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Compressive Sensing (CS) realizes a low-complex image encoding architecture, which is suitable for resource-constrained wireless
sensor networks. However, due to the nonstationary statistics of images, images reconstructed by the CS-based codec have many
blocking artifacts and blurs. To overcome these negative effects, we propose anAdaptive BlockCompressive Sensing (ABCS) system
based on spatial entropy. Spatial entropy measures the amount of information, which is used to allocate measuring resources to
various regions. The scheme takes spatial entropy into consideration because rich information means more edges and textures. To
reduce the computational complexity of decoding, a linear mode is used to reconstruct each block by the matrix-vector product.
Experimental results show that our ABCS coding systemprovides a better reconstruction quality fromboth subjective and objective
points of view, and it also has a low decoding complexity.

1. Introduction

Compressive Sensing (CS) is a novel sampling theory that
goes against the conventional Nyquist-Shannon theorem in
data acquisition [1]. When married with image coding, CS
brings a low-complex encoding architecture, which is appeal-
ing for resource-constrained wireless sensor network [2].
Image CS coding is to reconstruct the natural image from
its observed measurements y = Φx, where x ∈ R𝑁 is lexi-
cographically stacked representations of the original image
and y ∈ R𝑀 is the CS measurements observed by a random
𝑀 × 𝑁 measurement matrix Φ(𝑀 ≪ 𝑁). Once the image
x is K-sparse signal (𝐾 ≪ 𝑁) in some space Ψ, CS theory
can guarantee that the image is accurately recovered with
high probability from 𝑀 = 𝑂(𝐾 log𝑁) measurements [3].
The CS measurement process combines image acquisition
and image compression; thus the computational burdens are
greatly reduced at encoder. Each element in y carries equal
amount of the information on x, which offers a robust ability
against noise in wireless communication. The advantages of
CS attract many researchers to explore applications of CS in
multimedia system [4, 5].

Many researchers have been attempting to develop effec-
tive image reconstruction algorithms in order to improve

the rate-distortion performance of image CS coding. A
good reconstruction performance relies on a more sparse
representation of image; for example, Zhang et al. [8] exploit
the intrinsic local sparsity and nonlocal self-similarity to
design a dynamically varying space; Wu et al. [9] introduce
a local autoregressive model to explore sparse components;
Eslahi et al. [10] construct an adaptively learned space by
using local and nonlocal sparsity of image; Liu et al. [11] use
Principle Component Analysis (PCA) to sparsely decompose
each patch in image. In the field of Magnetic Resonance
Imaging (MRI), some works also invest many efforts to
improve the reconstruction performance; for example, Zhang
et al. [12] proposed an energy preserving sampling to enhance
the quality of digital phantom, Zhang et al. [13] proposed an
exponential wavelet iterative shrinkage/threshold algorithm
to reduce the blurs existing in the reconstructed image, and
Sun and Gu [14] proposed an adaptive observation matrix
for sparse samples for ultrasonic wave signals that are ana-
lyzed in the phased array structural health monitoring. The
above-mentioned methods all involve numerical iteration,
which brings a high computational complexity at decoder.
Therefore, the image CS coding is always characterized
by light encoding and heavy decoding. However, because
natural images typically exhibit nonstationary statistics, high
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computational complexity does not necessarily bring a satis-
factory result. That poses us a challenge about how to design
a CS codec systemwhich can overcome the negative effects of
nonstationary statistics.

Block-based CS (BCS) hybrid coding framework [15–
17] solves the problem of high computational complexity
of decoding by measuring and recovering nonoverlapping
blocks independently, but nonstationary statistics of image
could lead to blocking artifacts. Different statistics of block
result in different sparsity of block; thus the measurement
times of block should be set accordingly. Based on BCS
framework, some research on Adaptive BCS (ABCS) frame-
work [6, 7, 18] is done to suppress blocking artifacts. The
research all uses some image features (e.g., DCT coefficient
[18], variance [6], and saliency [7]) to measure statistics
of block and then adaptively allocates CS measurements
for each block according to the measured feature of block.
ABCS is a successful scheme to reduce the negative effect
of nonstationary statistics while guaranteeing a low compu-
tational complexity of decoding. However, some time and
space complexities would inevitably be introduced at encoder
due to the existence of feature exaction. The existing ABCS
schemes invest many matrix-vector products to compute
image feature; for example, two matrix-vector products and
one convolution operation are performed for thewhole image
to compute the visual saliency in [7].Thematrix-vector prod-
uct is too expensive for wireless sensor network because the
processor of mobile note has limited computing capability.
Therefore, in order tomake encoder lighter, ABCS framework
requires a simple feature while effectively reducing blocking
artifacts.

In this paper, we propose an ABCS coding system which
uses spatial entropy of block to allocate measuring resources.
Spatial entropy measures the amount of information, reveal-
ing statistical characteristic of data. The main contributions
of this work can be summarized as follows:

(i) We propose using the spatial entropy of image block
as a criterion of CS measurements allocation.

(ii) We reduce the computational complexity of recon-
structing image by using a linear model.

We assign higher measurement rate to blocks with much
information but lower measurement rate to blocks with less
information. By entropy-based adaptivemeasuring, the qual-
ity of reconstructed block could not vary greatly with non-
stationary statistics of image. Since the computing of entropy
requires only a few floating-point operations, our ABCS
system also has a light encoder. To realize real-time decoding,
we use a linear model to recover all blocks. Combined
with adaptive measuring based on spatial entropy, the linear
recovery method improves the reconstruction quality effect-
ively.

The rest of this paper is organized as follows. Section 2
summarizes ABCS coding framework. Section 3 presents the
proposed adaptive measuring and linear recovery schemes.
Experimental results are given in Section 4 and conclusion in
Section 5.

2. ABCS Coding Framework

The advantage of ABCS framework is nonuniform allocation
of CS measurements based on the image feature.This section
shows how ABCS framework works.

Given an 𝑁-pixel image x from a real-world scene and
supposing we want to take 𝑀 CS measurements, we sum-
marize the flow of ABCS coding, as shown in Figure 1. The
encoding part is described as follows.

Step 1. Divide image x into 𝐿 nonoverlapping blocks of 𝐵 ×
𝐵 in size and let x𝑖 (𝑖 = 1, 2, . . . , 𝐿) represent the vectorized
signal of the 𝑖th block through raster scanning.

Step 2. The feature of each block is extracted. Block variance
[18], edge [6], and saliency information [7] are common fea-
tures.

Step 3. We set the measurement number 𝑀𝑖 of each block
according to the distribution of these image features. The
total number of CS measurements of all blocks is 𝑀; that is,
∑L

i=1 Mi = 𝑀.

Step 4. We useMarsaglia’s ziggurat algorithm [19] to produce
pseudorandom data which obey Gaussian distribution, and
these random data form a 𝐵2 × 𝐵2 matrix Θ. After that, we
randomly pick 𝑀𝑖 rows from Θ to construct the 𝑀𝑖 × 𝐵2
measurement matrixΦ𝐵𝑖 of x𝑖.

Step 5. The CS measurement vector y𝑖 of x𝑖 is observed with
Φ𝐵𝑖 as follows:

y𝑖 = Φ𝐵𝑖x𝑖. (1)

We define the block measurement rate 𝑅𝑖 as𝑀𝑖/𝐵2.
Through the above steps, we perform ABCS encoding

for an image. According to (1), the measurement rate of
each block varies with different image features. By measuring
block features, more CSmeasurements are allocated to blocks
with high-level features but fewer to blocks with low-level
features.

At the ABCS decoder, after receiving the measurement
vector y𝑖 of each block, ABCS framework generally uses the
minimum 𝑙1 norm model to recover each block as follows:

x̂𝑖 = argmin Ψ𝑖x𝑖1
s.t. y𝑖 −Φ𝐵𝑖x𝑖2 ≤ 𝜀 (2)

in which ‖ ⋅ ‖1 and ‖ ⋅ ‖2 are 𝑙1 and 𝑙2 norms, respectively,
Ψ𝑖 is the transformation matrix of each block, for example,
DCT and wavelet matrices, and 𝜀 is the noise tolerance which
can be set based on experience. Model (2) can be solved by
many numerical iterative algorithms, for example, Orthogo-
nal Matching Pursuit (OMP) [20] and Gradient Projection
for Sparse Reconstruction (GPSR) [21]. These algorithms
require a high computational complexity to reconstruct a
whole image. No matter what recovery algorithm is chosen,
more CSmeasurementsmean a better reconstruction quality.
Therefore, ABCS framework ensures a good recovery quality
for every block by feature-based adaptive measuring.
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Figure 1: Flow of ABCS coding.

3. Proposed Scheme

Figure 2 presents the framework of the proposed ABCS
scheme. At encoder, we compute the spatial entropy𝐻𝑖 of the𝑖th block x𝑖 and set its measurement number𝑀𝑖 according to
the distribution of spatial entropy. We construct the𝑀𝑖 × 𝐵2
measurement matrixΦ𝐵𝑖 to observe CS measurement vector
y𝑖. Spatial entropy measures the information amount of each
block and directly reveals the nonstationary statistics of
image. By entropy-based adaptive measuring, each block has
sufficient CSmeasurements to describe the block statistics. At
decoder, in order to realize real-time decoding, we transform
the measurement vector y𝑖 into the reconstructed block x̂i by
a linear model. In the following three parts of this section,
we first describe how to compute the distribution of spatial
entropy, then design an adaptive measuring scheme, and
finally present the linear recovery model.

3.1. Spatial Entropy. Spatial entropy of image is the expected
value of the information contained in some pixels. We
compute the spatial entropy𝐻𝑖 of the 𝑖th block as follows:

𝐻𝑖 = −
255

∑
𝑗=0

𝑝𝑖𝑗 log2𝑝𝑖𝑗, (3)

in which 𝑗 represents pixel value and 𝑝𝑖𝑗 is the probability
of pixel value in x𝑖. The unit of 𝐻𝑖 is bit per pixel (bpp),
and 𝐻𝑖 is the minimum number of bits to encode any pixel
in a block with no loss. Data processing inequality states
that the information content of a signal cannot be increased
via a local physical operation [20], which implies that the
information contained in sparse components is close to
spatial entropy. Therefore, the bigger the spatial entropy of
block is, the less sparse the representation coefficients are, and
vice versa. According to CS theory, we should allocate more
CSmeasurements to blocks withmuch information but fewer
to blocks with less information. By normalizing the spatial
entropy of each block,

𝑤𝑖 = 𝐻𝑖
∑𝐿𝑖=1𝐻𝑖

, (4)

we can control the measurement rate 𝑅𝑖 according to the
entropy contrast. The probabilities can be expressed in the
form of histograms; thus the spatial entropies of all blocks can
be computed in 𝑂(𝑁) time order.

3.2. Measuring Allocation. Our entropy-based CS scheme
aims to allocate measuring resources according to the infor-
mation contained in each block. By (4), we obtain the
distribution of spatial entropy. Suppose𝑀 is the total number
of CS measurements for a whole image, we set the number of
CS measurements for each block as follows:

𝑀𝑖 = round [𝑤𝑖 (𝑀 − 𝐿𝑀0) + 𝑀0] , (5)

in which 𝑀0 is the initial measurement number of each
block and round[⋅] is the round operation. By (1), the
excessive CSmeasurements are assigned to blocks withmuch
information. BCS allocates measuring resources equally to
all blocks because it cannot tell how much information it
contains and differentiate one from another. Our scheme
takes into account the statistics of image. By exploiting the
spatial entropy of each block, the scheme allocates more
random measurements to rich-information blocks but fewer
to poor-information blocks. The CS theory states that a
recovery algorithm would offer better reconstruction quality
of a block with more measurements. Therefore, when using
the same number of measurements for the whole image, our
entropy-based scheme can better recover blocks with much
information compared to BCS.

3.3. Linear Recovery. Conventional CS recovery algorithms
use numerical calculation to nonlinearly reconstruct the
image. The numerical calculation involves loop iteration,
introducing a high computational complexity. Therefore, the
conventional recovery algorithm is not suitable for the real-
time decoding. Equation (1) indicates that the measurement
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Figure 2: Proposed ABCS framework.

vector y𝑖 is a projection of x𝑖 onto a low-dimensional space;
thus there is a linear relation between y𝑖 and x𝑖. By using the
linear relation, we can design a projection matrix P to back-
project y𝑖 onto the neighboring region of x𝑖; that is,

x̂𝑖 = Py𝑖 (6)

in which x̂i is the linear estimation of x𝑖. From the above, the
linear recovery consists of two steps: learning a projection
matrix P and reconstructing each block by using the matrix
P. We first describe how to learn the projectionmatrix P. The
error vector e between x̂i and x𝑖 can be computed as follows:

e𝑖 = x𝑖 − x̂𝑖 = x𝑖 − Py𝑖. (7)

We should select a projection matrix P to minimize the error
vector e𝑖. Based on thismotivation,we design an optimization
model to choose the best projection matrix as follows:

Popt = argmin
P

⋅ {R𝑒𝑒 = 𝐸 (e𝑖e𝑖T) = 𝐸 [(x𝑖 − Py𝑖) (x𝑖 − Py𝑖)T]} ,
(8)

in which R𝑒𝑒 is autocorrelation function of e𝑖 and 𝐸(⋅) is the
expectation function. Setting the gradient ofR𝑒𝑒 (with respect
to P) to 0, we can obtain the solution of model (8) as

Popt = R𝑥𝑦R
−1
𝑦𝑦 = 𝐸 [x𝑖yT𝑖 ] 𝐸−1 [y𝑖yT𝑖 ] . (9)

Plug (1) into (9) and we get

Popt = 𝐸 [x𝑖 (Φ𝐵𝑖x𝑖)T] 𝐸 [Φ𝐵𝑖x𝑖 (Φ𝐵𝑖x𝑖)T] . (10)

BecauseΦ𝐵𝑖 is a knownmatrix, we can move it to the outside
of 𝐸[⋅]; that is,

Popt = 𝐸 [x𝑖x𝑖T]ΦT𝐵𝑖Φ𝐵𝑖𝐸 [x𝑖x𝑖T]ΦT𝐵𝑖. (11)

Let

R𝑥𝑥 = 𝐸 [x𝑖xT𝑖 ] , (12)

in which we regard x𝑖 as a random vector, and R𝑥𝑥 is auto-
correlation function of x𝑖. That is,

R𝑥𝑥 =
[[[[
[

𝐸 (𝑥𝑖1𝑥𝑖1) 𝐸 (𝑥𝑖1𝑥𝑖2) ⋅ ⋅ ⋅ 𝐸 (𝑥𝑖1𝑥𝑖𝐵2)𝐸 (𝑥𝑖2𝑥𝑖1) 𝐸 (𝑥𝑖2𝑥𝑖2) ⋅ ⋅ ⋅ 𝐸 (𝑥𝑖2𝑥𝑖𝐵2)... ... d
...

𝐸 (𝑥𝑖𝐵2𝑥𝑖1) 𝐸 (𝑥𝑖𝐵2𝑥𝑖2) ⋅ ⋅ ⋅ 𝐸 (𝑥𝑖𝐵2𝑥𝑖𝐵2)

]]]]
]
. (13)

It is difficult to directly compute each element of R𝑥𝑥, but we
can estimate it by the following statistic model:

𝑅𝑥𝑥 (𝑚, 𝑛) = 𝐸 [𝑥𝑖𝑚𝑥T
𝑖𝑛] = 𝜌𝛿𝑚,𝑛 ,

𝛿𝑚,𝑛 = dist (𝑥𝑖𝑚, 𝑥𝑖𝑛) = 𝑚1 − 𝑚2 + 𝑛1 − 𝑛2 ,
(14)

in which (𝑚1, 𝑛1) is the spatial position of pixel 𝑥𝑖𝑚 and
(𝑚2, 𝑛2) is the spatial position of pixel 𝑥𝑖𝑛. 𝛿𝑚,𝑛 is the chess-
board distance between 𝑥𝑖𝑚 and 𝑥𝑖𝑛. 𝜌 is a constant between
0.9 and 1, and we set 𝜌 to be 0.95 by experience. Through the
above operations, we obtain the best projection matrix Popt,
and then each block can be recovered by

x̂𝑖 = Popty𝑖. (15)

The flow of linear image recovering is summed in Algo-
rithm 1.

Through thismatrix-vector product for each image block,
we can get the estimation of the original block. Divide an
image into 𝐿 nonoverlapping blocks, use matrix-vector prod-
uct for 𝐿 times, and we can achieve the reconstruction of the
whole image. The total computation is 𝑀 × 𝐵2 multiplica-
tions and𝑀×𝐵2 additions, which is far less than that of con-
ventional CS recovery algorithm.

4. Experimental Results

We evaluate the performance of our ABCS coding system
on a number of grayscale images of 512 × 512 in size includ-
ing Lenna, Barbara, Peppers,Goldhill, andMandrill.These re-
constructed images by our system are compared with those
by conventional BCS system [15], variance-based ABCS
(V-ABCS) system [6], and saliency-based ABCS (S-ABCS)
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Task: Linearly recovering each image block x̂i, 𝑖 = 1, 2, . . . , 𝐿.
Input: 𝐿 CSmeasurement vectors y𝑖, 𝑖 = 1, 2, . . . , 𝐿, and 𝐿 block measurement matricesΦ𝐵𝑖, 𝑖 = 1, 2, . . . , 𝐿.
Step:

(a) Compute the auto-correlation matrix R𝑥𝑥 according to Eq. (13);
(b) Compute the projection matrix Popt according to Eq. (11);
(c) Reconstruct each image block x̂i, 𝑖 = 1, 2, . . . , 𝐿 according to Eq. (15);
(d) Merge all image block into a whole image x̂.

Output:The recovered image x̂.

Algorithm 1: The flow of linear image recovering.

(a) 𝑅 = 0.1

(b) 𝑅 = 0.3

(c) 𝑅 = 0.5

Figure 3: Subjective comparison of reconstructed Lenna images by various CS-based codec at different measurement rates. From left to right:
BCS, V-ABCS, S-ABCS, and the proposed ABCS. Note that 𝑅 is the total measurement rate.

system [7] from subjective and objective points of view.These
compared schemes use OMP algorithm [20] to nonlinearly
recover all blocks. In all experiments, the block size 𝐵 is
set to be 16, and we set the total measurement rate 𝑅
(=𝑀/𝑁) to be between 0.1 and 0.5. PSNR in dB and Structure
SIMilarity (SSIM) [22] between the reconstructed image and
the original image are used in the objective evaluation. All

experiments are conducted under the following computer
configuration: Intel(R) Core (TM) i7 @ 3.30GHz CPU, 8GB
RAM, Microsoft Windows 7 64 bits, and MATLAB Version
7.6.0.324 (R2008a).

4.1. Subjective Evaluation. Figures 3, 4, and 5 present the
visual reconstruction results of Lenna, Barbara, andMandrill
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(a) 𝑅 = 0.1

(b) 𝑅 = 0.3

(c) 𝑅 = 0.5

Figure 4: Subjective comparison of reconstructed Barbara images by various CS-based codec at different measurement rates. From left to
right: BCS, V-ABCS, S-ABCS, and the proposed ABCS. Note that 𝑅 is the total measurement rate.

by various CS-based codecs at different measurement rates.
When measurement rate 𝑅 is 0.1, the CS measurements of
each block are not enough to guarantee the convergence
of OMP algorithm for BCS, V-ABCS, and S-ABCS systems;
thus lots of reconstructed blocks lose structural details.
The reconstructed images by our ABCS system have better
surfaces and edges of objects, but there are many blocking
artifacts in awhole image. As themeasurement rate increases,
the reconstructed images by BCS, V-ABCS, and S-ABCS
systems are improved significantly, but there are still many
blocking artifacts, and some blurs occur in the region of
edges and textures. Although it cannot better recover texture
details (e.g., periodic stripes near trouser legs inBarbara), our
system effectively reduces blurs in edge regions. ForMandrill
with lots of hairs, our system also recovers finer hairs than
those of other systems at any measurement rate. On the
whole, we can see that our ABCS system can guarantee a
better visual quality.

4.2. Objective Evaluation. Table 1 compares PSNR for test
images at the measurement rate of 0.1, 0.3, and 0.5, respec-
tively. The results indicate that our ABCS system achieves
the highest average PSNR values for all test images at any
measurement rate; for example, when the measurement rate
𝑅 is 0.1, our system is 5.18 dB on average higher than S-ABCS
for Lenna. For Barbara, our system cannot obtain higher
PSNR than other systems at the measurement rate of 0.3
and 0.5, resulting from its limited ability to recover periodic
patterns. Table 2 presents SSIM values for test images at the
measurement rate of 0.1, 0.3, and 0.5.We can see that our sys-
tem outperforms other systems in most cases. For Lenna, our
system is 0.2649, 0.0785, and 0.0396 on average higher than S-
ABCS at themeasurement rate of 0.1, 0.3, and 0.5, respectively.
There is still SSIM degradation for our system when recon-
structing Barbara at a high measurement rate. Table 3 lists
the average reconstruction time of various systems for all test
images at the measurement rate of 0.1 to 0.5. We can see that
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Table 1: PSNR (dB) comparison of various CS-based codec for test images at different measurement rates.

Test image BCS V-ABCS [6] S-ABCS [7] Proposed
PSNR ΔPSNR PSNR ΔPSNR PSNR ΔPSNR PSNR

𝑅 = 0.1
Lenna 18.89 −8.19 18.58 −8.50 19.72 −7.36 27.08
Barbara 16.64 −5.29 17.02 −4.91 17.05 −4.88 21.93
Peppers 17.28 −9.10 17.46 −8.92 18.31 −8.07 26.38
Goldhill 20.49 −5.59 20.47 −5.61 21.24 −4.84 26.08
Mandrill 15.71 −3.93 18.14 −1.50 18.89 −0.75 19.64
Avg. 17.80 −6.42 18.33 −5.89 19.04 −5.18 24.22

𝑅 = 0.3
Lenna 27.35 −5.34 29.05 −3.64 30.54 −2.15 32.69
Barbara 24.02 −0.81 25.60 0.77 25.94 1.11 24.83
Peppers 24.35 −6.96 28.59 −2.72 29.34 −1.97 31.31
Goldhill 23.86 −6.49 26.70 −3.65 27.08 −3.27 30.35
Mandrill 17.64 −5.13 19.74 −3.03 19.39 −3.38 22.77
Avg. 23.44 −4.95 25.94 −2.45 26.46 −1.93 28.39

𝑅 = 0.5
Lenna 31.64 −4.6 32.10 −4.14 34.41 −1.83 36.24
Barbara 28.35 0.70 29.27 1.62 30.69 3.04 27.65
Peppers 31.11 −3.01 31.18 −2.94 32.70 −1.42 34.12
Goldhill 29.19 −4.1 29.19 −4.1 30.61 −2.68 33.29
Mandrill 21.04 −4.31 22.76 −2.59 22.82 −2.53 25.35
Avg. 28.27 −3.06 28.90 −2.43 30.25 −1.08 31.33

Table 2: SSIM comparison of various CS-based codec for test images at different measurement rates.

Test image BCS V-ABCS [6] S-ABCS [7] Proposed
SSIM ΔSSIM SSIM ΔSSIM SSIM ΔSSIM SSIM

𝑅 = 0.1
Lenna 0.5903 −0.2387 0.5447 −0.2843 0.5169 −0.3121 0.8290
Barbara 0.4823 −0.2299 0.5886 −0.1236 0.5618 −0.1504 0.7122
Peppers 0.5589 −0.2700 0.5521 −0.2768 0.5141 −0.3148 0.8289
Goldhill 0.5314 −0.2392 0.5218 −0.2488 0.5037 −0.2669 0.7706
Mandrill 0.3312 −0.259 0.3094 −0.2808 0.3100 −0.2802 0.5902
Avg. 0.4988 −0.2474 0.5033 −0.2429 0.4813 −0.2649 0.7462

𝑅 = 0.3
Lena 0.8850 −0.0696 0.8556 −0.099 0.9082 −0.0464 0.9546
Barbara 0.8482 −0.0171 0.8292 −0.0361 0.8630 −0.0023 0.8653
Peppers 0.8826 −0.0607 0.8462 −0.0971 0.8939 −0.0494 0.9433
Goldhill 0.8207 −0.1055 0.7939 −0.1323 0.8334 −0.0928 0.9262
Mandrill 0.6334 −0.1995 0.6285 −0.2044 0.6312 −0.2017 0.8329
Avg. 0.8140 −0.0905 0.7907 −0.1138 0.8259 −0.0785 0.9045

𝑅 = 0.5
Lenna 0.9515 −0.0285 0.9170 −0.063 0.9570 −0.023 0.9800
Barbara 0.9367 0.0044 0.9125 −0.0198 0.9433 0.011 0.9323
Peppers 0.9412 −0.0273 0.9029 −0.0656 0.9422 −0.0263 0.9685
Goldhill 0.9164 −0.0512 0.8722 −0.0954 0.9218 −0.0458 0.9676
Mandrill 0.7964 −0.1239 0.7843 −0.136 0.8066 −0.1137 0.9203
Avg. 0.9084 −0.0453 0.8778 −0.0760 0.9142 −0.0396 0.9537
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(a) 𝑅 = 0.1

(b) 𝑅 = 0.3

(c) 𝑅 = 0.5

Figure 5: Subjective comparison of reconstructed Mandrill images by various CS-based codec at different measurement rates. From left to
right: BCS, V-ABCS, S-ABCS, and the proposed ABCS. Note that 𝑅 is the total measurement rate.

Table 3: Average reconstruction time (s) of various CS-based codec
for all test images at different measurement rates.

Measurement
rate BCS V-ABCS [6] S-ABCS [7] Proposed

0.1 2.81 3.14 3.08 0.91
0.2 3.51 4.09 4.05 1.23
0.3 4.31 5.10 5.05 1.67
0.4 5.13 6.14 6.18 2.16
0.5 6.02 7.08 7.22 2.74
Avg. 4.36 5.11 5.12 1.74

our system requires only 1.74 s on average to reconstruct a 512
× 512 image, while other systems need about 5 s on average.
The execution time of our system increases with the rising
measurement rate, but only slightly. From the above, we can

see that our ABCS system provides a better objective quality
while guaranteeing a low computational complexity.

5. Conclusion

In this paper, we propose an ABCS system that adap-
tively measures each block according to spatial entropy and
reconstructs images using a linear model. Spatial entropy
reveals the variation of block sparse degree and is a simple
feature revealing statistics of image. Based on the distribution
of spatial entropy, we observe image blocks at different
measurement rates. The entropy-based measuring reduces
the redundancy of block measurements. To reduce the
computational complexity of decoding, we adopt a linear
model to reconstruct each block. Experimental results show
that our ABCS system improves the quality of reconstructed
image fromboth subjective and objective points of viewwhile
guaranteeing a low computational complexity.
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As the research in this paper is exploratory, there are
many intriguing questions that our future work should con-
sider. First, the theory of adaptive block CS needs to be devel-
oped. Second, the entropy computation in the measurement
domain is the target in our future work. And last, we hope to
extend this work to CS of color images and videos.
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