
Research Article
Application of Layered Coding Genetic Algorithm in
Optimization of Unequal Area Production Facilities Layout

Shiwang Hou ,1,2 Haijun Wen,3 Shunxiao Feng,3 Hui Wang,3 and Zhibin Li3

1Department of Mathematics, Brunel University London, London UB8 3PH, UK
2School of Business, Huaihua University, Huaihua Hunan-418000, China
3School of Mechanical Engineering, North University of China, Taiyuan Shanxi-030051, China

Correspondence should be addressed to Shiwang Hou; shiwang.hou@brunel.ac.uk

Received 8 April 2019; Revised 25 May 2019; Accepted 28 May 2019; Published 19 June 2019

Academic Editor: Maciej Lawrynczuk

Copyright © 2019 Shiwang Hou et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Unequal area facilities layout problem (UA-FLP) is an inevitable problem in the process of new construction, reconstruction, and
expansion of enterprises. +e rationality of the facilities layout has a great influence on the operation performance of the
production system. Finding the optimal solution of UA-FLP according to the requirement of production process is the main
content of the plant design.+e facilities were constrained by given areas and aspect ratio, respectively. By adopting the method of
slicing tree, the layout space was divided into multiple regions for each facility. +e genetic algorithm was developed by using
layered coding to show the slicing process. Considering the production logistics cost as well as the adjacency relations between the
facilities, the goal function was established and the optimal solution was obtained by running the proposed algorithm. Finally, the
feasibility of the proposed approach was validated by a set of known problems. +e comparison results show that it can provide
decision support for rapid optimal layout of multifacilities.

1. Introduction

UA-FLP was proposed originally by Armour and Buffa in
[1], and its objective is to determine the good locations for a
given set of departments with different areas on some
workshop floor to optimize the material handling cost and/
or other objectives. +e facility can be small or big according
to the level of the facility layout, but it should be a physical
entity with some function. +ere is about 20% to 50% of the
processing cost used formaterial handling, and scientific and
reasonable facilities layout can save at least 10% to 30% of the
material handling fee [2, 3].

Classic FLPs tend to study equal-area facilities ar-
rangement; i.e., all facilities have the same area and shape. In
this case, the facility centroid is fixed and the overall
closeness or distance between facilities will not change when
switching the location of any two facilities. But, the equal-
area hypothesis is impractical, and the facility area is often
unequal. So, the centroid of each facility depends on its area
and shape and has no regular distribution as equal-area case.

Heuristic algorithm based on the discrete model is
proposed in reference [4] to deal with the UA-FLP. +is
approach divided the district into some small squares with a
fixed area, and each facility was allocated some numbers of
squares most close to its area by use of heuristic algorithm.
As shown in Figure 1, the grid size determines the precision
of the facility representation; the smaller the grid size, the
more precise the facility representation. +e facility shape
was also represented well by this approach. But, the time
consumption is great to calculate the interference between
facilities during the detailed layout process. Also, this ap-
proach is easy to produce facility layout with irregular shape.
By far, the most commonly used UA-FLP model is mainly
based on block diagram with unequal area as depicted in [5].

Many researchers have studied the optimization
methods for UA-FLP. +e literature about the methods can
be mainly divided into three categories. +e first one is
deterministic algorithm to calculate accurate solution, such
as mathematical programming [6, 7], mixed-integer linear
programming [8], and QAP as aforementioned. +e second
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category is heuristic algorithmmentioned in reference [9–11].
Another category is intelligent algorithm, such as genetic
algorithm (GA) [12, 13], particle swarm optimization (PSO)
[14, 15], ant colony algorithm (ACA) [16, 17], simulated
annealing algorithm (SAA) [18, 19], and tabu search algo-
rithm [20].

Deterministic algorithm has high requirement in memory
and CPU time, so it is often used to solve small-scale UA-FLP
and reference [21] proved its effectiveness. Heuristic algo-
rithm and intelligent algorithms have faster calculation speed
and are suitable for large-scale UA-FLP. Furthermore, genetic
algorithm is most widely used, and different genetic algo-
rithms were developed for various UA-FLPs.

A genetic algorithm hybridized with local search to
obtain the Pareto solutions set was proposed in [22], and the
author adapted a random weight to combine values of two
objectives. For unequal area facility layout problems, a ge-
netic algorithm based on slicing structure was developed in
[23], and four objective functions such as material handling
costs, aspect ratio, closeness, and distance requests were
considered simultaneously by use of a Pareto-based evo-
lutionary approach. In order to improve the performance of
premature convergence, lack of diversity, and high com-
putational cost, an island model genetic algorithm was
proposed in [24]. +e compared results showed the pro-
posed approach has great improvement on the above as-
pects. In [25], a multiobjective interactive genetic algorithm
was proposed by considering both quantitative aspects and
subjective features, which allowed the interaction between
the expert designer and the algorithm. A biased random-key
genetic algorithm to determine the placement order and
dimensions of each facility was proposed in [26], and the
results showed its better performance for 19 of the 28
benchmark facility layout problems.

For large-scale UA-FLP problems, a genetic algorithm
combined with a decomposition strategy was proposed in
[27]. Compared with basic genetic algorithm, the experi-
ments in the paper showed that the proposed approach had
an average solution improvement of 6% or 7% for large-scale
instances with 90 or 100 facilities.

+is paper put forward a method of LCGA (layered
coding genetic algorithm) for slicing-based plane splitting to
lay out facilities.+is approach can generate feasible solution

rapidly with the help of the layered coding method. It can
provide larger-scale UA-FLP solving a new thinking. +e
rest of this paper is organized as follows: Section 2 provides a
description of the UA-FLP dealt with in this paper. +e
design process of the proposed layered coding genetic al-
gorithm is presented in Section 3. Section 4 compares the
proposed approach with some known UA-FLPs. +e con-
clusions are presented in Section 5.

2. UA-FLP Description

2.1. Location Relations of UA-FLP. Assume that all facilities
are rectangular blocks with a given area. Considering the
building module, facilities need to satisfy a given aspect ratio
constraint to avoid producing an approach with long narrow
shape facilities layout. All facilities must be located in a given
area and cannot overlap between them. Take a UA-FLP
involving facilities i and j; for example, the relative position
relations are as shown in Figure 2.

Figure 3(a) shows the projection polygon of facility
space. Figure 3(b) shows the projection polygon of facility
and its necessary space, including transport corridor, op-
erational space, and maintenance space for workers. To
facilitate the facilities layout, Figure 3(c) considers the
rectangular envelope of Figure 3(b) as the objects of UA-
FLP. So, the necessary horizontal and vertical spacing be-
tween facilities shown in Figure 2 can be decomposed to the
corresponding facility (as shown in Figure 4). By doing so,
the amount of computation to solve UA-FLP can be de-
creased without losing the accuracy of result.

2.2. Objective Function and Constraints. Satisfying the
abovementioned basic hypothesis, the UA-FLP becomes the
following optimization problem: arranging n facilities to a
specified area to minimize the material handling cost and
maximize the closeness scores.

2.2.1. Minimizing the Material Handling Cost.

Min G1 � 􏽘

n−1

i�1
􏽘

n

j�i+1
cijfijdij, (1)
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Figure 1: Facility layout diagram of discretization of the planar grid.
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where n is the number of facilities, cij is the per unit handling
cost between facility i and facility j, fij is the logistics quantity
between facility i and facility j, and dij is the distance between
facility i and j.

2.2.2. Maximizing the Closeness Scores.

Max G2 � 􏽘
n−1

i�1
􏽘

n

j�i+1
bijrij, (2)

where n is the number of facilities and bij ∈ [0, 1] is the ratio
of distance between facility i and facility j to the maximum
distance between facilities in a given layout approach, and is
used to represent their closeness factor between two facil-
ities. rij is the quantitative score of the nonlogistics re-
lationship level determined by the SLP method (Table 1).

+is problem belongs to multiobjective optimization
problem (MOOP) since there is more than one objective
function to be optimized simultaneously. Optimal decisions
need to be taken in the presence of tradeoffs between two or
more conflicting objectives. Taking UA-FLP as example,
material handling cost is minimized while closeness scores
are maximized while locating facilities. For a nontrivial
multiobjective optimization problem, no single solution
exists that simultaneously optimizes each objective. +ere
exist a (possibly infinite) number of Pareto optimal
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Figure 3: Diagram of facility planar space. (a) Projection polygon of facility space. (b) Projection polygon of facility and operation space.
(c) Rectangular envelope of projection polygon of (b).
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Figure 4: Simplified graphic of the location relation between
facilities.
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Figure 2: Location relations diagram of the facility layout. hi: horizontal length of facility i; vi: vertical width of facility i; xi: x-coordinate of
facility centroid relative to the ordinate origin; yi: y-coordinate of facility centroid relative to the ordinate origin; dhij: the necessary
horizontal spacing between facility i and facility j; dvij: the necessary vertical spacing between facility i and facility j.
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solutions; i.e., under these solutions, none of the objective
functions can be improved in value without degrading some
of the other objective values. All these Pareto optimal so-
lutions are considered equally good if there is no additional
subjective preference information.

+ere are many kinds of forms of solutions for dif-
ferent goals, such as a representative set of Pareto optimal
solutions and/or a single solution that satisfies the sub-
jective preferences of decision maker. In this paper, we
adopt the latter in order to obtain a well-determined
layout approach.

LetM be themaximum of rij andw1 andw2 be the weight
coefficients of material handling cost and nonlogistics
closeness, respectively. +e above two goals can be syn-
thesized into a minimizing objective function:

Min G � w1G1 + w2 M−G2( 􏼁

� w1 􏽘

n−1

i�1
􏽘

n

j�i+1
cijfijdij

+ w2 M− 􏽘
n−1

i�1
􏽘

n

j�i+1
bijrij

⎛⎝ ⎞⎠,

(3)

subject to
URi(x)− LLi(x)

URi(y)− LLi(y)
≥ αmin

, (4)

URi(x)− LLi(x)

URi(y)− LLi(y)
≤ αmax

, (5)

URi(x)− LLi(x)

URi(y)− LLi(y)
� Ai, (6)

where URi(x), LLi(x), LLi(y), and URi(y) denote the x-
coordinate and y-coordinate of upper-right corner and
lower-left corner of facility i, respectively. Formulas (4) and
(5) ensure the aspect ratio of facility i in a given range
αmin αmax􏼂 􏼃, and formula (6) constrain the area of facility i

equal to given value Ai.
Manhattan distance is adapted to calculate the distance

between facilities, namely:

dij � xi −xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + yi −yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (7)

where xi and yi denote the x-coordinate and y-coordinate of
the centroid. +e exact coordinate position of facility i,
LLi(x, y), URi(x, y)􏼈 􏼉, can be obtained by the following
formula:

xi � LLi(x) +
URi(x)− LLi(x)􏼂 􏼃

2
,

yi � LLi(y) +
URi(y)− LLi(y)􏼂 􏼃

2
.

(8)

3. Algorithm Design

3.1. Basic Layout Principle for UA-FLP Using Slicing Tree.
In order to locate all facilities into a given area, the area
should be divided into subareas with the same number of
facilities. +is paper adopted plane segmentation method to
generate slicing tree in order to describe the relative position
relationships of facilities during locating them.

For a UA-FLP with n facilities, the slicing tree contains n
leaf nodes and (n− 1) internal nodes. +e information of the
plane segmentation mode is contained in internal nodes,
i.e., horizontal split (labeled H) or vertical split (labeled V).
Taking a UA-FLP with 5 facilities as an example, a feasible
plane segmentation approach is shown in Figure 5.

+e process of plane segmenting is the process of fa-
cilities layout. +e change of coordinates for each partition
after each plane segmenting is described as follows. +e area
has only two points: O(0, 0) and O′(􏽐 hi, 􏽐 vi), when there
is no facility located. +e coordinate of upper-right corner is
marked with the maximum limit value; i.e., x-coordinate is
the sum of width of all facilities supposing they are side-by-
side arranged horizontally, and y-coordinate is the sum of
length of all facilities supposing they are side-by-side
arranged vertically. Taking the first partition as an exam-
ple, the splitting process is as follows. Suppose AB is the first
cutting line. +e plane area is divided into two partitions.
+e upper part is for facilities 1 and 2, and the lower part is
for facilities 3 to 5. After the first segmentation, the co-
ordinates of point A and B are A(0, 􏽐i�3,4,5vi),
B(􏽐 hi, 􏽐i�3,4,5vi).

Similarly, the other four divisions can be done. Finally,
all facilities are located in different parts, and the precise
coordinates of the facilities are as follows: facility 1{A,
(xA + h1, yA + v1)}, facility 2{F, (xF + h2, yF + v2)}, facility 3
{O, (xO + h3, yO + v3)}, facility 4{G, (xG + h4, yG + v4)}, and
facility 5{D, (x D + h5, y D + v5)}. So, a feasible layout ap-
proach is provided. Based on this layout idea, this paper
studies the hierarchical coding genetic algorithm in order to
realize the layout scheme iterative optimization.

3.2. Genetic Algorithm Design. For a UA-FLP with n facil-
ities, there are n! possible combinations of their position and
the number of combination will be larger if the shape or

Table 1: Nonlogistics relationship level and corresponding quantitative score.

Level A E I O U X
Meaning Absolutely necessary Especially important Important Ordinary important Unimportant Closeness undesirable
Score 4 3 2 1 0 −1
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orientation of each facility is considered. Above all, there is a
large number of local optimum in this huge solution space.
So, it is a NP-hard problem, and it is advisable to �nd a
suboptimal solution in acceptable cost (money, time, or
computing resource) by use of some heuristics search
algorithms.

GA is a bionic algorithm for searching the optimal
solution based on the principle of biological evolution. It
simulates the natural process of gene recombination and
evolution and compiles the parameters into binary-code or
decimal-code (or other codes) genes. Several genes consti-
tute a chromosome (individual), and many chromosomes
carry out operations similar to natural selection, pairing
crossover, and mutation. �e �nal optimization result is
obtained after repeated iterations (that is, generation
inheritance).

3.2.1. Layered Coding Approach. Coding is to map the
phenotype data in solution space into genotype data in
genetic structure. During iterations of GA, a coding string
represents a solution and genetic operations are done by
operating the bits of this string. So, the coding method also
a�ects the genetic operators.

�ere are mainly two coding methods: real number
coding and binary coding. �e former uses a real number as
a gene, is easy to understand, and does not need decoding
process, but it is also easy for premature convergence, thus
falling into local optimum. �e latter uses a binary string
with speci�c length as a gene and has higher stability, larger
population diversity, and better performance for global
search. In this paper, we adopted the binary coding method.
�e number of bit is determined by the accuracy of the
solution to be achieved.

For example, suppose an x-coordinate ranging in [0, 4]
and the solution is exactly 4 decimal places behind the
decimal point. �e solution space is divided into (0-1)∗
(1e + 4)� 10,000 equal fractions. It takes 14 bits of binary to
represent a solution; i.e., the coding of a solution is a 14 bit
binary string since 213< 10000< 214. �e decoding process is
as follows:

xcoordinate � 0 + decimal(chromosome)∗
(4− 0)
214 − 1

. (9)

Generally, for x ∈ [lower_bound, upper_bound], the
value of x after decoding is

x � lower_bound + decimal(chromosome)

∗
(upper_bound− lower_bound)

2chromosome_length − 1
.

(10)

�e coded chromosome string should represent the
following information simultaneously: facility sequence for
layout, splitting point sequence, and splitting mode. �e
coding approach will be detailed below.

Facility sequence code is in the �rst layer. N facilities are
coded by n di�erent integers in the interval [1, n] by use of
integer coding. �e coding string can be any sequences of n
integers in the interval [1, n] to allow di�erent facility lo-
cating orders. Figure 6 shows a code string [1–13] of 13
facilities, f1, . . ., f13, with a random order of integers from 1
to 13, and the value of each bit of code string denotes the
number of the facility it represents.

Splitting point code lies in the second layer. A feasible
splitting point lies between every two bits of facility coding
string. For every two adjacent bits of facilities coding string,
there is a splitting point. For a n-bit facility coding string,
there are n− 1 splitting points. We denote every splitting
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Figure 5: Cutting tree layout process of the plane segmentation method.
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position as an integer between 1 to n− 1. For the facility code
string in Figure 6, its corresponding splitting position is
shown in Figure 7.

+e facility set is divided into two different parts at the
splitting point selected firstly. +e remainder splitting
points are contained in these two subsets of facilities.
After each splitting operation, the number of subsets of
facilities increases by 1. After n − 1 splitting, the facility set
with n facilities will be divided into n single facilities
locating in n different area blocks. For the code string of
splitting point, we code them as a sequence from 1 to
(n − 1) with random order corresponding to different
plane segmentation approaches. +e value of each bit of
code string denotes the number of the splitting position in
the facility code string. Taking the string shown in Fig-
ure 6 as an example, there are 12 positions that can be set
as splitting points when carrying out plane segmentation.
Suppose we produce a splitting point code string as [1–
12], the splitting operation will begin with the 7th splitting
position, then 4th, and finally, 6th. +e splitting process is
shown in Figure 8.

+e last layer of coding provides the information of
splitting mode, horizontally or vertically. +e splitting
result of these two ways is different, and the facility layout
is also different. We use 0 for horizontal and 1 for vertical.
So, the splitting mode code is a binary string that has the
same number of bits as the splitting point code. For the
example as shown in Figure 8, assume a splitting mode
code is [0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0]. Figure 9 shows a
complete three-layer coding string or a chromosome of a
feasible solution for a UA-FLP with 13 facilities. For the
first step, the splitting mode is horizontal and the process
of plane segmentation is similar to the description in
Section 3.1.

So, for a UA-FLP with n facilities, the three-layer coding
string can be expressed as shown in Figure 10.

3.2.2. Crossover Operation. In genetic algorithms and evo-
lutionary computation, crossover, also called recombination,
is a genetic operator used to combine the genetic information
of two parents to generate new offspring. It is one way to
stochastically generate new solutions from an existing pop-
ulation. Newly generated solutions are typically mutated
before being added to the population.

+e coding method determines the data structures to store
genetic information and also affects the crossover operators.

Due to the aforementioned layered coding structure,
genetic operation must be carried out by the segment to
ensure the feasibility of the new code string. Taking the
chromosome gene string in Figure 7 as an example,
crossover points are selected in three layers, respectively.+e
two parent individuals swap the gene segments before and
after the crossover points in three layers, respectively.

A crossover operation of layered coding string of 5 fa-
cilities is shown in Figure 11.

It can be found that some bit value of new code strings
will lose or repeat in the first two layers after crossover
operation. So, repair operation is necessary. Sort the missing
value in ascending order and replace the repeated value of
corresponding layer code strings. Taking the above offspring
as example, the layer 1 code of offspring is [5 3 1 5 1]. +e
reappeared values are 5 and 1, and the missing values are 2
and 4. We repair the offspring code of layer 1 as [5 3 1 2 4].
After similar repairment, the offspring code of layer 2 is [4 1
2 3].

3.2.3. Mutation. Mutation changes one or more gene values
in a chromosome from its initial state in order to maintain
genetic diversity from one generation of a population to the
next. +is can also prevent the population of chromosomes
from becoming too similar to each other, thus slowing or
even stopping evolution. For the layered code, we also
adopted different mutation operators.

A mutation operator involves a probability Pm that an
arbitrary bit in a genetic sequence will mutate from its
original state. A common method of implementing the
mutation operator involves generating a standard uniform-
distributed random number R for each bit in a sequence.

+e corresponding bit will be modified if R>Pm. +is
single-point mutation is suitable for third-layer binary code
of an individual.

For the first- and second-layer code, mutation operation
is implemented by interchanging two genes of code string in
order to ensure the feasibility of new individual after mu-
tation. +e gene bits to mutate are selected randomly and
also use a standard uniform-distributed random number R
to determine whether or not the selected bits will be
swapped.

3.3. Processing for UA-FLP with Empty Space. +e method
proposed herein split the area into subareas that are con-
sistent with the number of facilities, each of which ac-
commodates a facility. For a UA-FLP with empty space, we
firstly need to turn it into a UA-FLP without empty space.
+e detailed process is explained as follows.

Suppose the ratio of the original region for all the fa-
cilities is r � W/H and the area of i-th facility is Ai, we can
arrange all the facilities in a new region, marked by the red
border in Figure 12, with the area equal to the sum of all
facilities since all necessary spaces for each facility has been
included in its area as illustrated in Figure 3. +e width W′

f5 f3 f12 f2 f6 f4 f10 f8 f13 f1 f7 f9 f11

5 3 12 2 6 4 10 8 13 1 7 9 11

Figure 6: Facility sequence code string of 13 facilities.

f5 f3 f12 f2 f6 f4 f10 f8 f13 f1 f7 f9 f11

5 3 12 2 6 4 10 8 13 1 7 9 11

1 2 3 4 5 6 7 8 9 10 11 12

Splitting point

Figure 7: Bit value of splitting point sequence code.
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and heightH′ of this new region should satisfy the following
equations:

W

H
�

W′

H′
,

W′ ∗H′ � 􏽘
n

i�1
Ai.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

In general, solutions found in this way will be better than
solutions found in other methods because the horizontal and
vertical coordinates of each facility will be smaller.

4. Case Study

In order to validate the proposed approach, a set of problems
described in the literature was used in this section. All the
tested problems are shown in Table 2.

+e algorithm is coded in Matlab 2015b. +e computer’s
configuration running the algorithms was as follows: Intel
Core i5-4460 (3.20GHz), 8 GB RAM, and a Windows 10
operating system.

+e algorithm parameters settings for the tested prob-
lems are listed in Table 3, and the algorithm proposed in this
paper is described in detail in Section 4.1.
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Figure 8: Splitting process according to a given splitting point sequence.
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Facilities coding string Splitting point coding string Splitting mode coding string

Figure 9: A complete three-layer coding string of UA-FLP with 13 facilities. (a) n-bits facilities coding string, (b) (n− 1)-bits splitting point
coding string, (c) (n− 1)-bits splitting mode coding string.

0 1 ……
……

Permutation of integers from 1 to n

n-bits facilities coding string

1 2 ……3 n – 2 n – 1
……

Permutation of integers from 1 to n – 1

(n – 1)-bits splitting point coding string

Permutation of integers valued 1 or 0

(n – 1)-bits splitting mode coding string

1 1 0

Figure 10: Layered coding chromosome gene string.
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Figure 11: Layered coding crossover operation. (a) Parent 1. (b) Parent 2. (c) O�spring.
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Figure 12: Layout diagram for UA-FLP with empty space.

Table 2: Results of comparison of tested problems between LCGA and other approach.

Problems Facility number Best known results of reference Facility dimension [W, H] Data reference
O7 7 134.19 [24] [8.54, 13] Meller et al. [28]
O8 8 245.51 [24] [11.31, 13] Meller et al. [28]
O9 9 241.06 [29] [12, 13] Meller et al. [28]
F10 10 8567.00 [30] [90, 95] Montreuil et al. [30]
VC10 10 22899.65 [24] [51, 25] Van Camp et al. [31]
MB11 11 1171 [32] [6, 6] Bozer et al. [33]
BA12 12 8021 [20] [6, 10] Bazaraa [34]
BA14 14 4665.93 [20] [7, 9] Bazaraa [34]
AB20-ar7 20 4793.47 [20] [2, 3] Armour and Bu�a [1]
SC30 30 3563.95 [35] [12, 15] Liu and Meller [32]
SC35 35 3814.98 [35] [15, 16] Liu and Meller [32]
P62 62 3720521 [35] [100, 137.18] Komarudin and Wong [36]

Table 3: Results of comparison of tested problems between LCGA and other approach.

Problems Population Size Max generations Crossover Probability Mutation Probability Selection method
O7 80 1000 0.7 0.05 Fitness-based
O8 80 1000 0.7 0.05 Fitness-based
O9 100 1000 0.7 0.05 Fitness-based
F10 100 1000 0.6 0.08 Fitness-based
VC10 100 1000 0.6 0.08 Fitness-based
MB11 120 1500 0.6 0.08 Fitness-based
BA12 120 1500 0.6 0.08 Fitness-based
BA14 200 2000 0.6 0.08 Fitness-based
AB20-ar7 300 2000 0.5 0.08 Fitness-based
SC30 500 2000 0.4 0.08 Fitness-based
SC35 500 2000 0.4 0.08 Fitness-based
P62 600 2000 0.3 0.1 Fitness-based
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4.1. Parameters Setting and Pseudocode of Algorithm

(1) Coding Method. Integer coding was adopted in this
case. +e number n of facilities was assigned to n_f.
+e layout approach and the splitting point sequence
were denoted by two interpermutations which took
values from [1, n] and [1, n− 1], respectively. +e
splitting mode of each splitting operation was rep-
resented by a thirteen bits encoded string, and each
bit can take value 0, splitting horizontally, or 1,
splitting vertically.

(2) Parameters Setting. See Table 3.
(3) 9e Generation of Initial Population. According to

the above approach, initial facility population,
splitting position string, and splitting mode string
can be generated by use of Algorithm 1.

Algorithm 2 carries out the establishment of fitness
function and its value calculation.

+e crossover operation and the corresponding repair
approach of facility level are presented in Algorithm 3.

As for the crossover and repair operation of the splitting
point level, the method is similar to the above ideas; just
replace the f_popu and n_f with so_popu and (n_f− 1). +ere
is no need for repair operation in the splitting mode level,
and its crossover operation is the same as the facility level.

+e mutation operation of the facility level is shown in
Algorithm 4.

+e mutation operation of the splitting point level or
splitting mode level can be completed by replacing the
f_popu andN_f of Algorithm 4 with so_popu and (n_f− 1) or
sp_popu and (n_f− 1).

4.2. Computational Results and Analysis. According to the
above parameters setting, all the tested problems were solved
by the proposed layout algorithm; the average optimal value
of objective function of each tested problems was obtained as
shown in Table 4 by running the proposed algorithm 30
times for each problems.

+e optimal layout approach of all tested cases obtained
by the proposed approach is presented in Figures 13(a)–13(l).

From Table 4, we found that the proposed approach can
search better solutions than did the methods from literature
for 8 of 12 tested problems. As shown, the proposed ap-
proach has more improvement when the facility number
becomes bigger; for example, the improvement present can
be up to 4–7% when the facility number reaches 30 and 35.

Moreover, the average running time for finding the best
solutions and the average total CPU running times have
reduced drastically than did the approach of other literature.
But, for the test case of P62 with no spare space for all the
facilities, the proposed approach has a large gap from the
optimal result of [35].

5. Conclusions and Prospects

Considering the constraints of area and aspect ratio of fa-
cilities, this paper proposed a slicing-tree-based binary plane
segmentation method. +e given area is divided into some
blocks whose number equal to the number of facilities
waiting for arrangement. +e optimal solution was found by
use of the layered coding genetic algorithm with the goal of
maximizing the closeness relationship score and minimizing
the material handling cost between facilities at the same
time.+e results of comparison of above 12 known problems
between other literature methods and proposed approach
show the effectiveness of the plane segmentation layout
strategy and the reliability of layered coding genetic algo-
rithm for solving the problems.

We draw the following conclusions based on the above
study:

(i) It is reasonable and effective to partition the facil-
ities layout area by use of the binary plane seg-
mentation method, which can arrange a reasonable
block area for each facility. So, the feasibility of
solution was guaranteed during the iterative process
of genetic algorithm.

(ii) By use of the layered coding genetic algorithm, the
optimal splitting approach, i.e., optimal facility
layout scheme, will be found during multiple iter-
ative process. +e result can provide decision
support for actual production facility layout.

(iii) +e plane splitting process was expressed well by
the layered coding approach. When the UA-FLP
problem changed, i.e., the facility number, facility
area, and also the aspect ratio, these changed
values can be assigned in the form of parameters;
as a result, the corresponding optimal layout
approach can be output quickly. Also, the layout
approaches of different parameters can be com-
pared easily in order to find the key influence
factors.

Input: Popu_size, n_f
Output: F(facility population), Sp[Popu_size× n_f] (Splitting position string), Sm[1× n_f− 1] (splitting mode string)

(1) for I⟵ 1 to Popu_size
(2) F(i,:)⟵ permutation of n_f integers valued from 1∼n_f;
(3) Sp(i,:)⟵ permutation of (n_f− 1) integer valued from 1∼(n_f− 1);
(4) Sm(i,:)⟵ permutation of (n_f− 1) number valued 1 or 0;
(5) end for
(4) Establishment of fitness function.

ALGORITHM 1: Coding of facility population, splitting position and splitting mode layer.

Computational Intelligence and Neuroscience 9



+e optimal layout approach of UA-FLP can be obtained
fast by use of the plane segmentation method and layered
coding genetic algorithm; the corresponding objective
function value and the minimal area needed for locating
facilities can also be provided. For multiproduct facility
layout problem, different layout approaches for different

products can be output by running the proposed algorithm
in terms of the different requirement of product for logistics
cost and closeness relationship between facilities,
i.e., realizing a dynamic optimization for multiproduct fa-
cility layout. +e facility number has a significant impact on
performance of proposed algorithm, and there is the

Input: (x, y)⟵ coordinate of facility centroid
D⟵Matrix of logistics quantity between facilities;
C⟵Matrix of unit logistics cost between facilities;
r⟵Matrix of closeness score between facilities;
r_max⟵maximum of closeness score between facilities;
a1⟵weight of logistics cost; a2⟵weight of nonlogistics factors;

Output: goal_v (value of fitness function)
(1) for i⟵ 1 to n_f
(2) for j⟵ 1 to n_f
(3) d(i, j) � |xi − xj| + |yi − yj|
(4) end for
(5) end for
(6) G1⟵ sum according to the row (sum according to the column(D.∗flow_f.∗flow_c));
(7) G2⟵ sum according to the row (sum according to the column(D./D_max.∗relation_v));
(8) goal_v⟵ a1∗G1+ a2∗(r_max-G2);
(5) Genetic manipulation

ALGORITHM 2: Calculating the value of fitness function.

Input: Popu_size, Pc, n_f
Output: newPop_f (newfacility population after crossover peration and repairment)

(1) f_popu_cro⟵ individuals in facility level for crossover;
(2) so_popu_cro⟵ individuals in splitting position level for crossover;
(3) sp_popu_cro⟵ individuals in splitting mode level for crossover;
(4) newPop_f⟵ zeros(popu_size∗Pc, n_f );
(5) r1⟵ sorted array of r1 from lowest to highest;
(6) while r1(1)� r1(2)
(7) Do r1⟵ regenerate two random integers within [1, n_f];
(8) end while
(9) r1⟵ sorted array of r1 from lowest to highest;
(10) for j⟵ 1 TO popu_size∗Pc/2
(11) newPop_f(2∗j− 1,:)⟵ [f_popu_cro(j+ popu_n∗0.8/2,1 : r1(1)),f_popu_cro(j, r1(1) + 1 : r1(2)− 1),
f_popu_cro(j+ popu_n∗0.8/2, r1(2) : end)];
(12) newPop_f(2 ∗ j,:)⟵ [f_popu_cro(j, 1 : r1(1)), f_popu_cro(j+ popu_n∗0.8/2, r1(1) + 1 : r1(2)− 1),
f_popu_cro(j, r1(2) : end)];
(13) end for
(14) ch_temp⟵ integer order sequence taking value within [1, N_f];
(15) for i⟵ 1 TO popu_n∗Pc
(16) ind1⟵ locating the position of element with multiple occurrences in newPop_f;
(17) temp_re1⟵ all elements that appear in newPop_f;
(18) temp_re2⟵ temp_re1(ind1);
(19) ind2⟵ locating the position of element in ch_temp that do not appear in newPop_f;
(20) for j⟵ 1 TO length(temp_re2)
(21) ind3⟵ locating the position of element in ith row of newPop_f that equals to the jth
element of temp_re2;
(22) newPop_f (i,ind3)⟵ ch_temp(ind2(j));
(23) end for
(24) end for

ALGORITHM 3: Crossover operation and repair in facility layer.
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Input: f_popu, n_f
Output: f_popu after mutation operation

(1) Pm⟵Mutation probability;
(2) for i⟵ 1 TO N_f
(3) if Pm> random in [0,1];
(4) f_popu_mu⟵ f_popu(i,:);
(5) r4⟵ unidrnd(N_f, 1, 2);
(6) while r4(1)� � r4(2)
(7) Do r4⟵ unidrnd(N_f, 1, 2);
(8) end while
(9) f_popu_mu(1, r4(1))⟵ f_popu(i, r4(2));
(10) f_popu_mu(1, r4(2))⟵ f_popu(i, r4(1)); f_popu(i,:)⟵ f_popu_mu;
(11) end if
(12) end for

ALGORITHM 4: Mutation operation.

Table 4: Results of comparison of tested problems between LCGA and other approaches.

Problems Best results of LCGA Imp (%) Average optimal iteration number Average optimal searching time Total CPU time (s)
O7 131.6773 −1.87 85 10.8 136.2
O8 245.5002 0.00 78 13.2 144.5
O9 241.0616 0.00 101 15.1 164
F10 8449.7 −1.37 152 29.5 177.4
VC10 22845 −0.24 196 37.6 180
MB11 1278.1 9.15 619 112.3 187.06
BA12 8040.8 0.25 210 38.4 190
BA14 4592.24 −1.58 235 80.1 356.1
AB20-ar7 4805.47 0.25 510 384.6 1543.2
SC30 3412.87 −4.24 780 398.7 1895.3
SC35 3519.9 −7.73 856 465.4 1931
P62 439080 18.02 1120 3178.6 7605.28
Note: Imp (%)� (the result of the proposed approach in this paper–the best solution found in the literature in Table 1)/(the best solution found in the
literature in Table 1)∗100.

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

7
4

5

3
2

1
6

(a)

Figure 13: Continued.

Computational Intelligence and Neuroscience 11



0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

7 4 1

83

2

56

(b)

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

85

2

6
7

9

4

1

3

(c)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

14
3

6

10

2

7

9
5

8

(d)

Figure 13: Continued.

12 Computational Intelligence and Neuroscience



0 10 20 30 40 50
0

5

10

15

20

25

3

5 8

7

26410

1

9

(e)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

11

9
6

4

2

3

1
10

5

(f )

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

5
10

4 38

7

1

12

11

2

9

6

(g)

Figure 13: Continued.

Computational Intelligence and Neuroscience 13



0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7
10

13

6
9

3

7

5

11

12

4

2
8

1

14

(h)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

12

11
2

13

3

17

5

6

15

20

10

16

19

4

8
9

18

7

14

1

(i)

Figure 13: Continued.

14 Computational Intelligence and Neuroscience



0 5 10 15
0

2

4

6

8

10

12

5

21

27

23 1

8

20 3

24

17

22

19

26

10

14

4

9

12

28

15

6

16

2
11

7

30

25

13

29

18

(j)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

33
1

11

17

22

3 8

16

14
7

32

34

9

35
5

12

15

19

31

2629

30

28

27

20 4

6

25

21

10

23

2

18

13

24

(k)

Figure 13: Continued.

Computational Intelligence and Neuroscience 15



possibility of fall into local optimum, so the large-scale
facility layout optimization algorithm and the combina-
tion scheme with the local search algorithm can be chosen as
the direction of further research.
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