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Distributed Compressed Sensing (DCS) is an important research area of compressed sensing (CS). This paper aims at solving the
Distributed Compressed Sensing (DCS) problem based on mixed support model. In solving this problem, the previous proposed
greedy pursuit algorithms easily fall into suboptimal solutions. In this paper, an intelligent grey wolf optimizer (GWO) algorithm
called DCS-GWO is proposed by combining GWO and 𝑞-thresholding algorithm. In DCS-GWO, the grey wolves’ positions are
initialized by using the 𝑞-thresholding algorithm and updated by using the idea of GWO. Inheriting the global search ability of
GWO, DCS-GWO is efficient in finding global optimum solution. The simulation results illustrate that DCS-GWO has better
recovery performance than previous greedy pursuit algorithms at the expense of computational complexity.

1. Introduction

Compressed sensing (CS) [1, 2] is a new signal sampling
theory which has broken through the limit of Nyquist
sampling theorem. If there are no more than 𝑘 nonzero
entries in the signal x ∈ 𝑅�푛, x is called a sparse signal and
the sparsity of x is 𝑘. If x is sparse, it can be recovered from
much fewer samples. We can get the measurement signal
y = Φx by projecting x onto the measurement matrix Φ ∈𝑅�푚×�푛, where 𝑚 ≪ 𝑛. Because 𝑚 < 𝑛, it is an NP-hard
problem to recover x from y. However, if 𝑘 < 𝑚 < 𝑛 and
Φ satisfies the Restrict Isometry Property (RIP) with order𝑘, x can be perfectly recovered. Gaussian random matrix [1],
partial Fourier matrix [3], Bernoulli random matrix [2], and
so on can be used as measurement matrix. Greedy pursuit
algorithms [4–7], 𝑙1 minimization algorithms [8–10], and
intelligent optimal algorithms [11–13] are proposed to recover
x from y.

CS theory just exploits intrasignal correlation, which
makes it not efficient in dealing with multiple signals. An
expanded version of CS, Distributed Compressed Sensing
(DCS) [14, 15], which can exploit not only intrasignal correla-
tion but also intersignal correlation is proposed. With proper
joint recovery algorithms, the measurement number needed

in DCS can be further reduced. In this paper, we call the
problemof jointly recovering signals asDCSproblem. Several
joint sparse models (JSM) and corresponding joint recovery
algorithms are proposed to solve the DCS problem. One-Step
Greedy Algorithm (OSGA) [15] is proposed to solve the DCS
problem based on JSM-1. Greedy pursuit algorithms, includ-
ing SimultaneousOrthogonalMatching Pursuit (SOMP) [15],
Simultaneous Iterative Hard Thresholding (SIHT) [16], and
Simultaneous Hard Thresholding Pursuit (SHTP) [16] are
proposed to solve the DCS problem based on JSM-2. In [17,
18], two intelligent optimization algorithms based on particle
swarm optimization and simulated annealing are proposed
to solve the DCS problem based on JSM-2. However, as
our analysis in Section 2.1, JSM-1 and JSM-2 are stringent
on the description of signal correlation, which makes them
reflect less intersignal and intrasignal correlations. In [19],
JSM-3 is proposed. As a generalization of JSM-1 and JSM-
2, it can reflect more intersignal and intrasignal correlations.
This paper focuses on solving the DCS problem based on
JSM-3. We notice that Joint Subspace Pursuit (Joint-SP)
[20], Joint Orthogonal Matching Pursuit (Joint-OMP) [20],
Sparsity Adaptive Matching Pursuit for DCS (DCS-SAMP)
[21], and Forward-Backward Pursuit for DCS (DCS-FBP)
[22] are proposed to solve the DCS problem based on JSM-3.
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However, as greedy pursuit algorithms, they easily fall into
suboptimal solutions.

GWO algorithm [23] is proposed by Mirjalili et al. in
2014, which simulates the hunting behavior and leadership
hierarchy of grey wolves. As top apex predators, grey wolves
normally live and hunt in a pack which includes 5–12 wolves.
As an optimization algorithm,GWOhas probability to accept
a less optimal solution, which makes it avoid being stuck in
local optimal solutions. Because of this, GWO draws much
attention in solving some optimization problems and NP
hard problems. Kumar et al. [24] apply GWO in system
reliability optimization. Mirjalili [25], Hassanin et al. [26],
and Sánchez [27] adopt GWO to train Artificial Neural
Network (ANN). Muangkote et al. [28] propose an improved
GWO algorithm and apply it in training 𝑞-Gaussian Radial
Basis Functional-link nets (qRBFLNs) neural networks. Li et
al. [29] propose a modified discrete GWO algorithm to solve
the image segmentation problem. Emary et al. [30] propose
a binary GWO algorithm and use it to select the optimal
feature for the purpose of classification. In these areas, GWO
performs better or comparable to other prevailing nature-
inspired optimization algorithms [31–35].

In solving the DCS problem based on JSM-3, greedy
pursuit algorithms easily fall into suboptimal solutions. From
the above analysis of GWO, we know that it is a recently pro-
posed global search optimization algorithm. Its performance
is superior or comparable to other prevailing algorithms
in solving some optimization problems. As illustrated in
Section 3, the DCS problem based on JSM-3 can be modeled
as an optimization problem. These reasons motivate us to
exploit GWO to solve the DCS problem based on JSM-3.

In this paper, an intelligent grey wolf optimizer (GWO)
[23] algorithm called DCS-GWO is proposed to solve the
DCS problem based on JSM-3. DCS-GWO is essentially a
GWO algorithm, the grey wolves’ positions are initialized
by using the 𝑞-thresholding algorithm [36] and updated by
using the strategy of GWO. Inheriting the global search
ability of GWO, DCS-GWOhas better recovery performance
than previous greedy pursuit algorithms at the expense of
computational complexity.

The remainder of this paper is organized as follows.
In Section 2, we introduce related background knowledge,
including DCS model, joint sparse models (JSM), grey wolf
optimizer (GWO) algorithm, and 𝑞-thresholding algorithm.
In Section 3, we introduce the DCS-GWO algorithm. In
Section 4, we provide the simulation results. Conclusions are
stated in Section 5.

We use the following notations in this paper. Lowercase
bold-face denotes a vector. Uppercase bold-face denotes a
matrix. For the vector x ∈ 𝑅�푛, ‖x‖�푞 (𝑞 > 1) denotes the 𝑙�푞
norm of x. If ‖x‖0 ≤ 𝑘 < 𝑛, x is called sparse signal and
the sparsity is 𝑘. 𝑇 ≜ {1 ≤ 𝑖 ≤ 𝑛 | x(𝑖) ̸= 0} denotes the
support set of x. For the matrix Φ ∈ 𝑅�푚×�푛, Φ:,�푗 denotes the𝑗th column ofΦ andΦ�푖,: denotes the 𝑖th row ofΦ. For the set𝑆 = {1, 2, . . . , 𝑛}, |𝑆|denotes the cardinality of 𝑆.𝐺 ⊆ 𝑆denotes
that 𝐺 is a subset of 𝑆. Φ:,�퐺 denotes the matrix composed
of the columns {Φ:,�푗}�푗∈�퐺. Φ�퐺,: denotes the matrix composed
of the rows {Φ�푖,:}�푖∈�퐺. Φ�푇 denote the transpose matrix of the

matrix Φ. Φ† = (Φ�푇Φ)−1Φ�푇 denotes the pseudo-inverse
matrix ofΦ.

2. Background Knowledge

In this part, we introduce related background knowledge
of this paper. The DCS model is introduced in Section 2.1.
Joint sparse models are introduced in Section 2.2. Grey
wolf optimizer is introduced in Section 2.3. At last, the 𝑞-
thresholding algorithm is introduced in Section 2.4.

2.1. DCS Model. Suppose that there are 𝐽 signals x�푗 ∈ 𝑅�푛
which are sparse and have the sparsity 𝑘�푗 < 𝑛, where𝑗 ∈ {1, 2, . . . , 𝐽}. They are individually measured by the
measurement matrixΦ ∈ 𝑅�푚×�푛 as [14, 21]. That is,

y�푗 = Φ × x�푗, 𝑗 ∈ {1, 2, . . . , 𝐽} . (1)

Without the consideration of noise, themeasurement process
can be denoted as

Y = ΦX, (2)

whereX = [x1, x2, . . . , x�퐽] ∈ 𝑅�푛×�퐽 denotes the joint signal and
Y = [y1, y2, . . . , y�퐽] ∈ 𝑅�푚×�퐽 denotes the measurement signal.
TheDCS problem is to recoverX fromY jointly by exploiting
intersignal and intrasignal correlations. For the matrix X ∈𝑅�푛×�퐽, the set of indices corresponding to nonzero rows of X
is the joint support set of X, which can be denoted as 𝑅(X) ≜{1 ≤ 𝑖 ≤ 𝑛 | X�푖,: ̸= 0}. If there are no more than 𝐾 nonzero
rows in X, X is called jointly sparse and the joint sparsity is𝐾.

2.2. Joint Sparse Models. The JSM reflects the intersignal
correlations and intrasignal correlations. There are mainly
three JSMs.

(1) JSM-1. JSM-1 is called sparse common support and
innovation model [14, 15]. JSM-1 can be written as

x�푗 = z + z�푗, (3)

where 𝑗 ∈ {1, 2, . . . , 𝐽}. z is the common component shared
by all signals. z�푗 is the innovation component for each signal.
The sparsity of z is 𝐾z. The sparsity of z�푗 is 𝐾�푗.
(2) JSM-2. JSM-2 is called sparse common support model
[14, 15]. JSM-2 can be written as

x�푗 = z�푗, (4)

where 𝑗 ∈ {1, 2, . . . , 𝐽}. For each signal, the support set of z�푗
is the same, but the coefficients are individual.The sparsity of
z�푗 is 𝐾�푗.
(3) JSM-3. JSM-3 is called mixed support model [19, 20].
JSM-3 has common component c�푗 and innovation compo-
nent z�푗. For each signal, the support set of c�푗 is the same, but
the nonzero coefficients are individual. For each signal, the
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innovation component is completely independent, not only
the coefficients but also the support set. JSM-3 can be written
as

x�푗 = c�푗 + z�푗, (5)
where 𝑗 ∈ {1, 2, . . . , 𝐽}. The sparsity of c�푗 is 𝐾�푐. The sparsity
of z�푗 is 𝐾�푗. Obviously, JSM-3 is a generalization of JSM-1
and JSM-2. If z�푗 = 0, JSM-3 reduces to JSM-2. If both the
coefficients and support set of c�푗 are the same for each signal,
JSM-3 reduces to JSM-1. JSM-3 is less stringent in describing
signal correlations, so, it can reflect more signal correlations.
Our algorithm is proposed to solve the DCS problem based
on JSM-3.

2.3. Grey Wolf Optimizer. Grey wolf optimizer (GWO) [31]
algorithm is a recently proposed intelligent optimization
algorithm. As apex predators, grey wolves own special lead-
ership hierarchy and hunting mechanism. Grey wolves are
divided into four categories, alpha (𝛼), beta (𝛽), delta (𝛿), and
omega (𝜔). 𝛼 is the leader whichmakes decision to hunt, rest,
forward, or stop. 𝛽 assists 𝛼 make decision and reinforces 𝛼’s
commands. 𝛿 executes the decision and manages 𝜔 wolves
which are the lowest ranking of grey wolves.

Before hunting, the grey wolves firstly encircle the prey.
The distance between the wolf and prey is computed by using
(6). The wolf ’s position is updated by using (7).

d = 󵄨󵄨󵄨󵄨󵄨c ⋅ h�푝 (𝑡) − h (𝑡)󵄨󵄨󵄨󵄨󵄨 (6)

h (𝑡 + 1) = h�푝 (𝑡) − ad, (7)
where 𝑡 denotes the current iteration, h�푝 denotes the prey’s
position vector, a and c are two coefficient vectors, and h
denotes a grey wolf ’s position vector. The coefficient vectors
a and c are determined as follows:

a = 2k𝛾2 − k

c = 2𝛾1, (8)

where 𝛾1, 𝛾2 are random vectors between 0 and 1 and the
vector k decreases from 2 to 0 linearly in the iteration course.

After the process of encircling the prey, the hunting is led
by 𝛼, 𝛽, and 𝛿. All wolves’ positions are updated according
to the positions of 𝛼, 𝛽, and 𝛿. Firstly, the distances between
a wolf and the best three wolves are computed by using (9).
Then, the position of the wolf is updated by using (10) and
(11).

d�훼 = 󵄨󵄨󵄨󵄨c1h�훼 (𝑡) − h (𝑡)󵄨󵄨󵄨󵄨 ,
d�훽 = 󵄨󵄨󵄨󵄨󵄨c2h�훽 (𝑡) − h (𝑡)󵄨󵄨󵄨󵄨󵄨 ,
d�훿 = 󵄨󵄨󵄨󵄨c3h�훿 (𝑡) − h (𝑡)󵄨󵄨󵄨󵄨

(9)

h1 = h�훼 − a1d�훼,
h2 = h�훽 − a2d�훽,
h3 = h�훿 − a3d�훿

(10)

h�푝 (𝑡 + 1) = h1 + h2 + h33 (11)

After all wolves’ positions are updated, the process of
hunting the prey goes to the next iteration in which the new
best three solutions are generated. The iteration repeats until
the stopping criterion is satisfied.

2.4. 𝑞-Thresholding Algorithm. 𝑞-thresholding is a joint
recovery algorithm proposed in [36]. If the joint sparsity level𝐾 is known, we can estimate the joint support set of joint
signal by using the following:

𝐼 {Φ,Y, 𝐾, 𝑞}
= {indices of the 𝐾 largest values in {󵄩󵄩󵄩󵄩󵄩Φ�푇:,�푗Y󵄩󵄩󵄩󵄩󵄩�푞}�푛�푗=1}

(12)

3. DCS-GWO: Grey Wolf Optimizer Algorithm
for Distributed Compressed Sensing

In this part, we firstly introduce theDCS-GWO in Section 3.1.
Next, we analyze DCS-GWO’s computational complexity in
Section 3.2.

3.1. DCS-GWO. DCS-GWO is essentially a GWO algorithm.
It has four basic elements: cost function, initial positions,
generating mechanism, and stopping criterions. In this part,
we firstly introduce DCS-GWO’s four basic elements and
then summarize it in Algorithm 1.

(1) Cost Function. Similar to DC-SAMP and DCS-FBP, we
can use a two-step strategy to solve the DCS problem. Firstly,
the joint support set 𝐼 ofX is estimated.Then, the joint signal
can be estimated by using the least square method as follows:

recX�퐼,: = Φ†:,�퐼Y,
recX�푆−�퐼,: = 0, (13)

where 𝐼 denotes the estimated joint support set and 𝑆 ≜{1, 2, . . . , 𝑛}.
We can find that if the joint support set is estimated

accurately, it must satisfy ‖Φ:,�퐼Φ†:,�퐼Y−Y‖�퐹 = 0. As ‖Φ:,�퐼Φ†:,�퐼Y−
Y‖�퐹 ≥ 0, we define the cost function as

𝑓 (𝐼) = 󵄩󵄩󵄩󵄩󵄩󵄩Φ:,�퐼Φ†:,�퐼Y − Y
󵄩󵄩󵄩󵄩󵄩󵄩�퐹 . (14)

We can estimate the joint support set by solving the
following:

min
�퐼∈Θ

𝑓 (𝐼) , (15)

where Θ is the set consisting of all the 𝐾-cardinality subsets
of 𝑆.
(2) Initial Positions. We assume that the wolf number set𝐿wolf = {1, 2, . . . , 𝐿}. We use the 𝑞-thresholding algorithm
to initialize the grey wolves’ positions. 𝐼0�푙 denotes the initial
position of the 𝑙th wolf where 𝑙 ∈ 𝐿wolf . It is estimated by
using

𝐼0�푙 ≜ 𝐼 {Φ,Y, 𝐾, 𝑞�푙} , 𝑙 ∈ 𝐿wolf , (16)
where 𝑞�푙 is a random number in the closed interval [1, 2].
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Input: The joint sparsity 𝐾; the wolf number set 𝐿wolf = {1, 2, . . . , 𝐿}; the limiting parameter 𝐶�푛; the stopping criterion 𝜀.
Initialization: Initialize the 𝑙th wolf ’s position 𝐼0�푙 by using the Eq. (16); Initialize the best three positions by𝐼0best1 = argmin{�퐼0

𝑙
}𝑙∈𝐿wolf

𝑓(𝐼0�푙 ), 𝐼0best2 = argmin{�퐼0
𝑙
}𝑙∈𝐿wolf −bes1

𝑓(𝐼0�푙 ), 𝐼0best3 = argmin{�퐼0
𝑙
}𝑙∈𝐿wolf −bes1−best2

𝑓(𝐼0�푙 );
the iteration number 𝑡 = 1; the allowed maximum iterations number 𝑁max.

Judgement: if 𝑓(𝐼0best1) < 𝜀, set 𝐼 = 𝐼0best1, output the joint signal by using the Eq. (13) and stop. Otherwise, go to the iteration.
Iteration:
Step 1. Update all wolves’ positions (𝑙 = 1 : 𝐿):
Step 1.1. Define 𝑈1 = (𝐼�푡−1best1 ∩ 𝐼�푡−1best2 ∩ 𝐼�푡−1best3) ∪ 𝐼�푡−1�푙 .
Step 1.2. If |𝑈1| > 𝐶�푛, randomly choose 𝐶�푛 − (𝐼�푡−1best1 ∩ 𝐼�푡−1best2 ∩ 𝐼�푡−1best3) elements from 𝐼�푡−1�푙 to forma set 𝑈2 and define𝑈 = (𝐼�푡−1best1 ∩ 𝐼�푡−1best2 ∩ 𝐼�푡−1best3) ∪ 𝑈2. If |𝑈1| < 𝐶�푛, randomly choose 𝐶�푛 − |𝑈1| elements from 𝑆 − 𝑈1 to form a set 𝑈3

and define 𝑈 = 𝑈1 ∪ 𝑈3.
Step 1.3. Use the least square method to estimate a temporary solution recX�푡�푙 by using the Eq. (17).
Step 1.4. Update the 𝑙th wolf ’s position by using the Eq. (18).
Step 2. Update the best three wolves’ positions: 𝐼�푡best1 = argmin{�퐼𝑡

𝑙
}𝑙∈𝐿wolf

𝑓(𝐼�푡�푙 ), 𝐼�푡best2 = argmin{�퐼𝑡
𝑙
}𝑙∈𝐿wolf −best1

𝑓(𝐼�푡�푙 ),𝐼�푡best3 = argmin{�퐼𝑡
𝑙
}𝑙∈𝐿wolf −best1−best2

𝑓(𝐼�푡�푙 ).
Step 3. Check the terminate criterion: If 𝑓(𝐼�푡best1) < 𝜀 or 𝑡 > 𝑁max, set the final joint support set 𝐼 = 𝐼�푡best1 and terminate

the iteration. Otherwise, set 𝑡 = 𝑡 + 1 and go to the next iteration.
Output: Estimate the joint signal by using the Eq. (13).

Algorithm 1: DCS-GWO.

(3) Update Strategy. The update strategy of DCS-GWO
inherits from GWO. In DCS-GWO, 𝑡 denotes the current
iteration. For 𝑙 ∈ 𝐿wolf , the 𝑙th wolf ’s position is updated
according to the previous best three wolves’ positions 𝐼�푡−1best1,𝐼�푡−1best2, and 𝐼�푡−1best3 and its previous position 𝐼�푡−1�푙 . A parameter𝐶�푛 is used to limit the set size where 𝐾 < 𝐶�푛 < spark(Φ).

The position of the 𝑙th wolf is updated as follows. In Step1.1, a set 𝑈1 is formed according to the previous best three
positions and the 𝑙th wolf ’s previous position, 𝑈1 = (𝐼�푡−1best1 ∩𝐼�푡−1best2 ∩𝐼�푡−1best3) ∪ 𝐼�푡−1�푙 . In Step 1.2, if |𝑈1| > 𝐶�푛, randomly choose𝐶�푛−(𝐼�푡−1best1∩𝐼�푡−1best2∩𝐼�푡−1best3) elements from 𝐼�푡−1�푙 to form the set𝑈2
and define the temporary position𝑈 = (𝐼�푡−1best1∩𝐼�푡−1best2∩𝐼�푡−1best3)∪𝑈2; if |𝑈1| < 𝐶�푛, randomly choose 𝐶�푛 − |𝑈1| elements from𝑆 − 𝑈1 to form a set 𝑈3 and define the temporary position𝑈 = 𝑈1 ∪ 𝑈3. In Step 1.3, the temporary solution recX�푡�푙 is
estimated by using the least square method as

(recX�푡�푙)�푈,: = Φ†:,�푈Y,
(recX�푡�푙)�푆−�푈,: = 0. (17)

Lastly, the position of the 𝑙th wolf is updated by

𝐼�푡�푙
≜ {indices of the 𝐾 largest values in {󵄩󵄩󵄩󵄩󵄩󵄩(recX�푡�푙)�푖,:󵄩󵄩󵄩󵄩󵄩󵄩�푞}�푛�푖=1} , (18)

where 𝑙 ∈ {1, 2, . . . , 𝐿}. After all wolves’ positions are updated,
we can update the best three wolves’ positions according to
the cost function.

(4) Stopping Criterion. In order to avoid too many iterations,
we set amaximumallowed iterationnumber𝑁max and a small
positive number 𝜀 as stopping criterions. If 𝑓(𝐼�푡best1) < 𝜀 or

the number of iterations reaches 𝑁max, the iteration process
is terminated.

We summarize the DCS-GWO in Algorithm 1.

3.2. Computational Complexity Analysis of DCS-GWO.
According to Algorithm 1, the initialization and iteration
contribute the main computational complexity of DCS-
GWO. The computational complexity of initialization is𝑂(𝐿𝐽𝑚𝑛). In each iteration, the main computational com-
plexity lies in Steps 1.3 and 1.4 which, respectively, have
upper limit value 𝑂(𝑚3) + 𝑂(𝐽𝑚2) and 𝑂(𝑚𝐾2) + 𝑂(𝐽𝑚𝐾).
Because 𝐾 ≤ 𝑚, the computational complexity upper
limit value of each iteration is 𝑂(𝑚3) + 𝑂(𝐽𝑚2). Because
the total number of iterations is not more than 𝐿𝑁max, the
computational complexity upper limit value of DCS-GWO
is 𝑂(𝑁max𝐿𝑚3) + 𝑂(𝑁max𝐿𝐽𝑚2) + 𝑂(𝐿𝐽𝑚𝑛). Obviously, as
an intelligent optimizer algorithm, DCS-GWO has higher
computational complexity than greedy pursuit algorithms.
However, as swarm intelligence algorithm, it can run in
parallel to reduce the running time.

4. Simulation Results and Analysis

4.1. Experiment Configuration. In this section, the perfor-
mance of DCS-GWO is compared with other algorithms
that can solve the DCS problem based on JSM-3, including
Joint OMP [20], Joint SP [20], DCS-SAMP [21], and DCS-
FBP [22]. The algorithms proposed in [15–18] are designed
for JSM-1 or JSM-2, they are not discussed in this part. The
parameters of DCS-GWOare set as𝑁max = max(10∗𝐾, 500),𝐿 = 8, 𝐶�푛 = 0.8m, and 𝜀 = 1𝑒 − 5. We use the following
hypothesis in the simulation.

We use the Gaussian random matrix as measurement
matrix Φ, the elements of which are randomly drawn from
the standard i.i.d. and every column of which is normalized



Computational Intelligence and Neuroscience 5

to unit 𝑙2 norm.All signals follow the JSM-3with the common
sparsity 𝐾�푐 and innovation sparsity 𝐾�푗. We assume that
the innovation sparsity 𝐾�푗 is the same for all signals. For
each signal, the support sets of common component and
innovation component are random subsets of the set 𝑆 ={1, 2, . . . , 𝑛}. The nonzero coefficients of the common com-
ponent and innovation component are randomly drawn from
the standard i.i.d. In each experiment, 200 independent trials
are conducted. In each trial, the signals and measurement
matrix Φ are generated independently. Average Normalized
Mean Squared Error (ANMSE), perfect recovery percentage,
and average runtime are used to evaluate the algorithms.The
ANMSE is defined as

ANMSE = 1200
200∑
�푖=1

[[10 × log(󵄩󵄩󵄩󵄩󵄩X(�푖) − X̂(�푖)󵄩󵄩󵄩󵄩󵄩22󵄩󵄩󵄩󵄩X(�푖)󵄩󵄩󵄩󵄩22 )]] . (19)

The perfect recovery condition is ‖X(�푖) − X̂(�푖)‖2 < 10−2‖X(�푖)‖2,
where X(�푖) and X̂(�푖), respectively, denote the original joint
signal and the recovered joint signal in the 𝑖th trial. If𝑁�푆 trials
are success, the perfect recovery percentage is𝑁�푆/200. All the
experiments are implemented by usingMatlab R2014a on the
computer with 2.5 GHz Intel Core I3 processor and 4.0GB
memory running window 7 system.

4.2. Experiment Results

(1) Requirement for Measurements. In the first simulation,
we compare the performance of all algorithms against the
measurement number 𝑀 changing from 50 to 90 with Step
10. Other parameters are fixed as 𝑁 = 256, 𝐾�푐 = 15, 𝐾�푗 = 5,
and 𝐽 = 3.

As Figure 1(a) shows that the perfect recovery percent-
age of DCS-GWO is always higher than other algorithms.
Besides, DCS-GWO needs less measurement number to
perfectly recover signals. When the measurement number
reaches 70, DCS-GWO recovers signals perfectly. Other
algorithms need the measurement number 90 to perfectly
recover signals. As Figure 1(b) shows, DCS-GWO has lower
ANMSE than other algorithms.

From Figure 1(c), at the expense of global search ability,
DCS-GWO needs more running time than other algorithms.
However, as a swarm intelligence algorithm, it can run in
parallel to reduce the running time.

(2) Robustness against Common Sparsity. In the second simu-
lation, we evaluate the performance of the algorithms against
the common sparsity 𝐾�푐 changing from 1 to 15 with the step
size 2. Other parameters are fixed as𝑁 = 256,𝑀 = 40, 𝐽 = 3,
and 𝐾�푗 = 3.

As Figure 2(a) shows, DCS-GWO performs far better
than other algorithms in the perfect recovery percentage. For
all algorithms, as the common signal sparsity 𝐾�푐 increases,
the perfect recovery percentage decreases.We aremore inter-
ested in at which sparsity the perfect recovery percentages
drop below 1. The perfect recovery percentage of DCS-GWO
starts to fall below 1 when 𝐾�푐 > 7; however, other algorithms
already fall below 1 when 𝐾�푐 > 3. From Figure 2(b),

DCS-GWO has lower ANMSE than other algorithms. As for
average runtime,we can get the similarly results as Figure 1(c).

(3) Robustness against Innovation Sparsity. In the third simu-
lation,we compare the performance ofDCS-GWOwith other
algorithms against the innovation sparsity 𝐾�푗 changing from
0 to 7 with Step 1. Other parameters are set as 𝑁 = 256,𝑀 = 40, 𝐽 = 3, and 𝐾�푐 = 5.

As Figure 3(a) shows, theDCS-GWOperforms extremely
better than other algorithms in perfect recovery percentage.
As the increase of the innovation sparsity 𝐾�푗, the perfect
recovery percentage is declining, that is, because the increase
of joint sparsity level influences the performance of all algo-
rithms. The perfect recovery percentages of other algorithms
start to fall below 1 when 𝐾�푗 > 2; our algorithm starts to fall
below 1 until𝐾�푗 > 5. As in Figure 3(b), DCS-GWO has lower
ANMSE than other algorithms. As for average runtime, we
can get the similar results as Figure 1(c).

(4) Robustness against the Number of Signals. We compare
our algorithm with other algorithms against the number of
signals 𝐽 changing from 2 to 6 with Step 1. Other parameters
are set as 𝑁 = 256, 𝑀 = 40, 𝐾�푐 = 4, and 𝐾�푗 = 4.

The perfect recovery percentages of Joint SP and Joint
OMP are not influenced obviously by the increase of signals
number, because both of them recover the signals one by one
rather than jointly. They have better performance than our
algorithms when 𝐽 > 5; however, our algorithm performs
better than them when 𝐽 ≤ 5.

As the number of signals 𝐽 increases, the perfect recov-
ery percentages of DCSFBP, DCS-GWO, and DCSSAMP
decrease. As Figure 4(a) shows, our algorithm has higher
perfect recovery percentages than DCSFBP and DCSSAMP.
When 𝐽 > 2, the perfect recovery percentages of DCS-FBP
and DCSSAMP already fall below 1; however, our algorithm
starts to fall below 1 until 𝐽 > 5. As Figure 4(b), DCS-GWO
has lower ANMSE than other algorithms. As for average
runtime, we can get the similarly results as Figure 1(c).

From the above simulations, we can see that DCS-GWO
has higher perfect recovery percentage and lower ANMSE
than greedy pursuit algorithms. Next, we analyze the reason
of DCS-GWO’s better performance according to its structure.

The main reason for DCS-GWO’s better performance is
its update mechanism. In Step 1.1, the common information
of the best three grey wolves’ positions is utilized to update
all the grey wolves’ positions. By this way, the previous
obtained best information is preserved in the new grey
wolves’ positions. In Step 1.2, random perturbations are
introduced into the grey wolves’ positions. Benefitting from
this, DCS-GWO can skip the local optimum position and
guide the search in promising directions. In Steps 1.3 and 1.4,𝐶�푛 − 𝐾 indices corresponding to the rows of the temporal
joint signal which have smallest rownormvalues are removed
from the temporal support set. By this way, the previous
wrong selected indices can be removed from the temporal
support set.

In contrast to DCS-GWO, greedy pursuit algorithms
search the support set according to the gradient of (15), which
is a local optimal search mechanism. Therefore, due to the
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Figure 1: Recovery performance of different algorithms against𝑀with𝑁 = 256,𝐾�푐 = 15,𝐾�푗 = 5, and 𝐽 = 3. (a) Perfect recovery percentage.
(b) ANMSE. (c) Average runtime.
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Figure 2: Recovery performance of different algorithms against𝐾�푐 with𝑁 = 256,𝑀 = 40,𝐾�푗 = 3, and 𝐽 = 3. (a) Perfect recovery percentage.
(b) ANMSE. (c) Average Runtime.
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Figure 3: Recovery performance of different algorithms against𝐾�푗 with𝑁 = 256,𝑀 = 40,𝐾�푐 = 5, and 𝐽 = 3. (a) Perfect recovery percentage.
(b) ANMSE. (c) Average runtime.
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Figure 4: Recovery performance of different algorithms against 𝐽with𝑁 = 256,𝑀 = 40,𝐾�푐 = 4, and𝐾�푗 = 4. (a) Perfect recovery percentage.
(b) ANMSE. (c) Average runtime.

efficiency of DCS-GWO’s update mechanism, DCS-GWO
can find the support set more accurately than greedy pursuit
algorithms. Then, DCS-GWO can recover the signals more
accurately than greedy pursuit algorithms.

5. Conclusion

In this paper, an intelligent grey wolf optimizer algorithm
is proposed to solve the DCS problem based on JSM-3.
The positions of grey wolves are initialized by using the 𝑞-
thresholding algorithm and updated by using the idea of
GWO. Inheriting the global search ability of GWO, DCS-
GWO overcomes greedy pursuit algorithms’ shortcoming
of easily falling into suboptimal solutions. The simulation
results illustrate that DCS-GWO has higher perfect recov-
ery percentage and lower ANMSE than other algorithms.
DCS-GWO has higher computational complexity than other
algorithms. However, as a swarm intelligence algorithm,
it can compute in parallel to reducing the running time.
In the future work, we will focus on developing effective
update strategies to reduce the running time.Moreover, there
are many more recent nature-inspired algorithms, such as
Ant Lion Optimizer (ALO) [37], Moth-Flame Optimiza-
tion (MFO) algorithm [38], Whale Optimization Algorithm
(WOA) [39], andMultiverse Optimizer (MVO) [40]. We will
exploit them to solve the DCS problem based on JSM-3.
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