its business applications, mobile advertising Click-Through Rate
(CTR) estimation has become a hot research direction in the field of computational advertising, which is used to achieve accurate
advertisement delivery for the best benefits in the three-side game between media, advertisers, and audiences. Current research
on the estimation of CTR mainly uses the methods and models of machine learning, such as linear model or recommendation
algorithms.However,most of thesemethods are insufficient to extract the data features and cannot reflect the nonlinear relationship
between different features. In order to solve these problems, we propose a newmodel based on Deep Belief Nets to predict the CTR
of mobile advertising, which combines together the powerful data representation and feature extraction capability of Deep Belief
Nets, with the advantage of simplicity of traditional Logistic Regressionmodels. Based on the training dataset with the information
of over 40millionmobile advertisements during a period of 10 days, our experiments show that our newmodel has better estimation
accuracy than the classic Logistic Regression (LR) model by 5.57% and Support Vector Regression (SVR) model by 5.80%.

1. Introduction

With the rapid development of mobile Internet and its wide
applications, mobile advertising has become one of the most
successful business models in the world. To achieve the
best advertisement delivery, how to best estimate the Click-
Through Rate (CTR) is the key and has thus become a hot
research direction in the field of computational advertising.

Generally, the display of an online advertisement can be
seen as a three-side game between media, advertisers, and
audiences. The advertiser purchases the chance of advertis-
ing from the media through cost-per-click (CPC), so the
expected revenue of the media is decided by the Click-
Through Rate (CTR) and the CPC. The formula [1] is as
shown as

𝐸 (revenue) = CTR × CPC. (1)

How to advertise to a specific audience group to benefit all
three sides of the game process is the key problem in the field
of online advertising. Inappropriate advertising will lead to
the decreasing of user experience, especially in the domain of
mobile advertising, with the increase of annoyance and waste

of network traffic, and the advertisement will not achieve the
expected effect and the media will suffer too. As a result,
Click-Through Rate (CTR) estimation is the critical factor
in this three-side game and has thus become a hot research
direction in the field of computational advertising.

There are many models proposed by the academia and
industry, which are usually based on the machine learning
methods. We can divide them into three categories: linear,
nonlinear, and fusion models. Chapelle [2] proposed a
machine learning framework based on Logistic Regression
(LR), aiming to predict the CTR for Yahoo website. Dem-
bczyński et al. [3] adopted decision trees to discover the
implicit relationships between different features and finally
found out the nonlinear relationships between the predicted
target and the features. He [4] developed a fusion model
of LR and decision trees for the advertisement system of
Facebook. The factorization based prediction method Field-
Aware Factorization Machines [5] was developed by Juan et
al.Tagami et al. [6] proposed a learning-to-rank approach on
contextual advertising. Most of the existing prediction mod-
els have developed well and can get a satisfactory result after

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 7259762, 8 pages
https://doi.org/10.1155/2017/7259762

https://doi.org/10.1155/2017/7259762

2 Computational Intelligence and Neuroscience

they are trained withmassive training data whose features are
chosen, built, and handled artificially, thus depending heavily
on the experience and techniques of the data analysts.

Meanwhile, deep learning has become an important
approach, especially after Hinton et al. [7] proposed a
rapid level-by-level training process in 2006 for solving the
difficulty of connecting the learning and training of the
Deep Neural Network (DNN). With the help of this training
process, it is now possible to train the neural network in a
better way, and the neural network is widely used in multiple
fields such as handwritten numeral recognition [7], 3D object
recognition [8], and speech recognition [9].

The data of ads to be predicted is a kind of time-series
data [10], which consists of sampled data points taken from a
continuous, real-valued process over time. For the application
of deep learning methods on time-series data, Chaturvedi et
al. [11] presented a deep transfer learning method. The key
idea is to learn high-dimensional network motifs from low-
dimensional forms through a process of transfer learning.
This method may greatly decrease the computational cost in
the range of 25% to 600%. The approaches above provide
reliable experience of applying the neural network to predict
the Click-Through Rate.

Since the key features of advertisement data are not
detected completely and the nonlinear relationship between
different features is not fully reflected in current models, this
paper proposes a mobile advertising CTR estimation fusion
model based on Deep Belief Nets (DBNs). Our model com-
bines the advantage of the powerful data representation and
feature extraction capability from DBN with the advantage
of simplicity of traditional Logistic Regression models. To
solve the key problem of obtaining the best feature expression
in machine learning, our model detects deep level features
in place of simple original features and then puts it into a
Logistic Regression model to predict the CTR. Numerous
experimental results show that our model improves the
estimation accuracy in an obvious way. It performs 5.57% and
5.80% better than the original LR model and Support Vector
Regression (SVR) model in the evaluation criterion of Area
under the Curves (AUC).

2. Deep Belief Nets

Deep Belief Nets (DBNs) are probabilistic generative models
that are composed of multiple layers of stochastic, latent
variables. In this part, we train our DBN by using Restricted
BoltzmannMachines (RBMs) to initialize the parameters and
then obtain the Backward Error Propagation (BP) Algorithm
to adjust them.

2.1. Restricted Boltzmann Machines. Restricted Boltzmann
Machine (RBM) is a two-layer undirected graph model [12],
whose structure is shown in Figure 1. It consists of one visible
layer and one hidden layer. There are connections between
layers but no connections between units in the same layer.The
units in the hidden and visible layers can be two-value units
or exponential families, for example, Gaussian, Poisson, and
softmax.

Hidden
layer

Visible
layer

(a) CBM

...

(b) DBN

Figure 1: DBNs that piled up by RBMs.

The tied weight and biases value define the probability
distribution and energy function of the whole model, where
V is the binary data vector of visible units and ℎ is the one of
hidden units, so the energy function is as follows:

𝐸 (V, ℎ | 𝜃) = − 𝑉∑
𝑖=1

𝐻∑
𝑗=1

𝑤𝑖𝑗V𝑖ℎ𝑗 − 𝑉∑
𝑖=1

𝑏𝑖V𝑖 − 𝐻∑
𝑗=1

𝑎𝑗ℎ𝑗. (2)

Here, 𝜃 = (𝑤, 𝑏, 𝑎), 𝑤𝑖𝑗 stands for the undirected tied
weight between unit V𝑖 in the visible layer and unit ℎ𝑗 in the
hidden layer, 𝑏𝑖 and 𝑎𝑗 stand for V𝑖 and ℎ𝑗’s biases values, and𝑉
and𝐻 are the count of units of the visible layer and the hidden
layer, respectively. When there is a specific 𝜃, we can get the
marginal distribution of the status vector V of the visible layer
from the energy function:

𝑝 (V | 𝜃) = ∑ℎ 𝑒−𝐸(V,ℎ)∑𝑢∑ℎ 𝑒−𝐸(𝑢,ℎ) . (3)

The units inside one layer of RBM are not connected to
each other, so when we know one specific unit in some layer,
the active status of units in another layer is conditionally
independent. As a result, we can calculate 𝑝(V | ℎ) and 𝑝(ℎ |
V):

𝑝 (ℎ𝑗 = 1 | V, 𝜃) = 𝜎(𝑉∑
𝑖=1

𝑤𝑖𝑗V𝑖 + 𝑎𝑗) ,

𝑝 (V𝑖 = 1 | ℎ, 𝜃) = 𝜎(𝐻∑
𝑗=1

𝑤𝑖𝑗ℎ𝑗 + 𝑏𝑖) ,
(4)

in which 𝜎 = (1 + 𝑒−𝑥)−1.
The reason why we train the RBM is to calculate the

value of parameter 𝜃 and fit the samples. In this paper,
we obtain an unsupervised training method to maximize
the Log Likelihood Function 𝐿(𝜃) of input samples and
use the stochastic gradient descent algorithm to get the

Computational Intelligence and Neuroscience 3

i i

j

i

j j

⟨iℎj⟩
0 ⟨iℎj⟩

1

· · ·

· · ·

⟨iℎj⟩
∞

t = 0 t = ∞t = 1

t = 0 t = ∞t = 1

Figure 2: Gibbs Sampler.

partial derivative of the parameters to update the tied weight
between the visible layer and the hidden layer:

𝐿 (𝜃) = ln𝑝 (V) = ln∑
ℎ

𝑒−𝐸(V,ℎ) − ln∑
𝑢

∑
ℎ

𝑒−𝐸(𝑢,ℎ), (5)

Δ𝑤𝑖𝑗 = 𝜀 𝜕𝐿𝜕𝑤𝑖𝑗 = 𝜀 (⟨V𝑖ℎ𝑗⟩data − ⟨V𝑖ℎ𝑗⟩model) ,
Δ𝑏𝑖 = 𝜀𝜕𝐿 (𝜃)𝜕𝑏𝑖 = 𝜀 (⟨V𝑖⟩data − ⟨V𝑖⟩model) ,
Δ𝑎𝑗 = 𝜀𝜕𝐿 (𝜃)𝜕𝑎𝑗 = 𝜀 (⟨ℎ𝑗⟩data − ⟨ℎ𝑗⟩model) .

(6)

In formula (6), ⟨⟩data stands for the probability distribu-
tion of the status of the hidden layer under certain status
of the visible layer, while ⟨⟩model is the joint probability
distribution of the visible layer and the hidden layer. The cal-
culation of the joint probability distribution takes exponential
time complexity, so we obtain the Contrastive Divergence
Algorithm to get the approximation of the gradient by doing𝑡 steps of Gibbs Sampler, as shown in (7) and Figure 2:

Δ𝑤𝑖𝑗 = 𝜀 (⟨V𝑖ℎ𝑗⟩0 − ⟨V𝑖ℎ𝑗⟩𝑇) ,
Δ𝑏𝑖 = 𝜀 (⟨V𝑖⟩0 − ⟨V𝑖⟩𝑇) ,
Δ𝑎𝑗 = 𝜀 (⟨ℎ𝑗⟩0 − ⟨ℎ𝑗⟩𝑇) .

(7)

2.2.The Structure of Deep Belief Nets andTheir Training Struc-
ture. DBN is a probabilistic generative model that contains
one visible layer and multiple hidden layers, as shown in
Figure 3.

The top two levels of DBN are nondirectly connected and
are called theAssociativeMemory Layer.The rest of the layers
are directly connected to one another. The downward edge
is Generative Weights while the upward edge is Detection
Weights. The training of DBN can be divided into two parts.

(1) To see every two layers of DBN as a single Restricted
Boltzmann Machine (RBM), the hidden layer of the lower
RBM is the visible layer of the upper RBM. Then, train this
RBM one by one to get the initial weights of DBN.

(2) Train theDBN as a standard feedforward network and
use the label data of the samples and BP [13, 14] to adjust the
parameters of the model.

Visible
layer

Observation vector

CBM
Hidden

layer
2

Hidden
layer

1

Label
units

Deep Belief

Associative memory

Generative

Generative

weights

weights weights

weights
Detection

Detection

Top layer with F binary latent units

BP

Nets

Figure 3: The structure of DBN.

Original features handling

Abstracted
features

Deep Belief
Nets

Label units

CTR

Visible
layer

Hidden
layer
n

Logistic
Regression

Output layer

Hidden
layer

2

Hidden
layer

1

...

Figure 4: The framework of the prediction model.

3. The Mobile Advertisement CTR Predicting
Model Based on DBN

Our mobile advertisement predicting model mainly contains
three steps:

(1) The pretreatment of original sample feature data.
(2) Taking the DBN to build valid features from original

ones in a deep level.
(3) Taking the newly built vectors as the input of the

Logistic Regression (LR) model and predicting the CTR.
The framework of the whole model is shown in Figure 4.

4 Computational Intelligence and Neuroscience

Compared to low level models, DBNs are known to suffer
from overfitting due to the large number of parameters.
And the training of these parameters needs a big amount
of layer-by-layer computation, which will greatly slow down
the training process when the dimension of the sample is
too high. To solve this problem, we adopt the normalization
method described in Section 4.3.1 on each feature in the
whole dataset, which will decrease the influence of the feature
values whose frequencies are extremely low.

In the structure of DBN, the activation function is a
sigmoid function, which makes the best use of the nonlin-
ear characteristics of the deeper model. Samples that are
processed enter the model through the visible layer; after
the detection of hidden layers, they finally become deeper
detected features at the top of the model. At last, we put
the deeper detected features into the LR model to get the
prediction of CTR combined with label information. The
output layer of themodel contains one sigmoid unit, together
with the units in the top hidden layer of DBN that comprises
the LR model. The activation probability of the units in the
output layer is as follows:

𝑝 (𝑌 = 1 | 𝑥, 𝜃) = 11 + 𝑒−𝜃𝑇𝑥+𝑏 . (8)

In formula (8), 𝑥 is the status of units in the top layer of
DBN, 𝜃 is the tiedweight between the units in the output layer
and the ones in the top layer of DBN, and 𝑏 stands for the
offset value of the output layer.

4. Experiments and Results

In this chapter, we design the experiments to test our model
and analyze the result.

4.1. Experiment Environment. Thehardware was anHP Elite-
Book 8760W WorkStation, with Intel(R) Core� i7-2760QM
2.40GHz CPU, 12.0GB RAM.

The software used was Windows 10, 64 bits, MATLAB
2014Rb, DeepLearnToolbox, and JDK1.7.0.

4.2. Dataset. The dataset [15] we used is the Click-Through
Rate Prediction Competition Dataset from Kaggle platform.
The original data comes from Avazu. The training dataset
contains the information of over 40millionmobile advertise-
ments in 10 days. As a sample, we use 4,112,995 samples on the
first day. We split the set into a testing dataset and a training
dataset by the ratio of 9 to 1.That is to say, every single sample
has 90% chance to be selected as a training set and 10% chance
to be selected as a testing set. Finally, we get 412,299 samples
in the test set and 3,710,696 in the training set.

The analysis of the click result of the whole dataset is as
shown in Figure 5. The positive examples are 718,218 in total
while the negative examples are 3,404,777 in total, and the
Click-Through Rate is around 0.174,198. Among the 412,299
test samples, the positive examples were 72,304 in total, the
negative examples were 339,995, and the Click-Through Rate
was about 0.175,368. In the training dataset, the positive
examples are 645,914, the negative examples are 3,064,782,

Test dataset

Training dataset

Overall dataset

Positive examples

Negative examples

Test dataset
72,304

339,995

Training dataset
645,914

3,064,782

Overall dataset
718,218

3,404,777

20 40 60 80 1000
(%)

Figure 5: The distribution of positive and negative examples in the
overall dataset, test dataset, and training dataset.

and the overall Click-Through Rate is around 0.174,068. The
ratios of positive examples and negative examples and the
Click-Through Rate are similar in the overall dataset, test
dataset, and training dataset, which meet the need of our
experiment.

4.3. The Design of the Experiment

4.3.1. The Pretreatment of the Dataset. Before we begin our
experiment, we first do some pretreatment on our original
datasets. What is shown in Table 1 is the detailed description
of the dataset; the ID is the unique identification of samples
which is not going to be the input of the model; and the click
is the label of the sample.

As for other features, first, the continuous features are
divided according to the interval and then converted with
digital coding to category features. Here is an example. We
divide the feature hour into 24 different hours and the code
from 0 to 23.

Second, as for the category features, we count the fre-
quency of the different features, as shown in Table 2, which
is the frequency of different values of the feature banner pos.

At last, we normalize all features and use themas the input
vector ofDBN.There are 22 features, so the length of the input
vector is 22. Take the feature banner pos as an example; using
the frequencies in Table 2, we can normalize this feature value
with the following formula:

𝑁𝑖 = 𝐹𝑖 − 𝐹min𝐹max − 𝐹min
, (9)

where 𝑁𝑖 is the normalized value of the 𝑖th feature value 𝐹𝑖
and 𝐹max and 𝐹min are the maximum and minimum feature
values, respectively.

4.3.2. Experimental Setup. To avoid overfitting, we adopt the
Momentum Method and Weight-Decay Strategy to train the

Computational Intelligence and Neuroscience 5

Table 1: Description of dataset.

Title Description Type
ID The ID of this presentation Category, unique
click 0: unclicked, 1: clicked Category, 0,1
hour Time Continuous, 10 days, 24 hours a day
C1 Anonymous features Continuous, 7 different values
banner pos The position of the ads Category, 7 different values
site id The ID of the site Category, 2,865 different values
site domain The domain of the site Category, 3,394 different values
site category The category of the site Category, 2 different values
app id The ID of the app Category, 4,154 different values
app domain The domain of the app Category, 287 different values
app category The category of the app Category, 31 different values
device id The ID of the device Category, 368,962 different values
device ip The ip of the device Category, 1,078,153 different values
device model The model of the device Category, 6,098 different values
device type The type of the device Category, 4 different values
device conn type The connection type of the device Category, 4 different values
C14–C21 Anonymous features Most categories, few continuous

Table 2: The frequency and normalized value of different values of
the feature banner pos.

Feature value Frequency Normalized number
0 3076333 1
1 1040891 0.338351
2 1309 0.000420
3 17 0
4 496 0.000156
5 2635 0.000851
6 1314 0.000422

model. The formula which updates the tied weight in the
model is as shown in

Δ𝑤𝑖𝑗 = 𝜀 (⟨V𝑖ℎ𝑗⟩data
− ⟨V𝑖ℎ𝑗⟩𝑇 − 𝜆 ⋅ 𝑤𝑖𝑗 (𝑡 − 1)) + 𝛼

⋅ Δ𝑤𝑖𝑗 (𝑡 − 1) , (10)

within which Δ𝑤𝑖𝑗(𝑡 − 1) is the updated values of the last
update. To accelerate the convergence speed of training, we
adopt the minibatch method to train the model. Each batch
contains 500 samples. The parameter of the training of the
model is as shown in Table 3.

4.3.3. Experiment. For further validation of our research
result and analysis of the performance of our fusion model
based on DBN, the experiment target consists of four parts.

(1) To analyze the effect of different numbers of hidden
layers on the prediction of CTR.

(2) To analyze the effect of different numbers of the units
in hidden layers on the prediction of CTR.

(3) To analyze the influence of different epochs on the
prediction of CTR.

Table 3: The set of parameters.

Parameters Values
Units in input layer 22
Units in output layer 1
Learning rate 𝜀 = 0.01
Momentum learning rate 𝛼 = 0.5
Weight-cost 𝜆 = 0.001
Epochs 150
Unit activation function Sigmoid

Initial weight Gaussian distribution𝑁(0, 0.012)
Initial biases 0
Steps in Gibbs Sampler 𝑇 = 1
Table 4: Four results of the prediction to a binary classification.

Real Prediction
1 0

1 True positive, TF False positive, FP
0 False negative, FN True negative, TN

(4) To compare the performance of the fusion model
based on DBN and other models including LR and SVR.

4.3.4. Evaluating Indicator. The curve in AUC usually means
the Receiver Operating Characteristic (ROC), which is usu-
ally used to evaluate the performance of a two-class classifier.
While predicting a binary classification problem, it may come
to four situations as shown in Table 4.

The 𝑥-axis of the AUC represents the false positive rate
while the 𝑦-axis represents the true positive rate. AUC

6 Computational Intelligence and Neuroscience

0.6988

0.7006
0.7014

0.6983

0.6965

0.696

0.698

0.7

0.702

AU
C

2 3 4 5 6 71
The number of hidden layers

Figure 6: The influence of the number of hidden layers.

values range from 0.5 to 1, with higher value entailing better
prediction performance.

4.4. Result Analysis

4.4.1. The Influence of Different Numbers of Hidden Layers. In
this chapter, we carry out an experiment on the influence of
different numbers of hidden layers in DBN. First, we set all
hidden layers’ numbers to 256, and the result is shown in
Figure 6.

What can be seen from Figure 6 is that the AUC of the
prediction result has risen apparently with the increase of the
hidden layers while it reduced rapidly when the number was
over 4, which is due to overfitting problems. It turns out that
the more hidden layers the DBM has, the more complete the
feature learning is. And for avoiding overfitting problems, we
need to carry out experiments to determine the number of
the hidden layers.

4.4.2. The Influence of Different Numbers of Units on Hidden
Layers. The number of units in hidden layers in DBN is
extremely important for its great influence on the per-
formance of the network as well as the direct reason of
the overfitting problem. However, there are no universal
parameter adjustmentmethods for this number in theory. So,
in this part, we carry out experiments on the influence of this
number. The set of parameters is as shown in Table 3.

First, we investigate the influence of the units in the first
layer ofDBNby fixing the numbers of units in the other layers
to 256 according to experiences and set the ones in the 1st as
the Geometric Progression of 23+𝑖 (𝑖 ∈ 𝑁+, 𝑖 ≤ 7). The result
is shown in Figure 7.

With the increase of units in the first hidden layer, the
AUC of the results increases while the overfitting problem
happens again when the unit number is more than 512,
indicating that 512 is the best value, 0.43% better than the
default value 256, and 30.61% better than the worst value 16.
Then, we carry out the same experiment on the other hidden
layers using the same parameters set in Table 3 and the results
are shown in Figures 8–10.

Figures 8–10 show that all the AUC of the four layers get
the highest values when the number of units is set to 512. So,
we can come to a conclusion that the best values of the units

0.5393

0.5956

0.6783
0.6994

0.7014

0.7044

0.7008

0.5

0.55

0.6

0.65

0.7

0.75

AU
C

16 32 64 128 256 512 1024 20488
The number of units in the 1st layer

Figure 7: The influence of the number of the units in the first layer.

0.5433

0.6044

0.6871
0.7033

0.7044

0.7071

0.704

0.5

0.55

0.6

0.65

0.7

0.75

AU
C

16 32 64 128 256 512 1024 20488
The number of units in the 2nd layer

Figure 8: The influence of the number of the units in the second
layer.

0.5447

0.6071

0.6795
0.6997

0.7071

0.7095

0.7043

0.5

0.55

0.6

0.65

0.7

0.75

AU
C

16 32 64 128 256 512 1024 20488
The number of units in the 3rd layer

Figure 9:The influence of the number of the units in the third layer.

0.5534

0.6167

0.6996
0.7092

0.7095

0.7127

0.7124

0.5

0.55

0.6

0.65

0.7

0.75

AU
C

16 32 64 128 256 512 1024 20488
The number of units in the 4th layer

Figure 10: The influence of the number of the units in the fourth
layer.

Computational Intelligence and Neuroscience 7

DBNs
LR

0.685

0.69

0.695

0.7

0.705

0.71

0.715

AU
C

0 100 150 200 25050
Epochs

Figure 11: The AUC of DBNs and LR in different epochs.

Table 5: The set of parameters.

Parameters Values
Learning rate 𝜀 = 0.01
Epochs 200

Initial weight Gaussian distribution𝑁(0, 0.012)
Initial biases 0

in hidden layers are all 512 in our model. Too many units in
the hidden layers may cause overfitting and make the model
overly sensitive and unstable.

The overall accuracy of the model increased by 1.99%,
from 0.6988 to 0.7127, after we adjusted the default parame-
ters (two hidden layerswith 256 units in each layer) to the best
ones (four hidden layers with 512 units in each layer), which
indicates the importance of parameters’ adjustment clearly.

4.4.3. The Influence of Different Numbers of Epochs. Figure 11
shows the AUC of DBNs and LR in different epochs. We
can see that, with the increase of epochs, DBNs get better
and better performance until the epochs reach 150, and then
the AUC will plateau. This reflects that the DBNs have been
trained sufficiently.

We also perform an experiment on LR as contrast, the
parameters of which are shown in Table 5. From Figure 11, we
can see that the prediction of DBNs is better than the one of
LR when the epochs are more than 30. And the performance
of DBNs will not go down with the increase of epochs like LR
after being trained sufficiently.This is because the LRmodel is
a shallowmodel which will have an overfitting problemwhen
the epochs become too much.

4.4.4. The Comparison of DBN and Other Models. From
Figure 12, we can see that the performance of our fusion
model is 5.57% better than of Logistic Regression (LR) and

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

DBNs LR SVR

0.7127

0.6951
0.6936

AU
C

Figure 12: The comparison of DBN and other models.

5.80% better than of Support Vector Regression (SVR) in
estimation accuracy.

This is because theDBNhas advantages in detecting latent
features which represent the essence of a sample in a better
way than shallow models.

5. Conclusions

To solve the problem that the key features of advertisement
data are not detected completely and the nonlinear rela-
tionship between different features cannot be fully reflected
in traditional Click-Through Rate (CTR) estimation models,
we propose a new fusion model based on Deep Belief Nets
to predict the CTR of mobile advertising. Our model takes
advantage of the latent feature detecting ability of the DBN
and the simplicity of traditional Logistic Regression models.
We also describe the derivation and training method of the
model and design experiment to discuss the effect of different
numbers of hidden layers as well as units in them on the
prediction result. Results show that our fusion model has
better performance in estimation accuracy, with a 5.57%
increase compared to the classic Logistic Regression (LR)
model and 5.80% increase compared to the Support Vector
Regression (SVR) model.

Abbreviations

CTR: Click-Through Rate
DBN: Deep Belief Net
LR: Logistic Regression
SVR: Support Vector Regression
CPC: Cost-per-click
NN: Neural network
AUC: Area under the Curves
RBM: Restricted Boltzmann Machine
BP: Backward Error Propagation
ROC: Receiver Operating Characteristic.

8 Computational Intelligence and Neuroscience

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Richardson, E. Dominowska, and R. Ragno, “Predicting
clicks: estimating the click-through rate for new ads,” in Pro-
ceedings of the 16th International World Wide Web Conference
(WWW ’07), pp. 521–530, May 2007.

[2] O. Chapelle, “Modeling delayed feedback in display advertis-
ing,” in Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
2014, pp. 1097–1105, usa, August 2014.

[3] K. Dembczynski, W. Kotlowski, and D. Weiss, “Predicting ads
click-through rate with decision rules,” in Proceedings of the
Workshop on Targeting and Ranking in Online Advertising, vol.
2008, Citeseer, 2008.

[4] X. He, J. Pan, O. Jin et al., “Practical lessons from predicting
clicks on ads at Facebook,” inProceedings of the 8th International
Workshop on Data Mining for Online Advertising, ADKDD 2014
- Held in Conjunction with SIGKDD 2014, usa, August 2014.

[5] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, “Field-aware
factorization machines for CTR prediction,” in Proceedings of
the 10thACMConference onRecommender Systems, RecSys 2016,
pp. 43–50, usa, September 2016.

[6] Y. Tagami, S. Ono, K. Yamamoto, K. Tsukamoto, and A. Tajima,
“CTR prediction for contextual advertising: Learning-to-rank
approach,” in Proceedings of the 7th International Workshop on
Data Mining for Online Advertising, ADKDD 2013 - Held in
Conjunction with SIGKDD 2013, usa, August 2013.

[7] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,”Neural Computation, vol. 18, no.
7, pp. 1527–1554, 2006.

[8] V. Nair and G. E. Hinton, “3D object recognition with deep
belief nets,” in Proceedings of the 23rd Annual Conference on
Neural Information Processing Systems (NIPS ’09), pp. 1339–1347,
December 2009.

[9] A.-R. Mohamed, T. N. Sainath, G. E. Dahl, B. Ramabhadran,
G. E. Hinton, and M. A. Picheny, “Deep belief networks using
discriminative features for phone recognition,” in Proceedings of
the 36th IEEE International Conference onAcoustics, Speech, and
Signal Processing (ICASSP ’11), pp. 5060–5063, May 2011.

[10] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsu-
pervised feature learning and deep learning for time-series
modeling,” Pattern Recognition Letters, vol. 42, no. 1, pp. 11–24,
2014.

[11] I. Chaturvedi, Y.-S. Ong, and R. V. Arumugam, “Deep transfer
learning for classification of time-delayed Gaussian networks,”
Signal Processing, vol. 110, pp. 250–262, 2015.

[12] R. Salakhutdinov and G. Hinton, “An efficient learning proce-
dure for deep Boltzmann machines,” Neural Computation, vol.
24, no. 8, pp. 1967–2006, 2012.

[13] E. Fiesler, A. Choudry, and H. J. Caulifield, “Weight discretiza-
tion in backward error propagation neural networks,” Neural
Networks, vol. 1, no. 1, p. 380, 1988.

[14] B. E. Rosen, J. M. Goodwin, and J. J. Vidal, “Transcendental
functions in backward error propagation,” in Proceedings of
the 1990 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 239–241, November 1990.

[15] Kaggle., “Click-Through Rate Prediction,” Predict whether a
mobile ad will be clicked. https://www.kaggle.com/c/avazu-ctr-
prediction/data.

https://www.kaggle.com/c/avazu-ctr-prediction/data
https://www.kaggle.com/c/avazu-ctr-prediction/data

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

