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Object retrieval plays an increasingly important role in video surveillance, digital marketing, e-commerce, etc. It is facing
challenges such as large-scale datasets, imbalanced data, viewpoint, cluster background, and fine-grained details (attributes). This
paper has proposed a model to integrate object ontology, a local multitask deep neural network (local MDNN), and an imbalanced
data solver to take advantages and overcome the shortcomings of deep learning network models to improve the performance of
the large-scale object retrieval system from the coarse-grained level (categories) to the fine-grained level (attributes). Our
proposed coarse-to-fine object retrieval (CFOR) system can be robust and resistant to the challenges listed above. To the best of
our knowledge, the new main point of our CFOR system is the power of mutual support of object ontology, a local MDNN, and an
imbalanced data solver in a unified system. Object ontology supports the exploitation of the inner-group correlations to improve
the system performance in category classification, attribute classification, and conducting training flow and retrieval flow to save
computational costs in the training stage and retrieval stage on large-scale datasets, respectively. A local MDNN supports linking
object ontology to the raw data, and an imbalanced data solver based on Matthews’ correlation coefficient (MCC) addresses that
the imbalance of data has contributed effectively to increasing the quality of object ontology realization without adjusting network
architecture and data augmentation. In order to evaluate the performance of the CFOR system, we experimented on the
DeepFashion dataset. This paper has shown that our local MDNN framework based on the pretrained NASNet architecture has
achieved better performance (14.2% higher in recall rate) compared to single-task learning (STL) in the attribute learning task; it
has also shown that our model with an imbalanced data solver has achieved better performance (5.14% higher in recall rate for
fewer data attributes) compared to models that do not take this into account. Moreover, MAP@30 hovers 0.815 in retrieval on an
average of 35 imbalanced fashion attributes.

1. Introduction

Nowadays, object retrieval is facing some challenges and has
some advantages.

Query format plays a very important role in large-scale
object retrieval systems. Thus, the query format should be
user-friendly and satisfy user requirements in practice.

Two query formats are popular these days: image-based
format and text-based format. The text-based query format
is being used widely in many searching systems. However, in
many cases, it is very difficult to use query text to express the
content that human would like to retrieve because words
have some limitations in expressing visual information.

Instead, a query image is worth more than thousand words;
it allows customers to search objects without typing, and the
most important thing is that it can retrieve the results based
on content. Nevertheless, the limitations of the query image
in expressing semantic information could decrease the
overall retrieval performance. Thus, the query image and
retrieval image with useful related information (regions,
categories, fine-grained attributes, etc.) will be the in-
teresting points that we have to focus on to improve the
performance of the coarse-to-fine object retrieval system.
Object retrieval systems should meet the requirements of
retrieving from large-scale datasets not only at the coarse
level but also at the detailed level (or attribute level). For
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example, in face retrieval systems, facial attribute retrieval is
often required. In fashion retrieval systems, fashion attribute
retrieval is an indispensable requirement. In person rei-
dentification systems, in the reidentification stage, besides
using the global features of the whole human body, attribute
vectors of the face and clothes are also being exploited ef-
fectively. In crowd attribute recognition systems, the useful
attribute set consisted of location, participants, and
activities.

Objects often have multiple attributes, and there are
methods to retrieve objects at the attribute level from large-
scale datasets without manual annotation. In attribute
recognition, the traditional methods often waste a lot of time
in selecting hand-crafted features for each attribute group
during the trial-and-error process but do not always achieve
the desired results. In recent years, the deep convolutional
neural network (DCNN) has demonstrated high perfor-
mance in many tasks in computer vision such as detection,
classification, recognition, and retrieval. And without ex-
ception, the DCNN is also used for attribute learning, with
only one network architecture, and the DCNN model can
learn to recognize many attributes.

The performance of the DCNN-based attribute learning
model will not achieve high rate if the set of attributes plays
the same role in the network architecture at the output level
and imbalanced data are unresolved. To exploit the inner-
group correlations in coarse-grained groups or fine-grained
groups, the DCNN often is revised to the deep multitask NN.
The performance of classification will be improved if the
elements of fine-grained category groups or fine-grained
attribute groups could share similar learning features, so the
slope of their error surface will become more uniform and
the deep multitask learning algorithm can easily reach the
global optimum effectively.

Object ontology plays an important role in category
classification, attribute classification, and conducting
training flow and retrieval flow to save computational costs
in the training stage and retrieval stage on large-scale
datasets, respectively. Thus, based on our experience in
researching objects related to attributes such as face [1], cloth
[2], person (reidentification), crowd (monitoring) [3, 4], and
fast filters in large-scale object retrieval [5], we would like to
introduce an object ontology as a hierarchical semantic tree
with three levels: region, category, and attribute levels. The
attribute level consisted of visual concepts and specific
concepts. Visual concepts support linking common visual
attributes to arbitrary objects.

We introduce an object ontology based on popular large-
scale standard datasets in science community, so we hope
that our ontology can meet the criterion “widely recognized
in community.” And for criterion “realization,” we have
proposed the local MDNN to support linking object on-
tology to the raw data. However, if object ontology could not
be linked with high quality, it could not function effectively.
And we have proposed the imbalanced data solver based on
MCC to address data imbalance that has contributed ef-
fectively to increasing the quality of linking object ontology
to raw data without adjusting network architecture and data
augmentation.
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We review some typical works based on object ontology,
deep multitask neural networks, and imbalanced data solvers
to highlight our contributions.

Most of the works only present the set of attributes in the
form of item lists or item groups [1, 3, 5-10]. A few works
used the terminology “ontology” [11], but to the best of our
knowledge, there are not works that present the object
ontology in full meaning of regions, categories, and
attributes.

In [8], FashionNet handles the challenges as deformation
and occlusions by explicitly predicting clothing landmarks
and pooling features over the estimated landmarks, resulting
in more discriminative cloth representation. The authors do
not use the terminology “ontology,” but the DeepFashion
dataset is organized based on a hierarchical tree; it is only
deployed according to fashion, and it includes a two-level
tree: the first level consisted of 50 categories and the second
level consisted of 5 attribute groups (texture, fabric, shape,
part, and style) (it does not have color attribute). The coarse-
grained groups (at the category level) or fine-grained groups
(at the attribute level) have the same role in deep neural
networks, and the imbalanced data solver has not been
considered yet.

In [6], the authors proposed a multitask network to
recognize facial attributes, but they did not consider the
retrieval problem. They proposed a model to learn multiple
attribute labels simultaneously through a single DCNN that
supports domain adaption for multitasking. In this case, the
task is attribute prediction, and they find a way to simul-
taneously maximize predictive accuracy of all attributes.
However, the authors did not explicitly exploit the inner-
group correlations of facial attributes, so the attributes have
the same role in the multitask network. The authors did not
use ontology to arrange the facial attributes into a hierar-
chical semantic tree. Imbalanced data are solved based on
loss functions associated with each attribute, so their system
cannot take advantage of transfer learning.

In [11], the authors presented integration of deep
multilevel learning and concept ontology for large-scale
visual recognition, but they did not consider large-scale
object retrieval. Object ontology consisted of two levels:
coarse-grained groups and fine-grained groups. Exploiting
the inner-group correlation of attributes and the imbalanced
data solver have not been considered yet.

Our idea is to improve the performance of deep neural
networks based on object ontology and imbalanced data
solvers with inspiration from Godel’s incompleteness the-
ory. This theory shows the limitation of any consistent
formal system as well as the limitation of specific methods in
solving problems. When the deep network configuration
method is not able to create such a large effect as in the early
days it took place, it is necessary to integrate object ontology
and imbalanced data solvers into deep learning. Based on
appropriate interventions in inputs and outputs, we in-
troduce a new method that can help improve the perfor-
mance of the object retrieval system.

The main contributions of this paper are as follows.

Our proposed unified model consisted of object ontol-
ogy, a local MDNN, and an imbalanced data solver to



Computational Intelligence and Neuroscience

improve the performance of the large-scale object retrieval
system from the coarse-grained level (categories) to the fine-
grained level (attributes).

Our proposed object ontology is a hierarchical semantic
tree consisting of three main levels: region, category, and
attribute levels. It can support the optimal learning strategy
and minimize the effect of semantic gap. It is useful to
improve the performance of category classification, attribute
classification, and conducting training flow and retrieval
flow to save computational costs in the training stage and
retrieval stage on large-scale datasets, respectively.

Our proposed local MDNN is inspired by multitask
neural networks. It is based on NASNet, ResNet exploiting
the local multitask neural network architecture, to improve
the performance of category classification and attribute
classification and for flexible system updates. The local
MDNN supports linking object ontology to raw data and
takes advantage of inner-group correlations of categories
and attributes. If the inner-group correlations (or intergroup
correlations) are exploited, the performance of classification
will be improved because the elements of fine-grained
categories or the fine-grained attribute group share similar
learning features, the slope of their error surface becomes
more uniform, and our deep local multitask learning al-
gorithm can easily reach the global optimum effectively.

Data imbalances often occur for large-scale datasets.
Data augmentation is almost impossible because each object
can have multiple attributes. The solution based on the loss
functions, as in [6], may be possible, but it cannot exploit
transfer learning. Our proposed imbalanced data solver is
inherited from MCC [12] without adjusting network ar-
chitecture and data augmentation. It is integrated into the
local MDNN to improve the performance of category
classification and attribute classification, but it can still
exploit transfer learning to reduce computational costs in
the training stage on large-scale datasets.

Our proposed query format is based on object ontology
with semantic information such as regions, categories, and
attributes extracted automatically from the query image.
Therefore, we can express semantic information from the
image to the retrieval process that the traditional methods
have not implemented yet.

We experimented on a DeepFashion dataset [8]. The
experimental results have shown which architecture is
suitable for a specific learning problem from the coarse-
grained level to the fine-grained level. They have shown that,
with the pretrained NASNet architecture, our local multitask
learning (local MTL) framework achieved better perfor-
mance (14.2% higher in recall rate) compared to single-task
learning (STL) in attribute learning. They have also shown
that our model considering imbalanced data achieved better
performance (5.14% higher in recall rate for fewer data
attributes) compared to models that do not take this into
account.

The remainder of this paper is organized as follows:
Related works are reviewed in Section 2. CFOR is introduced
in Section 3. Object ontology is presented in Section 4. Deep
local multitask learning framework and imbalanced data
solver are presented in Section 5. Retrieving and indexing

methods in the CFOR system are presented in Section 6.
Experiments and analysis are described in Section 7. We
conclude our paper in Section 8.

2. Related Works

Our objective is to propose a coarse-to-fine object retrieval
system and test its performance on the DeepFashion dataset.
Therefore, we briefly review the most recent literature as
follows.

2.1. Object Retrieval System. Fine-grained object retrieval is
supposed to search for similar images that include specific
object attributes. It declares a transition model from image
retrieval to object attribute retrieval [13, 14]. Specifically,
unlike traditional image retrieval systems where queries and
results are often coarse (e.g., texts or images), fine-grained
image retrieval aims to retrieve semantic information such
as categories and attributes. In the fashion field, taking
advantages of semantic information, an object retrieval
method based on the combination of the global feature with
fine-grained attribute information was introduced [8]. In-
spired by previous works, we would like to propose a coarse-
to-fine object retrieval system which not only takes ad-
vantage of the combination of the global feature with fine-
grained attribute information but also optimizes the learning
strategy based on ontology and resolves the imbalanced data
problem by interfering with the output.

In addition to meeting the semantic retrieval results, the
object retrieval system must handle large-scale problems to
run in real time. In [15], the authors formulate the problem
into a mathematical model and derive a closed-form solu-
tion with linearithmic time and linear space complexities. In
[16], the authors propose fast indexing with a deep con-
volutional neural network and local geometric constraint
model, thanks to the help of locality-sensitive hashing.
However, these solutions did not take advantage of the
power of GPUs for parallel processing which can signifi-
cantly reduce feature-matching time and retrieval time. To
leverage the support of GPUs, we inherited the search al-
gorithm introduced by Johnson et al. (billion-scale similarity
search with GPUs [17]) which is a nonexhaustive similarity
search. The search method perfectly suited the proposed
CFOR system which further decreased searching time by
creating multi-index files based on built-in object ontology.

To clarify the contribution of our CFOR system, we
compare it with our main reference DeepFashion [8] in both
the offline phase (see Table 1) and online phase (see Table 2).

2.2. Data Organization

2.2.1. Object Ontology. At the fine-grained level, the se-
mantic interpretation of a visual scene depends heavily on
prior knowledge and experience of the viewer. Vision is an
intensive knowledge-based process. Many knowledge-based
vision systems have been proposed in the past (VISIONS
[18], SIGMA [19], PROGAL [20], MESSIE [21], etc.). The
analysis of these knowledge-based vision systems allows us
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TaBLE 1: Contributions of CFOR in the offline phase and its comparison with DeepFashion [8].
. . . . Deep learning  Imbalanced data . Searching
Criteria Object ontology (categories/attributes) model problem solver Updating system method
Object ontology can be implemented on
arbitrary objects with flexible modifications.
It is not just for fashion.
Ontology is a semantic hierarchical tree.
It consisted of three levels:
(i) Region level
(ii) Category level
(iii) Attribute level . Based on 'transfer
. . ResNet-101 is learning.
Region level consisted of some parts of used in cateeo Based on Trains smaller
objects; each part is linked to the category ) caregory , GPU-based
CFOR classification Matthews models based on .
level. . . nonexhaustive
system Cate level isted of fine- NASNet v3 is correlation ontology and imilari h
gory level consisted of some fine . . fici d h similarity searc
grained groups; cach member of the group is used in attribute coefficient updates the system
linked ;0 the attribute level classification in a flexible manner
Attribute level consisted of two coarse- in each model
grained groups: visual concept (color, shape,
and texture) and specific attribute concept
(fabric, part, and style).
It is easily implemented on another kind of
object with flexible modifications. It is not
just for fashion.
The authors do not use the terminology
“ontology.”
Dataset is organized based on a hierarchical
tree. It is implemented just for fashion.
It consisted of two-level trees: Trains the entire
FashionNet (i) The first level consisted of category VGG Not considered dlassification model Exhaustive
[8] groups (50 categories) yet search

(ii) The second level consisted of 5 attribute
groups (texture, fabric, shape, part, and
style). It does not have color attribute
(It treats concepts and attributes as
independent tasks of classification).

again

TaBLE 2: Contributions of CFOR in the online phase and its comparison with DeepFashion [8].

Criteria Query Retrieval process Indexing method Retrieval results
Object ontology supports
achieving retrieval results.

Image + optional semantic ~ Conducted by deep networks Retrieval results are based on

CFOR information (categories and based on object ontology at Quantized inverted indexing  deep global features and

system attributes) extracted three levels: region, category, is operated by object ontology attribute vector.

automatically from an image and attribute levels Query expansion is used to
improve the performance of
the retrieval system.

FashionNet Conducted by deep networks Result obtained is similarity

Image

(8]

and landmark points (also
built up by deep networks)

Inverted indexing retrieval only

to draw some conclusions: there are three main levels of
semantic concepts—the low-level visual concepts, the
midlevel semantic concepts, and the high-level semantic
concepts [22]. These semantic concepts have been defined
and used in many datasets in the form of labels. The most
important challenge in image understanding is the semantic
gap that has strong effects on system performance. The
semantic gap denotes “the inherent difference between the

digital representation of an image and the interpretation that
the user associates with it” [22]. It is very difficult to teach the
computer to directly understand the underlying concepts in
an image based on the raw data, but the midlevel semantic
concepts could narrow the semantic gap. To narrow the gap
between the raw data to high-level concepts in large-scale
data, object ontology is proposed by introducing the mid-
level semantic concept and its relationships. According to
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these characteristics of object ontology, it is suitable to apply
to fine-grained object retrieval tasks. Maillot et al. [23]
demonstrated the advantages of ontology when applied to
retrieval tasks.

2.2.2. Attribute Learning. Attribute learning is a backbone of
CFOR, and it has strong effects on performance of fine-
grained object retrieval. Therefore, attribute learning is
considered one of the important parts of the learning strategy.

(1) Attribute Learning. This method is used for object rec-
ognition systems at the fine-grained level. Unlike learning
methods that are used for the high-level concept, attribute
learning supports a solution for midlevel semantic concepts or
visual concepts which are known to have (more or less)
correlations to each other. There are two main different
learning methods: single-task learning and multitask learning.

Single-task attribute learning: in this type, attributes
have their own learning model. Therefore, it leads to the
number of models equal to the number of attributes.
Moreover, each attribute is treated separately, for which
the inner-group correlations are not yet exploited.

Many works are known in the fashion field such as the
works [9, 10, 24] using single-task learning for fashion
attributes. At that time, there were many challenges in
multitask learning. Thanks to this work [25], a shared
CNN is defined to pave a way in the final format of the
multitask multilabel predictions. Therefore, multitask
learning becomes possible.

Multitask attribute learning: to apply this technique to
attributes, samples will be collected by merging given
datasets into one with one-hot binary vector demon-
stration. Like single-task learning, the input will be the
image. Despite the output of single-task learning which
is a value that describes the existence (or not) of an
attribute in an image, the output of multitask learning
will be a one-hot binary vector which describes the
existence (or not) of a group of attributes.

Rudd et al. [6] have shown that joint optimization over
all attributes outperforms training a single independent
network with the same architecture for each attribute,
in which the feature space is optimized along with the
classifier on a per-attribute basis, both in terms of
accuracy and storage, processing efficiency. This result
shows that the multitask approach is much more ef-
fective in exploiting latent correlations than in-
dependent classifiers used to learn them.

Although multitask learning can yield better perfor-
mance compared to single-task learning, its critical
weakness is that the model cannot be reused when there
is any attribute change. A retraining or additional model
will be applied when a new attribute is added. Lack of
reuse is the reason that multitask learning methods are
not flexible for attributes that change frequently. To
address these challenges, we propose that local multitask
attribute learning be considered a grouping method
based on object ontology to improve its reuse.

(2) Multitask Learning Methods. Over the years, there have
been many attribute learning methods inspired by multitask
learning (see Figures 1-3 for an overview of the method). As
far as we know, there are three main attribute learning
approaches: features with SVM classifiers, adaptive attribute
domain with independent deep neural networks, and the
end-to-end deep neural network as a shared block with
adaptive loss function.

Besides learning methods, transfer learning is also a
significant method that should be focused on for improving
performance as well as reducing training time. However,
based on the distribution and the size of the dataset,
transfer learning can be applied in different tasks and
situations.

Attribute learning model based on deep features with
SVM classifiers: these methods inherited the trained
features for classification problems and then fed them
as inputs into independent SVMs for prediction.

For example, the initial approach made by Kumar et al.
[1] used AdaBoost to select a separate feature space for
each attribute and independent SVMs to perform
classification. Zhong et al. [26] proposed off-the-shelf
CNN feature learning under FaceNet and VGG-16
architecture and then applied an SVM classifier per
attribute for classification.

However, these methods only apply indirectly to
multitask learning through global features that are only
extracted from a fully connected layer (or other layers
which also have high generalization) by a classification
model trained on the ImageNet dataset. There is no
training on any specific dataset except the ImageNet
dataset, so the feedforward network in transfer learning
is utilized. Therefore, attribute correlation (including
intergroup and inner-group correlations) is not fully
exploited yet.

Attribute learning model based on adaptive attribute
domain with independent DCNNs: these methods
address the problem with separately trained DCNNs
(adaptive attribute domain with independent DCNNss)
followed by a group of deep layers (called the shared
block). Unlike the previous model, each sample has
more than one label, so the output will be an m-di-
mensional attribute vector (m is equal to the number of
attributes). Each element of the attribute vector rep-
resents the existence of the attribute. After passing the
shared block to get correlated information, m nets with
m corresponding loss functions are designed to learn m
attributes. Therefore, each net will predict its corre-
sponding attributes. The backpropagation in each in-
dividual net is applied with the same mechanism as a
simple classification.

In these methods, transfer learning can only be applied
in each m individual net to reduce training time;
however, the entire training model is not. Therefore, if
the dataset is small and different from the pretrained
one, then it may take account of transfer learning
without reducing overall performance. In the case of a
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FIGURE 2: Attribute learning model based on adaptive attribute
domain with independent deep convolutional neural networks.
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FIGURE 3: Attribute learning model based on the end-to-end deep
neural network as a shared block with adaptive loss function.

large and high diversity dataset which needs to fine tune
convNet through the entire network, these methods are
not a good choice to take advantage of transfer learning.
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In these methods, each model corresponds to an at-
tribute, and inner-group correlation is not given an
advantage. However, as in [2], these methods can make
a good extraction for intergroup correlations between
attributes.

This work [7] shows that joint multitask attribute
learning can achieve better performance compared to
deep feature-based attribute learning. Although it im-
proves the state-of-the-art attribute recognition accu-
racy, it consumes a lot of computer resources and
training time depends on the number of attributes. This
work succeeded in face attribute recognition; it is one of
the initial methods applied in this multitask learning
method. They used the AlexNet network modified as a
shared block and VGG-16 for each individual attribute.

In the fashion field, in [2], attributes were divided into
smaller groups, and a pretrained CNN model (based on
ImageNet) for each group and a shared latent matrix
between all CNN models are used. For face attributes,
the study [7] used shared feature learning at an early
stage for all the attributes followed by category-specific
feature learning for heterogeneous attribute categories.
Although these methods are on different fields, they
have the same main idea—attributes are divided into
smaller groups or smaller categories which can exploit
intergroup correlations and inner-group correlations
between attributes.

Although these methods outperform the attribute
learning method based on deep features, they consume
computer resources because of the expansion of the
number of parameters according to the expansion of
the number of attributes.

Attribute learning model based on the end-to-end deep
neural network as a shared block with adaptive loss
function: this approach uses an end-to-end architecture
as a shared block between attributes. To adapt, the
objective function reweighs each part of the loss as-
sociated with each attribute. This approach can extract
inner-group correlations between attributes and can
easily configure the architecture or input data to learn
intergroup correlations.

This work, the mixed objective optimization network
(MOON) architecture with the loss of domain adaptive
multitask DCNN proposed by Rudd et al. [6], is an
example of this group of method. The MOON learns to
balance its multitask output predictions with reduced
training and storage costs while still producing better
accuracy compared to independently trained DCNNGs.
Mixed objective dynamic adaptive loss function plays
an important role in solving imbalanced data problems.
As in [6], a joint optimization with respect to all at-
tributes achieves the performance superior to the first
approach (features with SVM classifiers).

Although these approaches provide a better solution for
training resources as well as imbalanced data problems,
transfer learning is difficult to adapt because the ar-
chitecture and loss function have been modified to
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support multitask, multioutput, and imbalanced data
problems. Table 3 shows the main differences in the
contribution of the three introduced multitask learning
methods as well as our proposed deep local multitask
learning, which will be mentioned in following sec-
tions, in different criteria.

(3) Imbalanced Data Problem. Imbalanced data are the
problem in machine learning in which the class distribu-
tion is not uniform between the classes. Usually, they are
composed of two types of classes: the majority classes
(positive) and the minority classes (negative). Recent re-
search in machine learning shows that using an uneven
distribution of class examples during learning can cause
learning algorithms with misleading performance (bias). It
means a classifier with high accuracy in the majority, but it
gives poor accuracy in the minority class. In the case of
attribute learning, an imbalance occurs if the number of
instances in some attributes varies significantly in quantity
compared to other attributes. To deal with this situation, in
general, adjusting the distribution of classes is an essence of
many popular methods to handle imbalanced data
problems.

Data sampling: sampling-based methods such as
upsampling, downsampling, or data augmentation are
considered to be a solution for imbalanced data prob-
lems. In addition to making data more balanced, they
can help reduce training time (downsampling) or make
the learning process more efficient (upsampling). The
best approach we know is SMOTE [27] which can solve
the situation by automatically generating additional data
(upsampling) based on the original dataset. However,
these methods increase overfitting when training
(upsampling) or losing (downsampling) data. Data
augmentation is proved to be robust in dealing with
imbalanced training data [28]. However, this method
takes up a lot of training resources, and it is difficult to
find a proper augmented dataset which is large enough
to train. And it is very difficult (or impossible) to
augment data to balance the attributes in datasets be-
cause each object usually has many attributes.

Architecture, loss function, and metric configuration:
other methods exploit network architectures, loss
functions, or metrics to address the imbalanced data
problem when training. The methods (at the algorithm
level) enhance the existing classifier by adjusting algo-
rithms to recognize the smaller classes. Internal tech-
niques provide general solutions for the imbalanced data
problem because these are not specific to particular
problems. This work [6] is an example for dealing with
the imbalanced data problem in attribute learning by
creating a mixed objective dynamic adaptive loss
function and solving the problem internally. These ap-
proaches show better performance compared to data
sampling; however, they are often difficult to implement
as well as configure in the future. Therefore, they are not
always the best choice in dynamic retrieval systems in
which the attributes have a large variety.

Threshold and output-based configuration: instead of
generating more data or making changes in the model,
these methods find the best thresholds based on
output. The essence of these methods is to use scores
that show the probability to indicate which test sample
is a member of a class in producing several learners by
changing the threshold for class members. These
methods are particularly effective in resolving im-
balanced data problems without changing the con-
figuration in the model. Moreover, they also do not
reduce data or increase overfitting. SVM is proposed
to find these thresholds [12]. However, Boughorbel
et al. [12] proposed Matthews’ correlation coefficient
(MCC) [29] to deal with imbalanced data in classi-
fication. Although SVM shows better performance,
MCC consumes less resources and processing time
compared to it [12].

Inspired by studies [6, 29] and based on the methods of
many other researchers, we found a solution for
multitask learning that is suitable to retrieval systems
using the end-to-end DCNN for training and MCC for
estimating thresholds to get final outputs.

(4) Deep CNN Architectures. They show their performance
for hand-crafted features (SIFT [30], HOG [31] or color
histogram, LBP [32], etc.) on large-scale datasets. Hence,
the popular deployment in [33, 34] along with the usage of
pretrained CNN models on the ImageNet dataset [33]
makes it easier to fine tune various DCNN architectures
[35, 36] for multiple visual datasets. Fine-grained object
recognition systems have to deal with a large number of
images on large-scale datasets. Thanks to transfer learning,
we can reduce training time. However, transfer learning
which is applied in some available architectures is not
designed to solve imbalanced data problems. Thus, the
overall performance will decrease when encountering this
problem.

Pretrained VGG and AlexNet are used in multiple at-
tribute learning systems which can be found in FaceNet [26]
and Han et al’s study [7] for facial attribute learning, re-
spectively. In the fashion field, Abdulnabi et al. [2] use the
ImageNet pretrained CNN model for solving multitask
attribute learning. However, there are many high-perfor-
mance architectures (like ResNet [35] which can handle well
with bias, gradient vanishing or NASNet [36] which can
automatically build a model based on data) which passed
beyond human ability in ImageNet classification but have
not been applied yet. In our proposed method, these ar-
chitectures will be put into use.

3. Materials and Methods: CFOR System

The CFOR system is very complicated but easy to un-
derstand. We focus on the main points of the CFOR system.

CFOR is an object retrieval system integrated by object
ontology, a local MDNN (NASNet and ResNet), and an
imbalanced data solver (MCC) to improve the perfor-
mance of the large-scale object retrieval system from the
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TaBLE 3: Summary of the contribution of each method for each criterion.
Attribute learning model Attribute learning model
Attribute learning model based on adaptive attribute  based on the end-to-end deep Our proposed deep local
Methods based on deep features with domain with independent  neural network as a shared mIzlltiPt)ask learnlin
SVM classifiers (Figure 1) deep neural networks block with adaptive loss &
(Figure 2) functions (Figure 3)
Inner—gyoup Not focused Focused Focused Focused
correlation
Intergrqup Not focused Focused Focused Not focused
correlation
Imbalanged Not focused Not focused Focused Focused
data solving
Trans.fer Feedforward only Applied in each individual Not focused‘but can be Focused
learning network applied
Large-scale. Not focused Limited Focused Focused
data adaption
Ontology Not focused Not focused but can be applied Not focused but can be Focused

applied

coarse-grained level (categories) to the fine-grained level
(attributes) (see Figure 4).

(1) Query Image. For traditional content-based image
retrieval systems, with query images, one is just able to
retrieve the images ranked on visual similarity to query
image. It is very difficult (or impossible) for users to
provide semantic information to the system based on
query images. But the interesting thing is that, in our
CFOR system, this challenge has been solved. The
semantic information of the query image is extracted
automatically by the category and attribute classifica-
tion system, and users can use the extracted semantic
information during the retrieval process.

An example is how users can query “Asian face” with
only a query image; here, “Asian race” is semantic
information. The traditional retrieval methods cannot
meet this requirement because of the curse of semantic
gap. And the CFOR system can recognize “Asian race”
and use it to retrieve. Another example for “Fashion”
object based on our CFOR system is described in
Figure 5. From the query image, based on fashion
ontology, the detector quickly identifies the region (Top
and Bottom; see Figure 5). After that, the user selects
the region (Top; see Figure 5); the CFOR system quickly
identifies the category related to the Top region (cat-
egory: Blazer). Later, specific concepts and visual
concepts are extracted according to Blazer, and users
can select some of them (or all of them) to retrieve. For
user-friendly interaction, only extracted regions, cate-
gories, and attributes are shown. Other information
such as global deep features, attribute vector, ontology,
or group of attributes which are used as searching input
of the system will not be displayed. In such a way, users
can order the CFOR system at the semantic level, and
they can achieve the results that match both the content
and semantics of the query image.

The CFOR system is organized into two main phases:
offline phase and online phase.

(1) Offline Phase. This phase is designed to generate
object ontology, database, indexing file and region
detection model, category classification model, and
attribute classification model.

Object ontology is designed manually based on
professional experience and public dataset for the
community. It is organized into a hierarchical se-
mantic tree with three main levels: region level,
category level, and attribute level.

The database is generated to store the preextracted
features, regions, categories, and attributes of all
images in the dataset. It supports to reduce the online
retrieval time and provides the necessary semantic
information for each retrieved image.

The indexing file which is created to support fast
mapping in the online phase of the CFOR retrieval
system is the key to perform the retrieval task at
runtime.

Regions, categories, and attributes are learned au-
tomatically based on the local MDNN. Detection
models and classification models are created to ex-
tract or predict semantic information of the query
image and dataset such as regions, categories, and
attributes.

(2) Online Phase. This phase of the CFOR system is
designed to run the retrieval process including object
detection, semantic information extraction, and
query expansion and retrieval.

In the object detection stage, we use the trained
object detector to detect objects in the query image.
In the semantic information extraction stage, the
built-in object ontology and classification models are
used for extracting the necessary semantic in-
formation of each identified object. The extracted
semantic information and deep global features of
each detected object passed through the searching
system along with the indexing file to quickly
compute the score between the query object and the
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FIGURE 4: Synthesis of object ontology, deep learning, and imbalanced data problem solver in the CFOR system.

sample in the database. Retrieval is applied to rank
and export the most similar images to the query
object and their relevant information. Query ex-
pansion is optional and used to increase the retrieval
performance with a trade-off for retrieval time.

The power of mutually supporting object ontology,
local MDNN, and imbalanced data solver in the
CFOR system: Figure 4 shows the operation of the
CFOR system with the interaction of the three main
modules object ontology, a local MDNN, and an
imbalanced data solver to optimize the learning
strategy and improve the overall retrieval perfor-
mance on large-scale datasets.

Object ontology supports conducting the training
flow (with a local MDNN) and retrieval flow (from
the coarse-grained level to the fine-grained level) to
save computational costs in the training stage and
retrieval stage on large-scale datasets. Training flow
also paves a way for applying transfer learning which
may improve the convergence rate of deep networks.
Object ontology which could transform the global
imbalance of data into local imbalance of data based
on fine-grained groups makes the imbalanced data
problem easier to deal with.

Deep multitask NN supports to link the object on-
tology to the raw data effectively at the category level
and attribute level by exploiting inner-group cor-
relations and intergroup correlations. The object
ontology supports to update the system at the local
level with parallel processing based on the local
MDNN. Therefore, CFOR 1is updated in a flexible
manner on large-scale datasets with many variations.

And the proposed imbalanced data solver based on
MCC which addresses data imbalance has contrib-
uted effectively to increasing the quality of object
ontology implementation without adjusting network
architecture and data augmentation.

Algorithm and demonstration of the CFOR system:
an online phase and offline phase (Figures 6 and 7) are
used to analyze tasks in the CFOR system. These
phases will be demonstrated in detail in this section.
The retrieval algorithm in the CFOR system is de-
scribed at the offline phase (see Algorithm 1 and Section
3.1) and online phase (see Algorithm 2 and Section 3.2).

Besides, the CFOR system can be put into use as a
general solution for retrieval. To evaluate the perfor-
mance of the proposed system, fashion objects with
attributes are selected in experiments.

3.1. Offline Phase. This phase consisted of three substages:

Object Ontology Establishment Stage. This stage defines
fashion ontology to control the training flow as well as
the online retrieval flow which serves as a bridge be-
tween high-level concepts (objects and categories),
midlevel concepts (attributes), and raw data.

Learning Stage. This stage exploits deep networks with
transfer learning in dealing with the specific tasks in-
cluding object part learning, category learning, and
attribute learning.

Storing and Indexing Stage. This stage defines a way of
storing data as well as making the index list to reduce
retrieval or searching time.

From the offline phase, in this section, inherited from
previous state-of-the-art methods, we will mention about
object part extraction, transfer learning, and its role in the
retrieval system as well as data storing. These modules are
highly generalized to any object. Other issues including
ontology, attribute learning, network architecture, and
indexing strategy will be detailed in the following sections.
In addition, the offline phase of the CFOR system is also
introduced technically in Algorithm 1 according to
Figure 6.

3.1.1. Loss Function. This function inherited the current
state-of-the-art ResNet for classification, and cross entropy
loss function is applied for multiclass classification in the
category classification model and attribute classification
model.

For attribute multitask classification models, the loss
function is described as follows:

Z(0) = — Y [ylog(7) + (1-3)log(1-5)]

(1)

1M . . .
— 2 2 ylog(3]) + (1-5f)log(1-7]),

i=1 j=1
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FIGURE 5: (a) Extracting regions, categories, and attributes from a query image with trained models of the CFOR system. After that, users can
use this semantic information to reduce the searching space. (b) Fashion ontology used to retrieve. (c) Retrieval results.

where j/lj is the prediction for a sample, ylj is the corre-
sponding ground truth, N stands for the number of samples,
and M stands for the number of attributes.

3.1.2. Technical Details. In Algorithm 1, object ontology
which is described in detail in Section 4, is designed
manually based on professional experience and public

dataset for the community. It is organized into the hierar-
chical semantic tree with three main levels: region level,
category level, and attribute level. Regions, categories, and
attributes are learned automatically based on the local
MDNN. The DeepFashion dataset [37] has been manually
annotated, and our contribution follows fashion ontology.
Besides, to clarify Algorithm 1, the used functions will be
described as follows:
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FIGURE 7: Online stage of the CFOR system.
(i) extract_predicates(dta): in a rich-annotated data- arrays which will be used to reconstruct the data.

(ii)

(iii)

set, e.g., DeepFashion [8], a sample image can be
annotated by many labels in different fine-grained
levels. For each fine-grained level, the function is
used to extract the unique possible labels of
samples and then store these labels into a corre-
sponding array. For example, in the DeepFashion
dataset [8], Top, Bottom, and Body are unique
labels belonging to one fine-grained level, and thus,
they are stored into one array. Similarly, fabric,
shape, part, style, and texture labels belong to one
fine-grained level and are stored into one array.

build_ontology(predicates, prior): this matches the
extracted level and its labels from each predicate
array into the corresponding stage of the general
ontology, i.e., prior. For example, Top, Bottom,
and Body belong to one level which is matched
with the region stage of the ontology. After the
matching is finished, all other unused stages are
eliminated from the general ontology to generate
the adapted ontology, e.g., fashion ontology.

extract_state(onto): from the built ontology, all
stages and their labels are searched and stored into

(iv)

~

(v

(vi)

For example, the region stage array contains three
classes, and the category stage array contains 50
classes.

extract_nes_dta(dta, state, onto): based on the
stage and the classes extracted from the “extrac-
t_state” function, the whole DeepFashion dataset
will be split. Only samples having the labels be-
longing to the stage are stored as the training set of
that stage in the ontology. For example, with the
region classification model, only samples labelled
Top, Body, or Bottom are used for training.

classifyModel(architecture, state_dta): in the
DeepFashion dataset [8], based on ontology, there
are four classification models: region classification
model and category classification model for the
Top region, Body region, and Bottom region. These
models are retrained from the ImageNet dataset
[33] using ResNet-101 [35].

multitaskModel(group_state_dta,  architecture,
Matthrew_coef=True): for each group state in
terms of the fine-grained attribute level, a multitask
classification model is built, e.g., fabric attribute
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Procedure: OFFLINE_CFOR
Goals:
Establish fashion ontology through general ontology and predicates extracted from data.
Train regions, category classification models, and attribute multitask classification models
Establish inverted index files for retrieval
Establish database which contains all extracted features and information of all objects in all images in data
Input:
dta(obj) //image object database, i.e., fashion object detected by the inherited object detector for all images in data.
prior(field) //structured information (predicates) which contains semantic concepts, attributes, and their correlation in a specific
field (here, we have fashion field); for example, Blazer is a category.
Output:
onto(prior, dta) //established ontology based on prior knowledge, i.e., general ontology structure
classifyModel(state, onto, dta) //a trained classification model in a specific state will be used for online phase (retrieval phase).
Through experimental results, ResNet architecture is suitable to apply.
States //including concept state (region or category) and attribute state (color, shape, part, style, etc.)
multitaskModel(state, onto, dta) //a trained multitask classification model for a specific state belonging to the attribute state.
Through experimental results, NasNet architecture is suitable to apply.
indexFiles //inverted index files, i.e., for speeding up retrieval time
Database //database contains all extracted features and information of all objects in all images in data.
BEGIN
//Ontology establishment
predicates «— extract_predicates(dta) /lextract concepts, attributes, and their correlation in fashion data to generate predicates
onto «— build_ontology(predicates, prior) /lintegrate predicates into a general form of ontology to build up a fashion ontology
//Training phase
states «— extract_state(onto) /lextract states of ontology including concepts (region and category) and attributes (color, part,
shape, style, texture, and fabric)
group_state_dta «— NULL /Istore all attribute state data for imbalanced data problem solver

for state in states: /1build up classification model for each ontology state (except leaf states in ontology)
begin
if state in concepts:
begin

/lextract necessary data for training model in current state of ontology instead of using all data for training
state_dta «— extract_nes_dta(dta, state onto)
/Itrain classification model for current state whose architecture is chosen from NASNet/ResNet indicated by ontology
classifyModel(architecture, state_dta)
end
if state in attributes:
begin
/lextract attribute data for training and store in a group for imbalanced data problem solver
state_dta «— extract_nes_dta(dta, state, onto)
group_state_dta.append(state_dta, onto)
/Itrain attribute multitask classification model with Matthews’ correlation coefficient-based imbalanced data problem solver
multitaskModel(group_state_dta, architecture, Matthrew_coef = True)
End
end
//Indexing
indexFiles «— NULL /Istore all index files based on the operation of ontology
//make inverted index file
for state in states:
begin
state_dt «— extracted_nes_dta(dta, state, onto)
cur_indexFile «— indexing(state_sta)
indexFiles.append(cur_indexFile)
end
//Build a storing structure for semantic information and extracted features
storage «— build_storage(onto, states)
/lextract all semantic information from input objects
infor_dta «— infor_extract(states, dta, onto, classifyModels, multitaskModel)
//global and local object feature extraction
feat_dta «— feat_extract(dta, onto, classificationModels, multitaskModel)
//construct storing database for all extracted information
database «— structure(storage, feat_dta, info_dta, indexFiles)
END

ArcoriTHM 1: Offline-phase CFOR system algorithm applied in the fashion field.
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Onto

end

classficationModels (state, onto)
multitaskModel

Procedure: ONLINE_CFOR

Goals:
Detect objects when having an input image
Extract information of input objects such as regions, categories, and attributes
Return retrieval results

Input:

//establish ontology of fashion data

Database //constructed data of all extracted information and features

//trained classification model for all possible concept states.
//trained attribute multitask classification model for all possible states.
states:list of all states which appear in ontology.
imgQuery //input query image

Output:
retrived_info

/lextract information of input objects. Objects move through ontology to extract the region and then the category and finally
attributes.
infor «— infor_extract(states, obj, onto, classifyModels, multitaskModel)

/lextract features of input object

feat «— feat_extract(states, obj, onto, classifyModels, multitaskModel)

if expand is True:
begin
/lexpand query and optional query based on extracted attribute information

infor, feat «— query_expansion(infor, feat)

//semantic information of all retrieved results.
imgList //retrieval image results
BEGIN

obj_list «— detector(imgQuery)
for obj in obj_list:

begin

//extract objects which appear in input query image

//compute similarity score between input and database. In this function, the score computed based on the similarity of input
features and database image features will be changed when passed through ontology. The score is then added with the matching
attribute score computed by matching the input attribute with those in the database. To index the database, nonexhaustive search will
be applied using GPU to speed up indexing time.

score_list «— compute_sim_score(database, infor, feat)

indexes, socre_list «— ranking(score_list, database, top_k, GPU_search = True) //top-k ranking by using GPU

nonexhaustive search
retrieved_info, imgList «— retrieval(indexes, score_list, database, GPU_search = True)

//retrieval task

end
END
ALGORITHM 2: Online-phase (retrieval-phase) CFOR system algorithm applied in the fashion field.

group classification model and style attribute group “multitaskModel” function are run and then all
classification model. These models are retrained possible attributes which are higher than thresholds
from the ImageNet dataset [33] using NASNet v3 are extracted. For more details, see Section 5, Al-
[35]. Besides, the attribute learning and the usage of gorithm 4, and Algorithm 5 for how thresholds are
MCC are mentioned for an imbalanced data solver identified.
and described clearly in Section 5. (x) feat_extract(dta, onto, classificationModels, mul-

(vil) indexing(state_sta): indexing files are created that titaskModel): for each sample in the database, the
will be used for run-time retrieval. The method is features of the pre-softmax layer in four models
based on the nonexhaustive compressed-domain trained in “classifyModel” function are obtained.
sear'ch with GPU, which is described clearly in (xi) structure(storage, feat dta, info_dta, indexFiles):
Section 6. the database is automatically built based on

(viii) build_storage(onto, states): storage structures are extracted features, extracted information, index,
automatically created based on built-in object and storage structure. The storage structure is
ontology and extracted states. The storage struc- described clearly in Section 3.1.5.
tures are described clearly in Section 3.1.5.

(ix) infor_extract(states, dta, onto, classifyModels,

multitaskModel): for each sample in the data-
base, all attribute learning models trained in

3.1.3. Object Part Extraction. For the aforementioned rea-
sons, foreground objects should be extracted from



14

background regions efficiently and accurately before en-
tering the retrieval step. The target of object extraction is to
filter the necessary specific subjects. This also improves the
efficiency of the following modules as well as increases the
overall system performance. There are many successful
object detection methods [31, 38, 39]. Among them, YOLO
[39] shows the state-of-the-art results. In our system, we
inherited the successful software YOLO (version 3.0) to
identify fashion items.

3.1.4. Transfer Learning. Transfer learning is one of the best
methods to reduce training time, especially with complicated
architectures such as ResNet or NASNet. The key issue is the
initial parameters. In the first step of the training process, we
have to generate these parameters with some unsupervised
learning methods. However, the initial one will be far from
the optimal one. In transfer learning, we will reuse the
trained parameters on a large and diverse dataset (such as
ImageNet dataset [8]). By this way, our training process will
be easier to meet convergence. Thus, it reduces the training
time.

Transfer learning can be applied in different ways based
on the size of the dataset and data similarity. There are four
scenarios in total. First, if the data size is small while data
similarity is high, we use the pretrained model as a feature
extractor. Second, if the data size is small and data similarity
is low, we freeze the top layers and train the remaining layers
of the pretrained model. Third (ideal situation), if the data
size is large and data similarity is high, we can retrain the
model by using the weights initialized in the pretrained one.
Fourth (worst situation), if the data size is large and data
similarity is low, transfer learning cannot be applied, and we
have to train our model from scratch. In our fashion example
experiments, while DeepFashion [8] is a large dataset and
ImageNet (dataset used for transfer learning) is a high di-
versity one, we can use all of the initialized weights from the
pretrained model.

According to our approach, transfer learning will be
applied in region, category classification as well as attribute
learning along with ResNet and NASNet architectures, re-
spectively. It can also be used in global deep feature ex-
traction to improve the overall retrieval performance.

3.1.5. Data Storing. Features extracted from the category
classification task and attribute learning will be stored in a
hierarchical semantic tree based on object ontology. All
features belong to a leaf of object ontology and will be stored
in one file. In case of the expansion of large-scale data, the
mentioned files can be indexed and split with a corre-
sponding mapping key for each image. The folders will be
organized based on object ontology in which each name
corresponds to each concept. To clarify, data storing for the
proposed ontology is defined as follows (see Figure 8 for an
example of data storing):

Computational Intelligence and Neuroscience

(i) All files are stored in a folder named “database,”
which is denoted as the “Object” node.

(ii) Based on ontology, “Object” node contains 3 nodes
at the “Region” semantic level. Thus, we have 3
smaller folders: “Top,” “Body,” and “Bottom.”

(iii) At the next stage of ontology, we have the “Cate-
gory” semantic level. Thus, we have 50 folders
representing all nodes of “Category.”

(iv) Finally, we have the “Attribute” semantic level
standing for the leaf node state in ontology. At this
state, all features belong to the same “Region” and
“Category” and are stored in one file.

3.2. Online Phase. Algorithm 2 shows the online phase of the
CFOR system corresponding to the demonstration in
Figure 7.

3.2.1. Technical Details. To clarify Algorithm 2, the used
tunctions will be described as follows:

(i) detector(imgQuery): an object in an image is au-
tomatically detected by using a trained detector. In
this function, we inherit the successful software
YOLO (version 3.0) to identify fashion items. Be-
sides, the items identified are also refined by the
region identification model, which is trained by
“classifyModel” function in Algorithm 1.

(ii) infor_extract(states, obj, onto, classifyModels,
multitaskModel): for each query object, all attribute
learning models trained in function “multi-
taskModel” and coarse classification models in
function “classifyModel” in Algorithm 1 are run.
We extract the region — category — attributes
and necessary features for each stage of the
ontology.

(iii) query_expansion(infor, feat): query expansion
based on the mean vector is used for reranking
retrieval results. See Algorithm 3 for the details of
query expansion.

(iv) compute_sim_score(database, infor, feat): for each
pair of features, asymmetric distance is used to
measure the dissimilarity distance between the
query and the sample in the database (see Section 6
for more details). The computation is made parallel
by using indexing files obtained from Algorithm 1
for all samples in the database.

(v) ranking(score_list, database, top_k, GPU_search =
True): based on the score between the query and all
samples in the database obtained from function
“compute_sim_score,” ranking is applied; smaller is
better.

(vi) retrieval(indexes, score_list, database, GPU_search =
True): the retrieval process contains 3 steps including
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FIGURE 8: An example of the storing structure.

feature retrieval, fine-grained retrieval, and query
expansion. For global retrieval, global features of the
query object obtained from function “infor_extract”
and the features of samples in the database are passed
to function “ranking” to get 1* top-m retrieval re-
sults. For fine-grained retrieval, attribute features (see
Section 5 for more details) of the query object ob-
tained from function “infor_extract” and the features
of samples in 1** top-m retrieval results are passed to
function “ranking” to get 2" top-k retrieval results.
For query expansion, the mean vector is computed
from 2™ top-k retrieval results, and each feature of
2™ top-k retrieval results is passed to function
“ranking” to get final top-k retrieval results, i.e., query
expansion-based reranking.

As described in Figure 7, the online phase of the CFOR
system contains three stages which will be put into use in real
time. They are given as follows.

3.2.2. Prediction Stage. This stage will take advantage of
object ontology and classification models obtained from the

offline phase and then makes predictions from coarse to fine
for each query image:
I,(xy) — Oy (M: [0, 255]x [0, 255]
q
x [0, 255] —> [0, 255] x [0, 255] x [0, 255]),

0y, (xy) — Ry, (Mp: [0, 255] x [0, 255] % [0, 255] — RP),
qu: (regionl, regionz, region3, RN regionp),
R] (x,y) — Cj (Mg: [0, 255] x [0, 255] x [0, 255] —> R°),

q q
C; = (catel, cate?, cate’, . .. ,catec),

q
G (xy) — A} (M,: [0, 255] % [0, 255] % [0, 255] — R?),

q q

A; = (attrl, attr?, attr, . . ., attra),
q

(2)

where I (x,) is the query image, Oy, is the object identified
(demonstrated as an object boundmg box), R, is the object
region, R} (x,y) is the object with region information, and
Ci and A are the object category and object attribute,
respectlvely



16

Computational Intelligence and Neuroscience

Procedure: QUERY_EXPANSION

Input:

inputImgFeat: query image features
startRetrievedImgFeatList: retrieved image feature list
k: the number of retrieved images

with retrieval time. Recommended value: 3.
Output:

Goal:

Enhance retrieval results

BEGIN

finalRetrievedImgFeatList = startRetrievedImgFeatList
#do query expansion

for i=0 to numOfExpansion do:

begin

end
END

numOfExpansion: the number of query expansion applying times. Even though retrieval performance is better, it will have a trade-oft

finalRetrievedImgFeatList: retrieved image feature list after moving over query expansion

#assignment retrieval feature list

meanlmgFeat = mean(finalRetrievedImgFeatList, inputlmgFeat)
this vector contains the most general features between all retrieval results and can be used to compute distance to all input features. The
distance helps identify outliers and downrank them using an appropriate threshold.

finalRetrievedImgFeatList = retrieve(meanImgFeat, k)
retrieved image; reranking is applied based on the computed distances. Finally, take k first similar images as retrieval results.

#compute mean vector from the retrieval feature list;

#compute the distance between mean vector and features of each

ALGORITHM 3: Query expansion for image retrieval.

Fine-grained information in terms of regions, cate-
gories, and attributes provides more options for a customer
to give a full semantic query. The object will be predicted
from coarse to fine. In turn, the region, category, and at-
tribute will be predicted based on object ontology and a
local MDNN. The object retrieval system uses extracted
semantic information as the category and attribute to
search in detail.

3.2.3. Dissimilarity Measuring Stage. This stage will take
advantage of the database as well as the indexing file from the
offline phase and a dissimilarity measure to get scores and
then rank, rerank, and release retrieval results for each query
image. This stage is based on the dissimilarity measure be-
tween attribute vectors of query images and database images:

RI(I,) = {1‘11, | 538 CUS d(AIq,AI?> < d(AIq,AI?H )}
Il e D;0 <i<k-1.
(3

Based on combination of K-nearest neighbour search in
terms of L2 distance and asymmetric distance computation
(ADC will be mentioned in Section 6), we take advantage of
parallel processing by GPU through the Faiss method [17] to
compute the distance from the query image to the necessary
one in the database. The distance which is also called the score
of each image in the database is then sorted to rank the
dissimilarity. The smaller the score of the image, the more
similar the query. Based on the number of retrieval images
required or thresholds, we will have an appropriate cutoff in

the score as well as the number of retrieval images. This kind
of measurement is used to compute distance for both deep
features vectors and attribute vectors.

3.2.4. Query Expansion Stage. Query expansion is a tech-
nique that can help gather additional relevant information
from the input to increase retrieval performance. The in-
formation can be relevant images, additional features, de-
scription, etc. based on the query expansion algorithms and
data. In this stage, we would like to take advantage of the
previous retrieval results and then expand the query by using
the mean vector to rerank and get reranked retrieval results
to improve retrieval performance.

Query expansion based on the mean vector is chosen
among many methods mentioned in [40-42] because of its
trade-off in speed and performance and also suitable for large-
scale datasets. When extracted features represent a query
image passing through the CFOR system, retrieval results can
contain outliers due to the limitation of similarity mapping
between input features and samples in the database. By ap-
plying Algorithm 3, the mean vector computed from features
of retrieval results and the features of input help reduce the
bias between different considered features. Thus, the CFOR
system can eliminate unrelated features; that is, retrieval
features have high gap from the mean vector features, which
helps reduce outliers and rise the precision score.

Query expansion based on computing mean vector is
performed very fast, and it can take advantage of the Faiss
similarity searching method [17] as well. Query expansion
can remove outliers, thanks to the statistic essence of the
mean vector.
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4. Fashion Ontology: CFOR System
Testing in Fashion

In this section, we will mention about ontology, fashion
ontology, and its related information and present the
contributions of object ontology to the CFOR system.

4.1. Ontology Definition for CFOR System. As mentioned by
Guarino in [43], ontology is defined as a “formal, explicit
specification of a shared conceptualization.” Most ontologies
are described as a group of concepts followed by their
relative structure, which can help describe and support
information for a domain. A completed ontology is sup-
posed to have a group of concepts (C), a corresponding set of
relations (R), and finally axioms. Also, as in [22], ontologies
provide some main advantages:

(i) Describe the domain knowledge in the form of the
semantic hierarchical tree including the nodes that
are concepts that can be called by words or phrases

(ii) Support narrowing the semantic gap in many tasks
in computer vision and other disciplines

(iii) Achieve important improvements in software en-
gineering: flexibility, reliability, specification, and
reusability

(iv) Have potential to
problems

support solving multitask

The proposed ontology should meet the following two
basic requirements:

(i) Widely recognized by the community

(ii) Ability to be formalized by mathematical expressions
(ability to be digitized)

In our approach, we use ontological engineering for
communication and information sharing between different
data abstraction levels involved in image fashion retrieval,
detection, and information tagging.

Object ontology consisted of two main levels: coarse-
grained level and fine-grained level.

(i) Object ontology at the coarse level consisted of re-
gions, categories, or any kinds of high-level concept
ones which can use global features extracted by the
deep network. These global features can be used for
similarity retrieval. However, deep features are
treated as black boxes, so no semantic information
can be shown out for supporting customers in their
searching process.

(ii) Object ontology at the fine-grained level consisted of
the object’s attributes that can be used to describe the
object in detail.

Object “Fashion” is described in our experiment.
Fashion ontology is created by prior knowledge and in-
formation on the DeepFashion dataset [8] and ontology
definition introduced by Guarino [43] (see Figure 9 for
fashion ontology).
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The three most important semantic levels of the de-
veloped fashion ontology are as follows:

(i) Regions (aregion, e.g., for clothes: Top, Bottom, and
Body)

(ii) Categories (consisted of specific objects linked to
the region, e.g., for Body: dress, robe, etc.)

(iii) Attributes (describing visual fine-grained concepts,
e.g., fabric: denim, fur, etc.)

To focus on the necessary main points, we only in-
vestigated the object fashion at three regions (Top, Body, and
Bottom), some main categories related to three regions, and
their attributes.

In the CFOR system, a query image will be fed into the
system from the coarse level based on object ontology to
determine the region and category of the corresponding
object. Then, each object with the coarse information will
go through fine-grained concept ontology to identify at-
tributes. After the corresponding object gets all of the
needed information, it will get through the indexing step
and compute similarity distance step to help find out a
similar image in the database with a ranked score. Ranked
score is the sum of the similarity score of global features
extracted from the category classification task and the
similarity score in attribute learning between the query
image and the target database image (see Figure 10 for
more details).

4.2. Fashion Object Ontology. In this section, we propose the
fashion object ontology. In the fashion field, we divide
semantic fashion concepts based on the region (Region).
For each region, we will have a more detailed ontology
based on categories and attributes. For supporting ex-
periments in the DeepFashion dataset [8], we expand the
fashion ontology in the “Clothes” branch (see Figure 9). It
is important to note that the proposed ontology is not
application dependent and should be considered as an
extensible basis.

Fashion object ontology includes multiple levels of
concepts. Between each level is a set of relations to describe
their relationship. There are two main relations:

(i) “part of”: the relation is used to specify the concepts
are parts of the main concept

(ii) “has a”: the relation is used to describe the main
concept in detail

In this research, we focus only on Clothes branch to make
fair comparisons with other methods. Clothes taxonomy has
50 different categories. A cloth region taxonomy has been
defined (see Figure 11), arranging all cloth categories into a
hierarchy, the first level of which corresponds to the most
general region of clothing. 3 main regions were defined:

(i) Top (e.g., tee and tank)
(ii) Bottom (e.g., skirt and jeans)
(iii) Body (e.g., dress and robe)
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FIGURE 10: An example of a relationship between the query image and semantic information from the coarse-grained level to the fine-
grained level of the fashion ontology.

4.3. Fine-Grained Object Ontology. Fine-grained object  customer to retrieve (see Figure 12). It is important to note
ontology is used to describe objects at the attribute level.  that the proposed ontology is not application dependent and
Semantic information such as attributes can be useful for a  should be considered as an extensible basis.
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___________________

Body

Bottom

FiGure 11: Excerpt from the “Clothes” taxonomy defined in the fashion ontology.

Cloth attributes are defined on different levels—some
attributes are popular in all cloth regions (e.g., color) and
some attributes are reserved to only certain regions or
categories. We have structured ontology in two main
parts; each part of this ontology is detailed in the next
sections:

(i) Specific fashion concepts—related to particular
characteristics of clothes (fabric, part, and style).

(ii) Visual concepts—related to the popular visual
characteristics (color, shape, and texture); they are
not reserved only for fashion.

In [6], Rudd et al. have proved that a multitask learning-
based model shows better performance in accuracy com-
pared to a combination of single-task learning-based models
in face attribute prediction. This method can be applied to
fashion attributes and also shows good results. However,
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FIGURE 12: Fine-grained group at the attribute level.

unlike face attributes which have a limitation in quantity,
there are a large variety of fashion attributes. This method
can lead to difficulties in expanding system (e.g., training
and storing). Based on the levels of fashion ontology, we can
apply local multitask learning to attribute learning more
flexibly. The explanation is also given in the next sections.

4.3.1. Visual Concepts. Visual concepts consisted of shape
concepts, texture concepts, and color concepts. These visual
concepts are usually stable and have a limitation in quantity.
Thus, it leads to the fact that we can use local multitask
learning to solve the attribute prediction problem.
Moreover, models trained in this way can take advantage of
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inner-group correlations to improve performance (see
Figure 13 for visual concepts).

(1) Shape Concepts. This part of ontology has been inspired
by results from the DeepFashion dataset (Liu et al. [8]). In
category and attribute prediction benchmark, there are a
total of 180 shape attributes, and we use all of them for shape
concepts (see Appendix for more details). However, we
experiment in smaller version for shape concepts such as
maxi, shirt, fit, bodycon, mini, midi, and slim.

(2) Texture Concepts. This part of ontology has been inspired
by results from the DeepFashion dataset (Liu et al. [8]). In
category and attribute prediction benchmark, there are a
total of 156 texture attributes, and we use all of them for
texture concepts (see Appendix for more details). However,
we experiment in smaller version for texture concepts such
as print, floral, striped, dot, linen, marled, and leopard.

(3) Color Concepts. This part of ontology is derived from the
ISCC-NBS (Inter-Society Color Council-National Bureau of
Standards) color dictionary. An interesting reflection of the
validity of this dictionary is given by Miller and Johnson-Laird
in 1976. Three kinds of notions are included: hue, brightness,
and saturation concepts. There are twenty-eight hue concepts
(Table 4) which can be combined with five brightness con-
cepts (very dark, dark, medium, light, and very light) and four
saturation concepts (grayish, moderate, strong, and vivid).
Certain combinations of brightness and saturation concepts
have a perceptual meaning. For instance, the concept “bril-
liant” is an association of the light and strong concepts.
Axioms are contained in the ontology to express those kinds
of associations. The mentioned color concepts are especially
good for identifying fashion color because the HSV color
model is close to human color perception.

In fashion retrieval, it is necessary to check whether
the query image has the same color with retrieved ones or
not. To solve the problem, color value and color set
similarity is recommended to use to compute scores for
ranking retrieval results. A special treatment is given to
the color attribute, for two reasons: First, the color is
described by categorical values (red, blue, yellow, and so
on) which have been mentioned in color concepts, but the
dissimilarity between two colors can be calculated if the
names are mapped into HSV values. Second, the color
attribute can take several values for the same item (e.g., a
shirt is red and white). In order to compare colors of two
cloth items, two concepts need to be introduced: dis-
similarity between two colors and dissimilarity between
two color images.

Assuming that color c; is described in the HSV space as
(H,S,V), [H €0,360), S € [0,100], V € [0, 100], the dis-
similarity distance for two values of color is defined in
Algorithm 4.

To identify the dissimilarity between two color images,
histogram intersection [44] is selected to evaluate the
difference between two color distributions of a fashion
image. With a given pair of histograms, H (I) and H (I') of
images I and I', suppose that each one contains n bins;
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FiGure 13: Visual concept ontology.

TABLE 4: Set of hue concepts.

Red Purple
Reddish orange Reddish purple
Orange Purplish red
Orange yellow Purplish pink
Yellow Pink

Greenish yellow
Yellow green
Yellowish green
Green

Yellowish pink
Brownish pink
Brownish orange
Reddish brown

Bluish green Brown
Greenish blue Yellowish brown
Blue Olive brown
Purplish blue Olive
Violet Olive green

then, the histogram intersection d (H (I), H(I')) is defined
as follows:
" min(H;(I),H,;(I'
i, (ry - Ho L O )
Zj:lHj (')

With the dissimilarity between two colors and dissim-
ilarity between two color images, we can reduce the
searching space to improve retrieval performance. Histo-
gram intersection is applied in general retrieval tasks (color
option is not used).

(4)

4.3.2. Specific Fashion Concepts. Specific fashion concepts
consisted of fabric concepts, part concepts, and style con-
cepts. These concepts can only appear in clothes, so we call
them specific concepts. Thus, we cannot use multitask

learning-based models, as mentioned in [37], to solve the
attribute prediction problem. Because the specific fashion
attributes can be expanded in quantity quickly, multitask
learning-based models have to be trained again with a larger
dataset whenever a new attribute is added to the system.
Local multitask learning is proposed to solve this problem
(mentioned in Section 5) (see Figure 14 for specific fashion
concepts).

(1) Fabric Concepts. This part of ontology has been inspired
by results from the DeepFashion dataset (Liu et al. [8]). In
category and attribute prediction benchmark, there are a
total of 218 fabric attributes, and we use all of them for fabric
concepts (see Appendix for more details). However, we
experiment in smaller version for fabric concepts such as
lace, knit, denim, chiffon, dye, fur, and metallic.

(2) Part Concepts. This part of ontology has been inspired by
results from the DeepFashion dataset (Liu et al. [8]). In
category and attribute prediction benchmark, there are a
total of 216 part attributes, and we use all of them for part
concepts (see Appendix for more details). However, we
experiment in smaller version for part concepts such as
sleeve, sleeveless, v-neck, collar, button, zip, and bow.

(3) Style Concepts. This part of ontology has been inspired by
results from the DeepFashion dataset (Liu et al. [8]). In
category and attribute prediction benchmark, there are a
total of 230 style attributes, and we use all of them for style
concepts (see Appendix for more details). However, we
experiment in smaller version for style concepts such as
summer, classic, party, chic, solid, workout, and varsity.
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Procedure: DISSIMILARITY_DISTANCE_OF_TWO_COLORS
Input:
¢, (Hy, Sy, V,): first HSV color
¢, (H,, S;, V,): second HSV color
Output:
d(cy,¢,): color dissimilarity distance of two HSV colors
Goal:
Compute dissimilarity of two colors
BEGIN
/IGrey color with small V, S, or unidentified H
isGreyl = (¢; -V <Illc; - S<Spinlle; - H==-1)71:0
isGreyl = (¢, - V<Iinllc; - S<Spinlle, - H==-1)71:0
//Check if both are grey color
if (isGreyl && isGrey2):
d(cy,c;) =1, - V—¢c,-V]|
if (isGreyl = =0 && isGrey2==0): //both are color
d(c;c,) = (¢, V—c,-V)?
d(c,6)+= (c;-Sxcos(c,-H)—c,-S*cos(c, -H))?
d(cy,c)+= (c;-Sxsin(cy-H)—c, - S*sin(c, - H))?

d(cy,c,) = \Jd(cp,c,)I\5

d(c;6,) = (¢, - V—c,-V)?
d(c;yc,)+ = (¢, -S—c, - S)?

d(cy,c,) = fd(ci,¢)/\2

else: #do not care about H channel

END
ALGORITHM 4: Computation of dissimilarity distance of two colors.
---------------------
Fabric concept
i Metallic
I
I
I
I
I
I
I
I
I
)
Specific fashion i
Part concept
concept

Style concept

FIGURE 14: Specific fashion concept ontology.
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5. Attribute Learning

To provide fine-grained information to the CFOR system,
attribute learning is a most important task which should be
optimized in both time-processing performance and ability
to deal with large-scale imbalanced datasets.

5.1. Framework. As mentioned in Section 1, local multitask
learning is considered in attribute learning. The proposed
framework (shown in Figure 15 including online and offline
phases) has three parts in total. The first part aims to in-
troduce the local multitask transfer learning model with loss
function in exploiting attributes’ inner-group correlations.
The second part shows an imbalanced data solver based on
MCC without any revision in the pretrained model as well as
loss function. The third part mentions prior knowledge for
local attribute grouping to support local MTL.

The input and output of the learning framework will be
images and their attribute vectors, respectively. However,
with the local grouping role, the attribute vector’s size will be
based on the number of attributes in each group. The dataset
should be merged or split based on the local grouping role.

To evaluate the effectiveness of the proposed framework,
we apply it in the fashion field and split the dataset into five
local groups: fabric, shape, part, style, and texture. Because
fashion has lesser intergroup correlations, the shared block
should be designed to optimize the effectiveness of inner-
group correlations to improve the overall performance.
However, in crowd attributes (such as activities, locations,
and participants), intergroup correlations should be taken
into account to improve performance. Thus, the shared
block should be modified to adapt to the context.

5.2. Deep Multitask Learning. Our aim is to estimate a
number of fashion attributes via a joint estimation model.
However, with the dynamic attributes, MTL which supports
creating a joint estimation model becomes vulnerable in the
training phase due to its nonusability when the number of
attributes increases. Thus, the local grouping method can
help solve this situation.

5.2.1. Framework in Detail. In experiments, the proposed
framework treats the query image and then outputs 7 at-
tribute scores per group for 5 groups as a confident score
vector which is then thresholded to get binary outputs. The
architecture is described in detail below.

Figure 15 shows the overall structure of the proposed
method. For each group, we suppose a training set with
N fashion images; each of them has M attributes. The
dataset is denoted as D = {X, Y}, where X = {Xi}iN=1 andY =

. N
{ y! }Af , in which will be presented as a one-hot vector
PjE ] imy

of the sample label. Inspired by the study in [25], we use an
end-to-end DNN architecture as a shared block to learn joint
representations for all tasks. The loss function was binary
cross entropy, and activation function used was sigmoid at
the output layer to make it simple and easy to change the
DNN architecture.
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5.2.2. Loss Function. Loss function can be computed as a
sum of binary cross entropy loss of all labels (Equation (5));
this is the effective way to handle multitask learning without
configuration in the DNN model:

Z(6) =~ Ylog(7) + (1) log(1- 7))

i=1

(5)

4

M=

1
N

y}log(3]) +(1-y])log(1-7]),

Il
—_

-

Il
—

where y; is the multioutput sample label, y/ is the sample
label for an attribute, y! is the multioutput prediction for a
sample, 7/ € (0,1): Y.,/ = 1Vi, j is the prediction for a
sample in an attribute, N stands for the number of samples,
and M stands for the number of attributes.

5.2.3. Network Architecture

(1) NASNet. By producing network architectures auto-
matically, NASNet reconstructs an optimal model by
generating architectures on a smaller dataset and
expanding it to a larger one. By experiments, they look for
the best cells on the CIFAR-10 dataset and then apply
them to the ImageNet [33] dataset by stacking together
more copies of them, each with their own parameters
(Figure 16). The created model was proved to get a 1.2%
improvement in top-1 accuracy compared to the best
human-invented architectures. As mentioned above,
NASNet shows its effectiveness over previous architec-
tures, and it also has a transfer learning model in a large
diverse ImageNet dataset [33]. Taking advantage of the
NASNet pretrained model on ImageNet, we apply transfer
learning in the DeepFashion [8] dataset to speed up
convergence and improve performance. When applying
NASNet, we also add a dropout layer to reduce overfitting.
It is a good consideration to use the NASNet model
generation algorithm to make an adaptive model for the
DeepFashion dataset. However, NASNet consumes a
bunch of time and hardware resources to generate the
model and train from scratch. Because of our limitation in
hardware, only transfer learning is applied.

(2) ResNet. ResNet, a careful human-invented architecture,
has been created with the proposed residual blocks. Thanks
to them, this architecture has an ability to minimize the
effect of the degradation problem when learning deeper and
deeper in a complicated deep network. The core idea is to
force the network to learn an identity mapping by learning
the residual of input and output of some layers (or
subnetworks).

Suppose the input of the subnetwork is x and the true
output is H(x). Instead of learning a direct mapping of x to y
with a function H(x) (a few stacks of nonlinear layers) with x
denoting the inputs to the first of these layers, they define the
residual function (assuming that the input x and output H(x)
are of the same dimensions) using [35]
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FiGure 15: Local MTL with an imbalanced data problem solver framework. (a) Offline phase. (b) Online phase.
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CIFAR-10 and ImageNet architecture (right) are built from the best

convolutional cells [36]. Zoph et al. built two types of cells because they want to create architectures for images of any size. While normal
cells return a feature map which has the same dimension, reduction cells return a feature map with height and width reduced by a factor

of two.

F(x)=H(x)-x. (6)

As we are interested in finding the true, underlying
output of the subnetwork, we then rearrange this original
function into H(x) = F(x) + x, where x and F(x) correspond

to the stack of nonlinear layers and the identity function
(input = output).

These things make differences between ResNet and
original neural network (plain network) (Figure 17). While
the original neural network will learn H(x) directly, ResNet
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Figure 17: Difference between the original block (right) and the
residual block (left) [35].

models the layers to learn the residual of input and output
of subnetworks (stack of nonlinear layers). With this in-
novation, in the classification task on the ISVRC2015, this
model has excellently won the first place with a top-5 test
error rate of 3.57%. The extremely deep representations
also have excellent generalization performance on other
recognition tasks: ImageNet detection, ImageNet locali-
zation, COCO detection, and COCO segmentation in
ILSVRC and COCO 2015 competitions. As mentioned
above, ResNet shows its effectiveness over previous ar-
chitectures, and it also has a transfer learning model in a
large diverse ImageNet dataset [33]. Because of that,
ResNet also fits well in our requirements.

We will do experiments on ResNet [35] and NASNet
[36] architectures to find out which one is suitable for each
specific task in our CFOR system. In our fashion retrieval
experiments, the category classifier task and region clas-
sifier task are applied transfer with single-task learning,
while fashion attribute recognition is applied local multi-
task learning. Besides, to adapt to large-scale datasets and
reduce the effect of overfitting, we recommend changing
the final fully connected layer to the global average pooling
layer along with dropout. These changes are also shown in
experiments in Section 7.

5.2.4. Local Multitask Learning for Fashion Attribute.
We separate the fashion attribute dataset into five groups:
fabric, part, style, shape, and texture. Each group will be
applied an individual MTL model. By this, when any new
attribute is added, only the group that attribute belongs to is
trained again and we can reuse the remaining models.
Moreover, inner-group correlations in each group can be
learned internally to raise the overall performance.

5.2.5. Imbalanced Data Problem Solving. Thresholds are put
after confident score prediction to determine the binary
value of each binary attribute. Usually, thresholds are
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capped at 0.5. However, with imbalanced data, that value
is not always the best one, while predicted outputs are
often bias to more data classes. By applying MCC in
configuring each attribute threshold value, we hope to
find the optimal one for solving the imbalanced data
problem.

5.3. Matthews’ Correlation Coefficient. MCC, which is a
discriminative version of Pearson correlation in binary
variables, has a value between —1 and +1. A coefficient of +1
represents a perfect prediction, 0 an average random pre-
diction, and -1 an inverse prediction. MCC can help
measure the quality of binary classification. Thus, we can
base on MCC to change the threshold value which is suitable
for each class in the imbalanced dataset.

With two binary variables x and y showing the
presence or absence of an attribute in objects, tp, t fp,
and f, are, respectively, the number of true positives, true
negatives, false positives, and false negatives, and MCC is
defined as [2]

MCC = matthews_corrcoef = M

0,0,

tpxtn—fprn

\/(tp + L p)tp+ Fu)(ta+ £p) (6 + £2)

In Equation (7), if any of the four sums in the de-
nominator is zero, the denominator can be arbitrarily set to
one, and this results in Matthews’ correlation coefficient
being masked as zero, which can be shown to be the correct
limiting value.

With a given threshold between 0 and 1, MCC can base
on the predicted output and images label to give out a score.
The higher the score, the better the classification quality and
the more optimal the threshold in attribute prediction. After
testing a sufficiently large number of thresholds, we can find
out the best one for each attribute that minimizes the impact
of imbalanced data.

MCC can be called an application of phi correlation
coefficient (¢)—a binary version of the Pearson correla-
tion coefficient (PCC) with 2 binary variables x and y
which show the presence or absence of an attribute in
objects. The Pearson correlation coefficient (also called the
correlation coeflicient in short) is a bivariate correlation
which is a measure of the linear correlation between two
variables x and y. It has a value between +1 and -1, where
+1 is total positive linear correlation, 0 is no linear cor-
relation, and -1 is total negative linear correlation.

Let PCC be

(7)

_cov(xy) _ Elxy]-E[x]E[y]
0,0, Var|x] = Varly]

PCC, ,
(8)

T TS

b
VHpe1eMege]
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where
Elx] =2,
n
Var|[x] n()'nl',
n
n.
Ely] =— (9)
oMy
Var[y] = %,
IR
El[xy] = %

cov (x, y) is the covariance of two variables x and y, o, is the
standard deviation of variable x, o, is the standard deviation
of variable y, and # is the total number of observations. Two
binary variables are considered positively associated if data
fall along the diagonal cells and are considered negatively
associated if they fall off the diagonal. Let us consider a 2 x 2
status table for two binary variables x and y (Table 5).

Here, n,,, ny, ny;, and ny, are nonnegative counts of
numbers of observations that sum to n. n,,, 1., 14, and 1,
are total counts of numbers of observations when
x=1,x=0, y=1, and y = 0, respectively.

When x and y are binary variables,

”1- o1

n
<$*1*1
n

+@ *0*1+@*0*0>
n n

(Equation 5) — E[xy] =

n
+2 %140
n

1y
n

— nyn—ny gy = nyy (g + nyg + 1y + M)

= (g + 1y9) (1144 + 1y)

= 13,1y — N1ty (Equation7),

(Equation 4) (Equation 6) — £, = nyy; £, = ngg; f, = 1y
fn = ny (Equation 8),

(Equation7) — PCCx)y = MCC.

(10)

When we have multilabels, to find the best thresholds for
all of them, we should consider Algorithm 5.

With best threshold for each label, we can use them to get
a prediction binary value with minimal effects of the im-
balanced data problem. Algorithm 6 can convert model
prediction values to binary values.

5.4. Local Attribute Grouping Method. Our grouping method
is based on characteristics of general attributes and fashion
ones. Thus, we separate attributes into two large groups: a
general one and a fashion one. In each group, we define some
concept; each will be applied MTL. For the general group, we
propose visual concepts which can appear in any kind of
object not restricted by fashion, including color, shape, and
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TABLE 5
y=1 y=0 Total
x=1 1y 1y My
x=0 Moy Moo Moo
Total n,, "y n

texture. For the fashion group, we propose concepts that
only appear in fashion objects including fabric, part, and
style (see Table 6). The grouping method for all experiment
attributes is defined by making use of ontology (especially
fashion fine-grained concept ontology) in Section 4.

6. Searching and Indexing Method in the
CFOR System

To make our retrieval system fit for application in the large-
scale dataset, indexes for the CFOR system are created to
support nonexhaustive similarity search with GPU. To make
this work, we inherit the searching algorithm introduced by
Johnson et al. (billion-scale similarity search with GPUs
[17]) and apply it on the retrieval task in the CFOR system.
In searching, the CFOR system helps reduce the searching
space by additional information (regions, categories, and
attributes) which makes searching more accurate. In
indexing, object ontology helps create multi-indexing files so
as to decrease searching time. We are concerned with
similarity search in vector collections by applying L2 dis-
tance in the k-selection algorithm.

As far as we know, searching can be separated into exact
search (exhaustive search) and compressed search (greedy
nonexhaustive search). Let us have [x licom(x; € R4 ) the
given collection of query vectors, and [ yl], 01(y; € RY), the
corresponding given image vector database.

6.1. Exact Search. Almost all searching algorithms in this
type try to compute the full pairwise distance between the
query and each data point in the database sequentially or
using the index file. To achieve this, we compute the full
pairwise distance matrix D = [[lx; - yill2 - 0:n,yi=01 € R,
Exact search can help minimize the error in computing
distance between the query and each element in the data-
base. However, it takes long time to finish computation
because of its exhaustive searching ability which does not
suit large-scale searching.

6.2. Compressed-Domain Search. Almost all searching al-
gorithms in this type try to compute distance between the
query and each data point in the database by applying space
transformation, encoding, subspace splitting, or hashing.
These methods can help improve searching time by using
index files, but they have a trade-off in searching accuracy.

In this method, to take advantage of the power of
encoding and approximate computing in searching to raise
the retrieval speed, we focus on approximate nearest-
neighbour search. In the IVFADC (an inverted index file
system with asymmetric distance computing in encoding)
indexing structure proposed in [17], encoded database
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Procedure: FIND_BEST THRESHOLDS
Input:
trainPred //an array of multilabel predictions of each sample in the train set
trainLabels //an array of multilabels of all samples in the train set
initThresholds //an array of candidate thresholds with value in [0, 1]
Output:
bestThresholds //an array of best thresholds of each label
Goal:
Find best thresholds for multilabels in an MCC imbalanced data problem solver
BEGIN
for i=0 to numberOfLabel do:
begin
[possibleMattVals] «— [NULL]
#choose threshold
for j=0 to length (initThresholds) do:
begin
[pred] «— [NULL]
[currTrainLabel] «—— [NULL]
#get prediction from current threshold
for k=0 to numberOfSample do:
begin
if trainPred [k][i] >= j:
pred «— 1
else:
pred «— 0
currTrainLabel «— trainLabel [k][i]
end
possibleMattVals «—— matthrews_corrcoef (currTrainLabel, pred) #visit Equation (7) for full computation of MCC.
end
bestThresholds «— initThresholds [position of max(possibleMattVals)] #the threshold with highest MCC value in the
initialized threshold list for each attribute is chosen.
end
END

ALGorITHM 5: Finding best thresholds for multilabels.

Procedure: BINARY_CONVERTER
Input:
testPred //an array of multilabel predictions of each sample in the test set
bestThresholds //an array of best thresholds of each label
Output:
binaryTestPred //an array of multilabel predictions of each sample.
Goal:
Convert the score vector to the binary vector in an MCC imbalanced data problem solver
BEGIN
for i=0 to numberOfSample do:
begin
[binaryConverted] «— [NULL]
#binary converter for each prediction
for j=0 to numberOfLabel do:
begin
if testPred [i][j] >= bestThresholds [j]:
binaryConverted «— 1
else:
binaryConverted «— 0
end
binaryTestPred «— binaryConverted #show overall prediction
end
END

ArLGoriTHM 6: Conversion of the score vector to the binary vector.
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TABLE 6: Attribute grouping table.

Group Concept Attributes

red, orange, yellow, green, blue, etc. (28 x4 x 5

Color attributes based on HSV)
General  Shape skinny, fit, bodycon, maxi, etc. (180 attributes)
Texture floral, stripe, dot, p}rlnt, graphic, etc. (156
attributes)
. fur, leather, denim, cotton, etc. (218
Fabric .
. attributes)
Fashion

Part  sleeve, racerback, hooded, etc. (216 attributes)
Style  summer, workout, party, etc. (230 attributes)

vectors and quantization extraction define the index file.
IVFADC distance (Lyypapc) is computed as the distance
between the unencoded query and each encoded database
vector in the transformed compressed domain. When y is a
database vector, we quantize it as

y=q, () +q,(y-q:(») (11)

where g R? — C, CR? is a coarse quantizer and
gy R? — C, ¢ R%is a fine quantizer. As the sets are finite, y
can be reconstructed by the index of the coarse quantizer and
that of the fine quantizer. Because y has been encoded, to
compute the distance between a query vector x and a vector y
in the database, we need an approximate searching distance,
as proposed by Faiss [17]; asymmetric distance computation
(ADC) which helps compute distance between an unencoded
input query and encoded vectors in the database is applied:
Lap =k - arg min lx-a()l, (12)
=0
where L, is the computed distance and k is the number of
nearest neighbours of x.

While the search is not exhaustive, vectors for which the
distance is computed are then selected based on the first-
level quantizer g,. Our searching method distance is then
needed to adapt to compressed domain and help find out the
distance between the query and each coarse-level centroid.
The following equation shows the compressed-domain-
transformed distance:

Liyp = 7— argmin ||x — C|,, (13)

ceC,

where Ly is the transformed distance in the compressed
domain and 7 is the multiprobe parameter—the number of
coarse-level centroids we have.

The quantizer operates a nearest neighbour search with
exact distances. Thus, we need to combine two mentioned
distances to make the searching method visible. The IVFADC
search is then established and can be computed as Liypapc
(distance between the unencoded query and each encoded
database vector in the transformed compressed domain):

Livpapc = k—argmin ||x —-q ()’i)||z~ (14)
i=0:1 s.t.q, (yl)eLIVF

Hence, IVFADC not only is based on the same distance
estimations as the coarse-fine quantization but also can be
computed as a subset of vectors.
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Finally, the inverted indexing file, the corresponding
data structure, groups the vectors y; into |C,| inverted lists
I, ..., Ic, with homogeneous g, (y,).

To meet the requirement of our targets in searching
large-scale data, compressed-domain search is then applied
in the CFOR system for image retrieval.

7. Results and Discussion

To evaluate the effectiveness of the CFOR system, our ex-
periments are implemented on a specific dataset with many
different tasks supporting retrieval including category
classification, attribute prediction, and similarity ranking
retrieval.

In category classification, we prove the effectiveness of
two architectures: NASNet and ResNet, to find out which is
suitable for classification in the CFOR system.

In attribute prediction, we prove the usefulness of our
proposed local multitask learning framework with our
suggested imbalanced data solver in both NASNet and
ResNet. Our experiments set up the local MTL framework
with the following attribute tasks: local multitask, multitask,
and single-task prediction with and without applying MCC.
Threshold modification for output prediction can reduce
training time by taking advantage of transfer learning,
minimize parameter quantity, and simplify loss function.
Compared with data augmentation, local MTL does not
increase overfitting.

Our experiments are conducted using Python on
computers with the following specifications: Intel Xeon E5-
2650 v2 16-Core Processor 2.6 GHz 8.0 GT/s 20 MB, Ubuntu
operating system 16.04 64-bit, 196 GB RAM, Nvidia 1080Ti
GPU 12GB RAM.

7.1. Data. Our fashion retrieval system was built on a subset
of approximately 300,000 images of DeepFashion. In the
DeepFashion dataset, objects from different aspects are
caught in complicated background. The input image in the
dataset is annotated with different labels based on details
(fine-grained) of input of the current model concern, i.e.,
rich annotation. The samples given in Figures 18 and 19
show more details about the DeepFashion dataset.

In testing, we employ part of the benchmark data to fine
tune the trained models. We ensure that there are no fashion
item overlaps between fine-tuning and testing sets. The
dataset includes ~220,000 images of the training set, 40,000
images of the validating set, and 40,000 images of the testing
set split by authors in [35]. However, in attribute learning,
we limited the number of attribute labels used for testing and
the number of training images for specific attributes to make
an imbalanced attribute dataset (IAD-35) so as to prove our
proposed methods. Tables 7 and 8 show the imbalanced data
problem in the IAD-35 dataset in both local grouping- and
nonlocal grouping-applied situations (we consider two at-
tributes belong to fewer data attribute groups or more data
attribute groups if the ratio in samples between them is
higher than 3). These tables show a big difference in the
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Upper-body clothes

Lower-body clothes
o % | B
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Full-body clothes

FIGURE 18: Images from the DeepFashion dataset obtained from different views and complicated background.

Texture Fabric

Colorblock

Category

Ramper  Hoodie Palm Leather Tweed

i .V. g“;‘" .

Shape Part Style
Crop Midi Bow-F  Fringed-H Mickey Baseball

FIGURE 19: Images from the DeepFashion dataset annotated with different labels based on details of input of the current model concern.

imbalance on the dataset when comparing the global case
(without grouping) and the local grouping case.

These tables show that the number of attributes that have
more data is increased in quantity when applying the local
grouping method. This will help reduce the imbalanced data
problem when training model in each local group. If we keep
training in the whole imbalanced dataset, the imbalanced
gap between attributes becomes higher which makes the
training model easily biased.

7.2. Testing and Competing Method. To compare the results
with other research works easier, we use top-k accuracy for

category classification and top-1 recall for attribute multitask
learning. To be clear, we define these comparison methods in
general:

For single-task classification, let T be a dataset consisting
of single-label examples (x;,y;), 1<i<n, (x;eX, y; €Y),
where Y is a group of possible classes. Let h be the classifier
and Z; = h(x;) be the set of labels predicted by h for the
corresponding example x;.

To obtain top-k accuracy, check whether the target label
is one of the top-k predictions (the k ones with the highest
probabilities). The top score is computed as the times a
predicted label matched the target label, divided by the
number of examples evaluated:
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TaBLE 7: TAD-35 for nonlocal grouping in attribute multitask
learning.

Attribute Number of positive samples
print 37367
floral 24188
lace 20434
knit 18498
sleeve 17828
maxi 15990
shirt 14920
denim 13178
striped 11771
chiffon 11735
sleeveless 7987
summer 7616
fit 7489
classic 7184
bodycon 6419
mini 6065
v-neck 5493
collar 5458
button 5057
midi 4660
dot 3810
slim 3495
zip 3266
linen 3051
party 2882
marled 2724
dye 2490
chic 2099
fur 2061
metallic 2044
leopard 1832
solid 1718
bow 1669
workout 1275
varsity 1101

Bold: attributes with more data. Italics: attributes with fewer data.

top-k accuracy = 1y Z|Z N yi|- (15)

i=1

For multitask learning with binary label, let T be a
dataset consisting of n multilabel examples (x;,Y);),
1<i<n, (x;eX,Y; €Y = {0,1}), where c is the amount
of label. Let h be the multilabel classifier and Z; = h(x;)
be the set of label memberships predicted by h for the
example x;.

Accuracy, for each instance, is defined as the proportion
of the predicted correct labels to the total number (predicted
and actual) of labels for that instance. Overall accuracy is the
average across all instances:

|ZinY|

AAGY| (16)

accuracy = Z

Precision is a proportion of predicted correct labels to
the total number of actual labels, averaged over all instances:
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TaBLE 8: IAD-35 for local grouping in attribute multitask learning.

Attribute group Attribute Number of positive samples

lace 20434
knit 18498
denim 13178
Fabric chiffon 11735
dye 2490

Sfur 2061

metallic 2044
sleeve 17828

sleeveless 7987

v-neck 5493

Part collar 5458
button 5057

zip 3266

bow 1669
maxi 15990
shirt 14920

fit 7489

Shape bodycon 6419
mini 6065

midi 4660

slim 3495

summer 7616

classic 7184

party 2882

Style chic 2099
solid 1718

workout 1275

varsity 1101
print 37367

floral 24188

striped 11771

Texture dot 3810

linen 3051

marled 2724

leopard 1832

Bold: attributes with more data. Italics: attributes with fewer data.

nY|

(17)
Al

|zinY|
precision = . Z

i=1

Recall is a proportion of predicted correct labels to the

total number of predicted labels, averaged over all instances:
1 & |Ziny

recall = — ) ———— 18

2l "

ni3

Mean average precision (MAP), which provides a
single-figure measure consisting of precision and recall, is
used to evaluate the effectiveness of retrieval results. It
evaluates the extent to which the correct retrieval results are
in the high rankings. Among evaluation measures, espe-
cially MAP has been shown to have good discrimination
and stability. For a single information need, average pre-
cision (AP) is the average of the precision value obtained
for the set of top-k images existing after each relevant image
is retrieved:
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TaBLE 9: Top-k accuracy table between different deep architectures in category classification.
Top-k accurac
Model P Y
1 2 3 4 5
FashionNet [8] — — 0.8258 — 0.9017
NASNet v3 [20] 0.6382 0.7739 0.8391 0.8817 0.9094
NASNet v3 APD 0.6384 0.7718 0.8388 0.8822 0.9123
ResNet-18 [19] 0.6549 0.7834 0.8433 0.8829 0.9078
ResNet-18 APD 0.6672 0.7942 0.8563 0.8922 0.9164
ResNet-101 [19] 0.6802 0.8027 0.8587 0.8912 0.9132
ResNet-101 APD 0.6895 0.8150 0.87188 0.9057 0.9275
0.95
0.9
0.85
=
< 08
g
3075
Q
<
0.7
0.65
0.6
1 2 3 4 5
KTOP
—— NasNet-v3 —— ResNet-101
ResNet-18 APD ResNet-18

—— NasNet-v3-APD

—— ResNet-101 APD

FIGURE 20: Accuracy plot for top-k accuracy in category classification.

Ground-truth category: jeans
Predicted category: jeans

(a)

Ground-truth category: blazer
Predicted category: blazer

Ground-truth category: dress
Predicted category: dress

(©)

FIGURE 21: An example of the category prediction results of best object category classification models in the CFOR system.

~ YP(kRy(q;)) x rel ()

number of relevant images’

average precision AP(”» R; (qj))

Ql
mean average precision MAP (Q) = é Z AP(n, Rj(qj)),
=1

(19)

where g; € Q in which g; is a query image in the Q query set;
R;(q;) is a set of ranked retrieval images for query q;; P (k) is

the precision at k; and rel(k) is an indicator function
equaling 1 if the image at rank k is relevant, or else zero.

To be explicit, we divide the experiment process into an
academic one and an application one.

7.3. Results and Discussion. In the CFOR system, object
ontology is useful in controlling training flow which impacts
the performance of object category classification and attri-
bute multitask classification. For object category classifica-
tion, ontology controls the amount of training data through
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TaBLE 10: Recall in STL and MTL for fashion attributes. TaBLE 11: Continued.

Attribute STL MTL Local MTL Attribute With MCC Without MCC

lace 0.7049 0.4076 0.6185 mini 0.5018 0.3593

knit 0.5051 0.3371 0.6606 midi 0.5383 0.4356

denim 0.7567 0.6203 0.8244 slim 0.5216 0.4330

chiffon 0.3390 0.1717 0.7538 summer 0.5856 0.5512

dye 0.0 0.3027 0.3561 classic 0.6543 0.7025

fur 0.3308 0.6875 0.6654 party 0.4405 0.4152

metallic 0.0 0.0 0.1573 chic 0.1235 0.1235

sleeve 0.6018 0.0753 0.6876 solid 0.1810 0.1810

sleeveless 0.6977 0.1315 0.6574 workout 0.6045 0.6215

v-neck 0.3602 0.2025 0.5702 varsity 0.4878 0.4329

collar 0.1152 0.0827 0.3320 print 0.7578 0.8521

button 0.0524 0.0690 0.4952 floral 0.7111 0.6264

zip 0.3048 0.2055 0.5173 striped 0.7542 0.7505

bow 0.0 0.0331 0.3471 dot 0.5458 0.4935

maxi 0.8345 0.7730 0.8560 linen 0.4785 0.4163

shirt 0.7950 0.4042 0.8117 marled 0.5944 0.6250

fit 0.3768 0.2464 0.7127 leopard 0.4677 0.3118

bodycon 0.5808 0.5234 0.7916 Average 0.5711 0.5470

mini 0.3365 0.2647 0.3593

midi 0.2969 0.3099 0.4356

slim 0.4474 0.2 0.4330 . . . .

summer 0.6172 0.0 0.5512 concepts. For attrlbl.lte mu}tltaslf classification, ontology

classic 0.5487 0.0070 0.7025 manages local grouping which directly affects the perfor-

party 0.0329 0.0 0.4152 mance of the proposed local imbalanced data solver on the

chic 0.0 0.0 0.1235 large-scale dataset.

solid 0.0 0.0 0.1810 In this section, we will evaluate the effectiveness of

workout 0.5424 0.2768 0.6215 different deep networks with the support of ontology on

varsity 0.0 0.1890 0.4329 both category classification and attribute multitask classi-

print 0.8592 0.5124 0.8521 fication in the CFOR system to pick out the best architecture

floral 0.6521 0.4540 0.6264 for training the system. We will also compare our results

striped 0.6935 0.5829 0.7505 with FashionNet [8].

dot 0.3925 0.4150 0.4935

linen 0.0 0.0455 0.4163

marled 0.4 0.2722 0.6250 o

leopard 0.0 0.2966 03118 7.3.1. Category Classification. We compare the performance

Average 0.3764 0.2600 0.5470 between different deep architectures including NASNet,

Ttalics: attributes with fewer data than others.

TaBLE 11: Recall of 35 attributes using local multitask models with
and without MCC.

Attribute With MCC Without MCC
lace 0.6996 0.6185
knit 0.7101 0.6606
denim 0.8035 0.8244
chiffon 0.6241 0.7538
dye 0.4688 0.3561
fur 0.7169 0.6654
metallic 0.2448 0.1573
sleeve 0.7235 0.6876
sleeveless 0.7093 0.6574
v-neck 0.5540 0.5702
collar 0.4377 0.3320
button 0.4193 0.4952
zip 0.5150 0.5173
bow 0.3140 0.3471
maxi 0.8560 0.8560
shirt 0.8480 0.8117
fit 0.6508 0.7127
bodycon 0.7436 0.7916

ResNet-18, ResNet-101, FashionNet, NASNet with average
pooling dropout (NASNet APD) (proposed by us), and
ResNet with average pooling dropout (ResNet APD) (pro-
posed by us). These experiments will be evaluated by top-k
accuracy (Table 9 and Figure 20). Our target is to find out the
best possible architecture to apply as a core network of the
CFOR system. This step can be mentioned as a preparation
step before applying the CFOR system for fashion retrieval.

The result of category classification by ResNet-18 APD is
higher than 1.23% (at k=1) after removing nodes and
making average pooling in the ResNet-18 architecture
(compared with the original ResNet-18 architecture). This
increased value is 0.93% with the ResNet-101 architecture
(compared with the original ResNet-101 architecture) and
0.02% with the NASNet v3 architecture (compared with the
original NASNet v3 architecture). The ResNet-101 APD
architecture (the best architecture addressed) outperformed
the FashionNet architecture (the best performing archi-
tecture in category classification on the DeepFashion dataset
versus others such as WTBI or DARN), and the value is 4.6%
with k=3 and 2.58% with k=5 (see Figure 21 for some
example results of the best object category classification
model) [45].
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FI1GURE 22: Recall graph of 14 attributes in STL and local MTL.
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F1GURE 23: Recall graph of 35 attributes using local multitask models with and without MCC.

Based on the above experimental results, the ResNet-101
architecture provides better classification and higher per-
formance compared to others (NASNet and ResNet-18). For
this reason, we propose ResNet-101 as the core network
architecture for training classification models.

7.3.2. Attribute Learning. Attribute multitask learning is an
important part of the CFOR system. In this section, we

evaluate the performance of the proposed local imbalanced
data solver with MCC in dealing with the imbalanced at-
tribute data on the large-scale fashion dataset.

Precision is the proportion of relevant instances among
the retrieved instances which consider both true positives
and false positives in each attribute. However, the number of
true positives and false positives is bias because of the
imbalanced data problem. Thus, precision can also be af-
fected by the imbalanced data problem. Otherwise, recall,
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FIGURE 24: An example of the attribute prediction results of best object attribute classification models in the CFOR system.

mAP (mean average precision)

mAP (mean average precision)

Ground-truth attributes: fit;
denim predicted attributes: fit;
denim

()

) i
o
Ground-truth attributes: sleeve; fit;

slim predicted attributes: sleeve; fit; slim;
marled

(b)
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Ground-truth attributes: bodycon;
floral predicted attributes: bodycon;
floral

(c)
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FIGURE 25: MAP graph of 35 attributes from MAP@1 to MAP@35 in similarity retrieval evaluation for (a) fabric, (b) part, (c) shape, (d) style,

and (e) texture groups.
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FIGURE 26: An example of the retrieval results of the CFOR system.

which cares about true-positive labels but not false-positive
labels, will be used to evaluate experiments because of its
good reflection for fewer data attributes:

.. tp
precision = ,
ty+ fp
(20)
t
recall = LA
t,+ fa

In the first experiment, we show the effectiveness of
local MTL over STL and MTL in fashion attributes

(Table 10). In STL and MTL, we apply the dataset arranged
as in Table 7, while in local MTL, we apply the dataset
arranged as in Table 8, which has been split into 5 smaller
local groups.

Local MTL gets over STL and MTL in 28/35 attributes
with a 54.70% recall rate (higher than that in STL (17.06%)
and that in MTL (28.70%)). While a single task shows its
weakness in fewer data attributes and multitasks get
struggled with the serious imbalanced problem and lesser
intergroup correlations in fashion data, local MTL can
lower their negative influences as well as widen the
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TaBLE 12: Training, updating, and retrieving time table of the Clothes CFOR system with the DeepFashion dataset.
Phase Option Running time

Training object detection model

Training object classification models

Offline: learning phase (note: models can be
trained individually to increase training
speed)

Updating system

Training attribute learning models

~6 training hours for detection model
~20 training hours for all 4 models in the
system: 1 region identification model and 3
category classification models for Top,
Bottom, and Body regions, respectively
~22 training hours for all 5 grouped attribute
multitask classification models in the system,
including shape, part, style, texture, and
fabric
~2.5 training hours per model for all
mentioned models in the training phase (1
region identification model, 3 category
classification models, and 5 attribute
multitask classification models)

Identifying object regions, categories, and
attributes

Online: retrieval

Retrieving

2 to 3 seconds per sample

1 to 10 milliseconds per sample (may delay
by the run-time system)

positive effect of inner-group correlations on attribute
learning. Thus, local MTL gets over STL and MTL in 13/15
fewer sample attributes (Figure 22).

In the second experiment, we show the effectiveness of
MCC in solving the imbalanced data problem (Table 11).
Also, in this experiment, local MTL is applied with the
dataset arranged as in Table 8, which has been split into 5
smaller local groups.

Based on the experiment, comparison of chic, solid,
and maxi attributes which have equal accuracy between
MTL with and without MCC shows that MTL with MCC
had higher recall compared to that without MCC in 20/35
remaining attributes. The overall performance increases
about 3%. For attributes with fewer data, MTL with MCC
had higher recall compared to that without MCC in 9/14
attributes. The overall performance for these fewer
data attributes increases 5.14% (see Figure 23 for more
details).

Also, in Figure 24, some example results of the attribute
multitask classification model are visualized for proving the
effectiveness of our proposed method.

7.4. Retrieval in CFOR System. In this experiment, we test the
retrieval ability of the CFOR system by using MAP from 1
retrieval result for each query (MAP@1) to 30 retrieval
results for each query (MAP@30) so as to evaluate the ef-
fectiveness. The similarity retrieval experiment will check
whether the extracted attributes in retrieved images are
matched with ground-truth attributes in query image. The
retrieval method will be based on deep features and over 35
attributes. After experimenting in 35 attributes belonging to
5 groups, the starting MAP@5 is acceptable (hovering 0.531)
which shows the effectiveness of the searching method. The
MAP@30 hovers 0.815, and the trend keeps rising which
shows consistency and stabilization of information

prediction methods in the CFOR system (Figure 25). A
simple visualization of the retrieval process in the CFOR
system is shown in Figure 26.

Besides, to clarify the potential of the CFOR system in
real-world applications, Table 12 demonstrates times needed
for training, testing, and updating the system.

8. Conclusion and Perspective

This work presents the coarse-to-fine object retrieval system, a
learning framework for e-commerce online retrieval, which is
supported to deal with large-scale imbalanced datasets. The
framework can impact input and output as well as reconstruct
datasets from the coarse-grained level to the fine-grained level
and is believed to be an effective method in improving learning
performance designed for retrieval. For input reconstruction,
the framework based on ontology is used for threading
training flow, local grouping in multitask attribute learning,
and hierarchical storage and retrieval. For output optimiza-
tion, we take advantage of MCC to minimize the effect of the
imbalanced dataset on multitask attribute learning.

Through extensive experiments, we demonstrate the
applicability of object ontology in improving training flow,
the effectiveness of different deep networks (ResNet and
NASNet) applied on important tasks in fine-grained re-
trieval, and the usefulness of local multitask attribute
learning and an MCC-based imbalanced data solver in at-
tribute multitask learning. The CFOR system is designed to
have flexibility so that it can be optimized easily in the future.

Appendix

This section aims to fully express the organization
(manually) of the fine-grained attribute concepts matched
with each group of concepts (see Table 13 for more
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details). Note that the concepts and the organization of
concepts can be added, edited, changed, or removed.

Data Availability

The DeepFashion dataset used to support the findings of this
study has been deposited in the Liu repository (https://drive.
google.com/drive/folders/0B7EVK8r0v71pQ2FuZ0k0QnhBQ
nc). This dataset is under the MMLAB right, please follow
their agreements and dowload instructions covered in: http://
mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html. The fol-
lowing datasets used to support the findings of this study or
obtained from this study are currently under embargo, while
the research findings are commercialized: structured cropped
images in the DeepFashion dataset, imbalanced attribute
dataset (IAD-35) filtered from the DeepFashion dataset, and
extracted database for coarse-to-fine fashion object retrieval.
Requests for data will be considered by the corresponding
author, and data will be published at one month (to a
maximum of 12 months) after publication of this article.
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