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The performance of convolutional neural network- (CNN-) based object detection has achieved incredible success. Howbeit,
existing CNN-based algorithms suffer from a problem that small-scale objects are difficult to detect because it may have lost its
response when the feature map has reached a certain depth, and it is common that the scale of objects (such as cars, buses, and
pedestrians) contained in traffic images and videos varies greatly. In this paper, we present a 32-layer multibranch convolutional
neural network named MBNet for fast detecting objects in traffic scenes. Our model utilizes three detection branches, in which
feature maps with a size of 16 x 16, 32 x 32, and 64 x 64 are used, respectively, to optimize the detection for large-, medium-, and
small-scale objects. By means of a multitask loss function, our model can be trained end-to-end. The experimental results show
that our model achieves state-of-the-art performance in terms of precision and recall rate, and the detection speed (up to 33 fps) is
fast, which can meet the real-time requirements of industry.

1. Introduction

Automatically detecting various objects (such as vehicles and
pedestrians) in images or videos from traffic scenes is a basic
premise for many intelligent transportation systems. Rea-
sonable traffic management and control based on the
movement of vehicles and pedestrians can reduce the oc-
currence of traffic accidents, road congestion, etc. In this
regard, considerable efforts have been made over the past
decade. Some challenging benchmarks such as KITTI [1]
and LSVH [2] have also been proposed to evaluate and
compare the performance of various detection algorithms.
Because the generalization of the feature extracted by
convolutional neural network is much higher than that of
traditional artificial feature, the CNN-based object detection
methods have achieved remarkable success on vehicle de-
tection, pedestrian detection, and many other kinds of object
detection tasks [3-10].

One of the most popular object detection methods is
using sliding windows to generate candidate regions, then
features can be extracted from these regions and pretrained

classifiers are applied to determine if these regions have
certain objects or not. However, it leads to the huge com-
putational cost. Hence, researchers have begun to exploit
ways for efficient computation in object detection. Two
strategies may be employed: region proposal-based methods
and regression-based methods. The former firstly uses re-
gion generation algorithms such as selective search (SS) [11]
and edge boxes [12] to generate candidate regions (namely,
region proposals) and then processes them by convolution
neural network, and these methods have high accuracy but
cannot meet the requirements of real-time performance.
Representative algorithms include RCNN [4], fast RCNN
[7], faster RCNN [9], and mask RCNN [13], and they are
typical two-stage methods (which generate the proposals
using a region generation method and then classify and
regress the proposals). The other is the object detection
algorithm based on the regression method, which deals with
the detection problem as a regression problem and directly
predicts the location and classification of the objects. These
kinds of methods are typical one-stage methods, and they are
fast, but the accuracy is relatively lower than the two-stage
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methods. Representative algorithms are YOLO [14], SSD
[15], YOLOV2 [16], YOLOV3 [17], etc.

Despite the powerful performance of CNN, when ap-
plying to object detection for traffic scenes, one of the main
conundrums is that the traditional CNN-based methods are
scale sensitive while it is quite common that the scale of
various objects ranges greatly in traffic images or surveillance
videos. For example, as shown in Figure 1, the bus has the
largest scale and contains far more effective pixels than other
objects. Accurately localizing these multiscale instances is
quite challenging due to the full connection layer in CNN
requires fixed-size input and that the traditional ROI pooling
simply replicates some parts of the region proposals to fill the
extra space to get feature maps of specified size but after which
the original structures of the small objects may have been
destroyed nevertheless. In the network training phase, filling
in duplicate values will not only lead to inaccurate forward
propagation calculation but also cumulate errors in the
backward propagation process to impede parameter updat-
ing. These two aspects mislead the training of the network and
make the network not able to detect small-scale objects ac-
curately. At the same time, small objects may have lost their
response when the feature map has reached a certain depth,
which undoubtedly makes it more difficult for these methods
to detect small objects accurately.

Existing CNN-based studies address the scale-variance
problem mainly from two aspects: through the training of
different resolution images [18-20] or fusing feature maps
with different scales of CNN [5, 8, 10, 21, 22]. Thus, the
adaptability of the network in detection tasks with various
scales is improved. However, due to the variance of scales, it
is difficult to detect objects at all scales because of irratio-
nality on the design of the detection branches or cannot meet
the real-time requirement which is essential for unmanned
supermarket, autonomous driving, face recognition, parts
detection, and many other real-time application scenarios
because of the expensive computational overhead caused by
too large number of parameters.

As suggested by the above discussion, the network ar-
chitecture for these tasks should consist of multibranches
that take in large-, medium-, and small-scale objects, re-
spectively. Recent CNN architectures exploit the property
that higher-level features are obtained by composing lower-
level ones. Motivated by the idea, we present a multibranch
convolutional neural network, named MBNet, to detect
multiscale objects in traffic scenes accurately and efficiently.
The schematic illustrations of the proposed MBNet and
related methods are shown in Figure 2. The MBNet is a
regression-based end-to-end network consisting of convo-
lution layer, max pooling layer, upsample layer, route layer,
and YOLO detection layer, and specific explanations will be
provided in the following sections. Specially, it assigns dy-
namic weights for the subbranch with respect to the scale of
objects and combines multilevel features to detect objects
with different scales. Therefore, MBNet can achieve out-
performing detection performance in a wide range of input
scales and is efficient in terms of computation.

In summary, the main contributions of this paper
include:
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FI1GURE 1: Objects with various scales in traffic scenes.

(1) A novel multibranch scale-aware network is pro-
posed for object detection in traffic scenes, in-
corporating three subnetworks into a unified
architecture, which is specialized for the current
input scales and boosts the final detection perfor-
mance with fewer parameters.

(2) A scale-aware mechanism is proposed to adjusting
the weights accordingly, performing detection ac-
curately for large-, medium-, and small-scale objects
from various traffic scenes, which achieves better
performance compared with other methods in terms
of precision and recall rate and also is able to meet
the real-time requirements of application.

(3) We construct an urban traffic dataset with large-scale
variance, which provides a practical application
platform for comparing the performance of various
detection algorithms in dealing with different scale
objects.

2. Related Works

As in other fields, object detection based on traffic scenes has
also experienced a period of development, and related tasks
include vehicle detection, pedestrian detection, license plate
location, and so on. In this paper, we consider a detection
method for detecting 7 kinds of objects including pedestrian,
car plate, and various vehicles. Early works detect various
vehicles using relative motion clues between foreground and
background, such as Gaussian mixture model (GMM) [23,
24] and sigma-delta model [25]. They accomplish the task by
modeling the distribution of the background as it appears
more frequently than the foreground which occupies a small
portion of the image. Then, some handcrafted feature-based
statistical learning methods which directly detect different
objects from images (video frames) have been applied to
object detection in traffic scenes. These methods use com-
monly used features such as HOG, SURF [26], Gabor [27],
and Haar-like [28, 29] to describe the image regions, and
then pretrained classifiers like SVM, artificial neural network
[27], and Adaboost [28] are used to classify the image re-
gions into different categories, such as object area and
nonobject area. Aiming at the problem that the existing
pedestrian detection algorithms miss detecting in the case of
complex scenes or the scale of an object is too small, Chen
et al. [30] proposed to cascade simple aggregated channel
features (ACF) and rich deep convolutional neural network
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FIGURE 2: (a) Multiple predictions based on image pyramid. (b) Multiple predictions based on feature pyramid (SDP). (c) Single prediction
based on concatenation features (HyperNet). (d) Multiple predictions based on features obtained from multifeature fusion (MBNet).

(DCNN) features for efficient and effective pedestrian de-
tection in complex scenes. In reference [31], a robust license
plate location method based on wavelet, transform, and
empirical mode decomposition (EMD) analysis is proposed
to deal with some challenging problems in practice such as
illumination changes and complex background. Some
studies combine optical flow with hardware implementation
[32] and dense correspondence fields [33] to detect objects.
However, these kinds of approaches are unable to distin-
guish detailed categories of moving objects, such as bicycles,
cars, buses, vans, or pedestrians. In addition, these methods
also need a slew of complex postprocessing algorithms, such
as occlusion recognition and shadow detection, to optimize
the detection results.

It is known that traditional CNN-based methods are
sensitive to scales, and a lot of subsequent studies have been
devoted to addressing this scale-sensitive issue. In reference
[2], Hu et al. proposed a new context-aware Rol pooling
method to replace the traditional Rol pooling which may
destroy the original structure of small objects and further
presented a multibranch decision network to conduct the
task of box regression and classification. Li et al. [34]
proposed to use generative adversarial networks (GANs) to
detect small-scale objects and achieved good results. Most of
the existing solutions were inspired by two kinds of pyramid
representations. One of which applies the concept of image
pyramid (Figure 2(a)), which uses input images of multiple
sizes to make the network fit for input of all sizes
[6,18,19,35]. However, the main drawback of this scheme is
that it is computationally heavy, which limits its application
in real-time detection. The other conducted by means of
feature pyramid, which exploits the information of multiple
feature maps extracted from different layers to detect objects
with various scales (as shown in Figure 2(b)). The idea of
which is to detect small-scale objects with high-resolution
shallow features and large-scale objects with low-resolution
deep features. This strategy has been adopted in SSD [15],
MS-CNN [10], FCN [36], and SDP [5]. However, since the
shallow feature maps are the absence of semantic

information and the small objects may have lost its response
when the feature map has reached a certain depth, the
detection effect of these methods on small objects is poor.

In order to make full use of deep layer information to
deal with the scale change of the objects, some researchers
present to combine feature maps of different layers to train a
network (Figure 2(c)), such as HyperNet [37] and MultiPath
[22]. However, small objects are still difficult to detect owing
to the use of downsampling operations so that small objects
cannot maintain ample spatial information when the feature
map reaches a certain depth. To take full advantage of the
detailed information of shallow features and the semantic
information of deep features, another solution is to use high-
resolution shallow feature maps and upsampled deep feature
maps together to predict small-scale objects, such as [21, 38].
This scheme can better maintain the information of small
objects in the deep feature maps, and this is exactly the idea
adopted in this paper (Figure 2(d)).

In a word, through the reasonable design and adjustment
of the three detection branches, our approach is to achieve
performance balance in time, cost, and detection accuracy,
which can better detect objects with various scales while
meeting the real-time requirements of application. We ex-
plore a simple and effective framework that consists of three
subnetworks to generate the corresponding detection results
on each branch, and then filtering algorithms (such as NMS)
are used to refine these results to get the final results.

3. MBNet

Motivated by the concept of feature pyramid, we propose a
new algorithm, i.e., the MBNet. The MBNet is an ensemble of
three subnetworks in which scale-specific feature map is
employed to detect the objects in traffic scenes of large-,
medium-, and small-scale sizes, respectively, as is shown in
Figure 3. By fusing the features of different layers, the feature
maps used for detection in our model have both rich semantic
information of high-level features and detailed information of
low-level features, which effectively improves the detection
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FiGure 3: The overall structure of MBNet.

effect of small objects. The design of our model enables
MBNet to accurately capture the characteristics of different
scale objects on different branches and then classify and locate
them. Finally, a series of filtering algorithms are used to screen
out the detection results to obtain the final results. The details
of the MBNet framework are given in Figure 3.

3.1. Predictions across Scales. Drawing on the idea of faster
RCNN, we use k-means to cluster the anchor boxes with
the help of a series of marked ground truth boxes, which
can automatically determine the sizes and number of
anchors. Then, 9 clusters have been selected and further
extract features through several convolutional layers to
produce feature maps specialized for range of object
scales. Specially, in the experiments with urban traffic
dataset (Section 4.1.1), we predict 3 bounding boxes on
the feature map of each detection branch so the tensor is
NXxNx(3x(4+1+7)) for the 4 bounding box offsets, 1
objectness prediction, and 7 class predictions. As for the
three branches designed in the MBNet, N stands for 16,
32, and 64, respectively. As the anchor is sensitive not
only to detection efficiency but also to localization
quality, the method of k-means clustering is used to find
the proper k value by adjusting the objective function
d (box, centroid) = 1 —IOU (box, centroid) to the mini-
mum as done in YOLOv2 [16], in the function variable,
box represents the information of the bounding box and
centroid represents the information of the cluster center,
and the appropriate value of k after the clustering is 9. The
resolution of each image in our handcrafted dataset is
512 x 512, and the 9 clusters on the dataset are (11 x12),
(15 x 30), (43 x 32), (37 x 74), (62 x87), (69 x 139), (173 x
145), (255x278), and (453 x432).

With semantic information and traffic scene details
insufficiently encoded, feature extractor only describes the
appearance contents at a coarse level. In order to capture the
complementary information, we integrate deep semantic
segmentation feature maps into the original object detection
framework. In detail, with a series of convolution and max
pooling operations, a feature map of a specified size can be
learned automatically as the first detection branch. Next, we
take the feature map from several layers previously and
improve the resolution by a factor of 2, and then we combine
it with another feature map as one of the detection branches.
We also fetch a lower-level feature map and merge it with
another upsampled feature map using concatenation, and
several convolution operations are then performed on this
combined feature map before it serving as the last detection
branch. The combination of low-level descriptors and high-
level features could potentially lead to better performances
in distinguishing fine-grained categories of objects. In short,
MBNet has carefully designed three different detection
branches to cover large-, medium-, and small-scale objects
as much as possible in traffic scenes.

3.2. Network Training Process. Table 1 illustrates the archi-
tecture of MBNet in detail. The network consists of 32 layers,
including 17 convolution layers for feature extraction, 6 max
pooling layers for simplifying feature maps, 2 upsample layers
for obtaining high-dimensional feature maps (upsample a layer
by improve the resolution by a factor of 2 and then concatenate
it to another layer), and 3 yolo layers for receiving output
feature maps, which are also serving as three different detection
branches in this network. Besides, 4 route layers are used to
take a feature map at a certain layer or fuse feature maps from
different layers. In the convolution layer, we use regularization
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TaBLE 1: The network parameters of MBNet.

Layer  Type  Filters silrzifl/e Input Output
0 Conv 16  3%3/1 512%512%3 512%512%16
1 Maxpool 2%2/2 512%512%16 256 %256 %16
2 Conv 32 3%3/1 256 %256%16 256 % 256 % 32
3 Maxpool 2%2/2 256 %256 % 32 128 % 128 % 32
4 Conv 64  3%3/1 128128 %32 128 %128 %64
5 Maxpool 2%2/2 128 %128 64 64 % 64 x 64
6 Conv 128 3%3/1 64%64%64 6464128
7 Maxpool 2%2/2 64%64%128 32%32x128
8 Conv 256 3%3/1 32%32x128 32 %32%256
9 Maxpool 2%2/2 32%32%256 16 %16 %256
10 Conv 512 3#%3/1 16%16%256 1616512
11 Maxpool 2%2/1 16%16%512 1616512
12 Conv 1024 3%3/1 16%16%512 1616 *1024
13 Conv 256 1%1/1 16%16%1024 1616 %256
14 Conv 512 3%3/1 16%16%256 1616512
15 Conv 128 3%3/1 16%16%512 16%16%*128
16 Conv 36 1x1/1 16%16%128 161636
17 Yolo
18 Route 14
19 Conv 128 1#1/1 16%16%512 16*16*128
20 Upsample 2% 16 16 %128 32 % 32 % 128
21 Route 20

8
22 Conv 256 3%3/1 32%32%384 32%32x%256
23 Conv 36 1#%1/1 32%32%256 32%32%36
24 Yolo
25 Route 22
26 Conv 128 1#%1/1 32#%32%256 32%32%128
27 Upsample 2x 32%32%128 64 %64 %128
28 Route 27

6
29 Conv 512 1%1/1 64%64%256 6464512
30 Conv 36 1%1/1 64%64%512 64+ 64%36
31 Yolo

to suppress over-fitting and increase the specific gravity of
some important parameters in the convolution kernel to ex-
tract more accurate feature maps. The batch normalization
layer is added after each convolution layer to normalize the data
output, which greatly improves the training speed and avoids
the occurrence of gradient vanishing. In the network, we use
the Leaky ReLU function as the activation function.

The network treats the whole detection task as a re-
gression task, dividing the input images into 16 x 16, 32 x 32,
and 64 x 64 small regions (grid cells), respectively. Then,
each small region (grid cell) predicts three bounding boxes
that might contain objects as well as the probability values of
each category in this region. Then, we compare these boxes
with ground truth and get the error. The whole training
process is shown in Figure 4: we treat the trained network as
a function containing several parameters, which is abbre-
viated as F(x, y), where x represents input of some di-
mensions and y stands for its output. Firstly, the network is
initialized randomly, and then the images in the training set
are used as input to get the corresponding output, that is, the
bounding box coordinates predictions, objectness pre-
diction, and 7 category predictions, as is shown in Figure 4.
As the input of a module can be computed by working

backwards from the gradient with respect to the output of
that module, the BP algorithm is used to update the pa-
rameters in the network to adjust the coeflicient values in
our function F (x, y) for the next round of training. Then, we
iterate in this way until our loss function reaches a certain
range or when the number of iterations reaches a certain
number of times we terminate the iteration. Next, we choose
the loss function value and the most representative network
weight value as the final parameters of our network to do the
prediction. In the test phase, for each input image, the
network produces various scales of output in different de-
tection branches. Next, we combine them together and then
use the filtering algorithms such as nonmaximum sup-
pression (NMS) to refine the results.

We have trained the network for 100000 times and
obtained the relationship between the average IOU and loss
function with the number of training times, as is shown in
Figures 5 and 6, respectively. From these figures, we can
draw a conclusion that the loss of the network is converging
in the iterative process while the value of average IOU is
increasing as good as 1.

3.3. Bounding Box Prediction and Class Prediction.
Following faster RCNN and some other works, our system
predicts bounding boxes using dimension clusters such as
k-means as anchor boxes prior. When an input image is
divided into a S x S grid, each grid cell predicts B (9 clusters
divided up evenly across 3 branches, so here B is 3) bounding
boxes under the prerequisite that MBNet predicts three types
of anchor boxes in three detection branches (16 x 16, 32 x 32,
and 64 x 64). One object is predicted by the grid cell in which
the center of the object falls, and the network predicts 4
coordinates for each bounding box, t,, t , t,,, and t;, where
(t, ty) is the offset of the center of ground truth box from the
top left corner of the grid cell responsible for the prediction
and (t,,, t;,) is the scale by which the size of a bounding box is
zoomed to a size similar to a ground truth box. They are
calculated corresponding to

t,=G,-C,, (1)
t,=G,-C, (2)
G
= 1 —w 5
(&)
Gh>
t, =log =" ). (4)
ol

If the cell is offset from the top left corner of the image by
(C,, Cy) (as is shown in equations (1) and (2)) and the
anchor box prior has width P, and height P, then the
prediction of the coordinates of the predicted bounding box
can be obtained by the following equations:

b,=o0(t,)+C,, (5)

b, =0(t,)+C,, (6)
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b, =P v, (7)

w w
bh = Pheth, (8)

where G, G, G, and G, refer to the center coordinates as
well as the width and height of ground truth, respectively. P,
and P; denote the width and height of the anchor box,
respectively. From equations (1)-(8), the 4 predictive output
coordinates of the bounding box are obtained. Using o (.) to
compress f, and ,, into [0, 1] region can effectively ensure
that the object center is in the grid cell that carries out the
prediction and prevent excessive deviation.

During training, we use sum of squared error loss, and
the total loss function of our network is shown in equation
(9), which is the same as used in YOLOv2 [16]. The design
goal of the loss function is to achieve a balance between the
coordinates, the confidence of the bounding boxes, and the
classes. Our gradient is the ground truth values (calculated
from the ground truth box) minus our prediction values, as
shown in the fourth and fifth items of the following
equation

s> B
T 3 WA CHEN SOV 3 il s
i=0 j=0 i=0 j=0
+/1classzzlom z (Pi(C)—IA?i(C))Z

i=0 j=0

s B
+/\coord ZlObJ 2-w; hi)[(xi - ;Ci)z +(J’i - 5’:‘)2

ceclasses

o
\.
o

2

+ (=) +(h =) ] +0.01% iil“""’[(mx—%)z
j=0

i=0

+ (Pjy _}A/i)2 "'(ij _a)i)z +<Pjh - R) :|
9)

In the loss function, c; is the real category, c; is the
prediction category, (x;, y;, w;, h;) is the 1nformat10n of the
ground truth, (x;, ¥, w;, h;) is the information of the
prediction bounding box, and )Lnoobj, Aobjs Actass> and Aggorq are
the weight parameters. The MBNet predicts a confidence for
each bounding box using logistic regression. The value
should be 1 when the anchor box overlaps a ground truth
object more than any other anchor box. Its calculation
process is shown in equation (10). Unlike YOLOV3 [17], we
choose several bounding boxes with the relatively high
confidence and average the coordinates of them but do not
select only one bounding box with the maximum confidence
from highly overlapping detection boxes, as done in [2]. In
this way, the localization accuracy for occluded objects is
improved, and the recall rate increased by 6.8%. If an anchor
box is not responsible for predicting a ground truth object,
that is, it does not meet the preset threshold with ground
truth box’s IOU, it incurs no loss for class predictions, only
for confidence predictions, or has a very small weight in the
coordinate predictions. The complete bounding box re-
gression process is shown in Figure 7.

truth
confidence = pr(Object) * IOU(;u ), (10)

red

Obje red

truth
= pr(Class;) * IOU( pred>'

Cl truth
confidence score = pr( 2% )pr(ObJect) * IOU( e >

(11)

Besides the 4 coordinates of b,, by, b,, and b;, and
confidence, each bounding box also predicts 7 class scores,
corresponding to 7 classes of our handcrafted dataset. By
multiplying the confidence value with 7 class scores, re-
spectively, the specific score of the bounding box based on a
particular category is then gained, as shown in equation (11).
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Thus, these confidence scores can be compared to the preset
threshold to determine which category should be retained or
not. Each bounding box uses multilabel classification to
predict the categories a bounding box might contain. For
good performance, we do not use softmax but simply use
independent logical classifiers: binary cross-entropy loss for
the class predictions during the training process. Using a
softmax imposes the assumption that each box has only one
class, and that is not usually the case; for example, an apple
may have labels such as apple, fruit, and food at the same
time. The multilabel method can better model the data in the
dataset.

4. Experiments

4.1. Dataset and Evaluation Metrics. A series of comparative
experiments are carried out in this paper, we have used a
handcrafted urban traffic dataset and the public KITTI
dataset to evaluate the performance and effectiveness of the
proposed algorithm.

4.1.1. Urban Traffic Dataset. Traffic scenes commonly
contain objects (such as all kinds of vehicles and pedestrians)
with large-scale variations, as the surveillance cameras
usually cover a large and long view of the road. Although
publicly available benchmarks have contributed to progress
in this area of object detection, existing traffic object datasets
often contain a limited range of contents (only cars or
pedestrians) and scales, making it difficult to assess real-

world performance. In order to demonstrate the proposed
method in more practical scenes, we construct a new dataset
named urban traffic dataset to provide a better benchmark
and focus research effort on these difficult cases.

The urban traffic dataset contains objects with a vast
variance of scales under traffic scenes, including 10500 well-
labeled images under different roads, time, weathers, and
traffic states, as shown in Figure 8. The dataset has been
divided into three subsets, in which the training set: the
testing set: the verification set is 5:3: 2. In detalil, it consists
5125 images for training and 3188 images for testing, and
verification set is of 2197 images. The dataset consists seven
categories, namely, car, car plate, pedestrian, bus, bicycle,
motorcycle, and tricycle, which is also the object we need to
detect from input images, and it is worth to point out that we
treat the car plate as a class for training and testing.

To better fit into the network presented in this paper, we
have resized all the images to 512 x 512 resolution. The data
distribution of our handcrafted dataset is shown in Table 2.
As illustrated in Table 2, the objects are classified into 7
categories under three different scenes (sparse, crowded, and
nighttime). We consider a scene as a crowded scene if it
contains more than 15 objects per image; otherwise, it is
considered as a sparse scene.

4.1.2. KITTI Dataset. KITTI [1] is a widely used benchmark
for vehicle detection, which contains objects with different
scales in different scenes. The dataset includes 7481 images
for network training (including 2494 images for use as a
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TaBLE 2: The data distribution of our handcrafted dataset.
Scenes Sparse (daytime) Crowded (daytime) Nighttime Total
Images 7452 1819 1229 10500
Car (C) 37360 14357 8814 60531
Car plate (CP) 37327 14233 8747 60307
Pedestrian (P) 65467 22214 4428 92109
Bus (B) 4216 2456 856 7528
Bicycle (BI) 2213 1710 211 4134
Motorcycle (M) 1104 678 249 2031
Tricycle (T) 2337 742 367 3446

verification set) and 7518 images for testing the model.
KITTI dataset provides a 3D border annotation for a moving
object captured by using cameras, and the categories of
objects include cars, trucks, pedestrians, and bicycles.
According to the difference of object size, occlusion, and
truncation criteria, the dataset organizer divides the dataset
into three levels: easy, moderate, and hard, which can be
used to judge the comprehensive performance of various
object detection algorithms.

4.1.3. Evaluation Metrics. We employ the universally rec-
ognized recall rate, average precision (AP), and intersection
over union (IOU) metrics [39] to evaluate the performance
of MBNet on our handcrafted dataset, and they have widely
been used to evaluate various object detection algorithms [1,
39]. We evaluate the performance of our model for car,
pedestrian, bus, bicycle, and so on under the scenes in all
cases, such as crowded or sparse and daytime or nighttime.
In the experiments, the threshold is set in the range of 0.1 to
0.65, which means that only the overlap between the pre-
dicted bounding box and the ground truth greater than or
equal to the value will the current detection be considered as
a correct detection. Besides, we use the P-R curves and
average precision (AP) to present the detection performance
of MBNet for cars, cyclists, and pedestrians under scenes
with different complexity degree (easy, moderate, and hard)
on the KITTT dataset. All the experimental results can be
seen in Section 4.4.

4.2. Experimental Configuration. Our experiments are
implemented on a computer equipped with an Ubuntu
16.04 system and supported by NVIDIA 1060 GPU and
Intel(R) Core i7-6700K @ 4.0 GHz~4.2 GHz CPU. Besides
a GPU development package CUDA 8.0 and a deep
learning acceleration library cuDNN 6.0 are installed.
Then our MBNet is trained under the Python 2.7 envi-
ronment. The specific parameters of our network are as
follows: initial learning rate is 0.001; policy is steps; batch is
64; steps, respectively, take 100, 25000, and 50000; max-
batch is 100000; scales are 10, 0.1, and 0.1; momentum is
0.9, and decay is 0.0005. As shown in Figure 5, the hor-
izontal ordinate represents the number of iterations,
ranging from 0 to 100000. After more than 60000 itera-
tions, the parameter has basically been stabilized. During
the training process, the change of region average IOU and
loss are important parameters to measure the quality of

model training, as can be seen from Figures 5 and 6, and
the loss is falling and approaching a small constant, while
the average IOU is approximately equal to 1, which ba-
sically meets the requirements of training.

4.3. Explanation of Various Scales. We propose MBNet to
effectively detect large, medium, and small objects in the
traffic scene, so as to reduce the rate of missing detection.
The experiments are carried out on our handcrafted dataset
and KITTI, which contains objects with different scales.
Through the statistical analysis of the bounding boxes in
the dataset, the objects are divided into three categories:
small, medium, and large. Specifically, objects with a height
or width greater than 10 pixels and smaller than 47 pixels
belong to a “small” category; objects with a height or width
between 47 pixels and 99 pixels are in a “medium” category.
Other objects with a height or width greater than 99 pixels
are in the “large” category. The three detection branches of
our MBNet can effectively detect these objects from dif-
ferent scenes such as sparse or crowded. The experimental
results show that the reasonable design of the detection
branch of our model greatly improves the recall rate and
the detection precision, and because the MBNet is a 32-
layer lightweight network, the speed of processing each
image is up to 30 ms (33 fps), which can basically meet the
real-time requirements of industry.

4.4. Comparison with the State-of-the-Arts

4.4.1. Urban Traffic Dataset. Based on the configuration
above, we conduct our experiments drawing support from
our premarked dataset, and experimental comparison is
made with RCNN, faster RCNN, SSD, mask RCNN, SINet,
and YOLOV3, respectively. We make comparative analyses
on the recall rate, the average precision, the average IOU,
and the time consumption. It is important to note that the
YOLOV3 network divides the input images into 13 x13,
26 x26, and 52 x 52 small regions (grid cells), and in this
paper, we divide the size of the original images into 16 x 16,
32x32, and 64 x 64 small regions, respectively. To verify
the effectiveness of our method, we compare it with other
methods under different thresholds, as shown in
Tables 3-9.

Because the recall rate, the detection precision, and the
IOU value of each model will change under different
thresholds, we compare these metrics under different
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TaBLE 3: The comparison of average precision (AP) for various methods (%).
Threshold

Model

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
RCNN [4] 37.32 38.55 40.29 42.78 43.46 44.12 46.29 47.04 51.12 53.47 57.78 59.04
Faster RCNN [9] 41.92 42.47 43.05 45.11 47.38 48.61 50.29 52.33 55.69 59.61 65.29 68.33
SSD [15] 47.74 49.07 52.14 54.97 57.61 60.14 62.24 64.39 65.57 68.14 71.24 74.39
Mask RCNN [13] 51.45 53.23 55.01 56.26 58.38 59.21 62.88 64.49 67.13 70.21 74.44 77.27
SINet [2] 55.41 56.65 57.10 60.21 65.44 68.43 69.98 7212 74.56 79.28 81.36 82.43
YOLOV3 [17] 54.94 55.07 57.34 59.30 62.35 64.82 66.32 68.73 69.18 72.82 75.32 79.73
MBNet 58.25 59.31 61.45 62.67 64.94 67.19 70.01 72.33 75.12 77.19 80.01 83.68

TaBLE 4: The comparison of recall rate for various methods (%).
Threshold

Model

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
RCNN [4] 76.23 74.55 71.29 68.78 65.46 61.12 59.29 57.04 54.35 49.47 46.78 42.04
Faster RCNN [9] 82.92 80.47 78.05 74.11 71.38 68.61 66.29 63.33 61.74 57.61 54.29 50.33
SSD [15] 79.74 77.07 74.14 72.97 70.61 68.14 66.24 63.39 61.27 58.14 55.24 51.39
Mask RCNN [13] 80.65 78.08 76.54 75.15 72.09 68.98 65.66 64.21 63.37 60.25 56.45 53.10
SINet [2] 86.56 85.55 83.03 82.04 78.08 74.00 70.23 66.49 63.30 61.72 60.28 59.26
YOLOv3 [17] 85.94 82.07 80.34 78.30 75.35 73.82 71.32 67.20 65.14 61.29 59.32 56.73
MBNet 88.25 86.31 83.45 80.67 77.94 74.19 71.71 67.83 64.20 62.19 60.81 58.33

TaBLE 5: The detection precision for each category under different scenes.
Submeter 1
Sparse (daytime
Model Average P (daytime)
C CP P B BI M T
RCNN [4] 58.30 58.27 46.16 55.25 67.98 60.66 64.45 55.32
Faster RCNN [9] 63.65 64.93 63.20 66.31 69.29 59.45 60.21 62.17
SSD [15] 71.71 74.25 71.27 69.34 78.78 72.10 66.34 69.91
Mask RCNN [13] 75.85 82.88 68.69 77.71 84.84 69.25 7212 75.45
SINet [2] 82.20 86.86 74.40 83.66 87.87 77.23 83.25 82.10
YOLOV3 [17] 78.33 84.12 78.27 76.41 84.53 76.37 72.49 76.10
MBNet 83.79 88.63 85.52 83.98 86.42 78.72 82.71 80.54
TABLE 6
Submeter 2
Crowded (daytime)
Model Average
C CP P B BI M T

RCNN [4] 43.94 42.12 38.28 40.32 55.17 41.31 44.14 46.25
Faster RCNN [9] 47.73 50.25 43.47 51.06 57.28 45.27 44.04 42.74
SSD [15] 58.00 59.27 51.32 62.21 66.57 57.22 58.18 51.21
Mask RCNN [13] 57.78 55.25 58.67 60.20 70.23 56.56 52.33 51.19
SINet [2] 64.95 66.58 57.57 65.35 73.33 61.01 65.59 65.20
YOLOV3 [17] 60.03 63.63 55.72 58.34 68.63 58.01 56.70 59.21
MBNet 66.45 65.78 61.06 63.74 76.59 65.70 66.81 65.46

thresholds (0.1~0.65). As shown in Table 3, we compare the
average precision of the 7 frameworks on the testing set
under different thresholds. As seen in the table, the average
precision of each method increases as the threshold in-
creases, and this is because a smaller threshold may count in
some of the incorrect predictions. As shown in Table 3, our

model can obtain the highest average precision in most cases
under different thresholds. When the threshold is 0.1
(minimum), the average precision of our method can reach
58.25%, which is 2.84% higher than the SINet and 10.51%
higher than that of the SSD network; when the threshold is
0.65 (maximum), the precision of our method reaches
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TABLE 7
Submeter 3
Nighttime
Model Average &
C CP P B BI M T
RCNN [4] 10.46 8.84 3.38 11.16 16.55 9.94 10.37 12.95
Faster RCNN [9] 14.71 18.93 9.45 11.17 23.39 8.50 13.22 18.34
SSD [15] 16.15 22.36 11.73 16.66 26.69 9.97 13.35 12.31
Mask RCNN [13] 18.87 24.23 16.66 12.57 28.30 12.29 20.87 17.17
SINet [2] 24.00 30.18 18.24 13.89 36.21 28.35 24.24 16.87
YOLOV3 [17] 19.47 23.31 12.20 15.57 26.79 20.01 18.11 20.33
MBNet 27.16 33.27 21.55 18.91 35.56 27.31 28.85 24.67
TaBLE 8: The comparison of average intersection over union (IOU) for various methods (%).
Threshold

Model

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
RCNN [4] 72.45 71.12 68.67 66.89 63.21 61.72 59.56 56.01 53.29 50.67 46.59 41.21
Faster RCNN [9] 78.23 77.67 76.55 74.31 71.29 69.11 67.47 65.12 62.89 59.61 57.23 54.45
SSD [15] 84.67 82.58 80.69 78.97 76.29 75.17 73.90 70.55 68.22 65.14 62.25 58.30
Mask RCNN [13] 80.34 79.25 78.58 78.10 77.31 75.69 74.26 72.79 70.99 68.68 64.36 60.01
SINet [2] 88.90 88.08 82.29 81.81 80.22 76.21 73.33 68.68 66.43 64.42 63.99 60.68
YOLOV3 [17] 85.87 84.01 81.44 79.45 77.39 75.88 72.32 69.73 68.97 65.82 64.29 61.33
MBNet 89.25 87.27 84.45 82.66 79.99 77.11 74.77 71.38 68.20 66.23 65.01 61.58

TaBLE 9: The comparison of time consumption for various
methods.

Methods Time (ms)
RCNN [4] 3130
Faster RCNN [9] 125
SSD [15] 60
Mask RCNN [13] 78
SINet [2] 66
YOLOV3 [17] 40
MBNet 30

83.68%, which is 1.25% higher than the SINet and 9.29%
higher than the SSD network. The average precision of our
method can reach near to 60% when the threshold is 0.1,
which shows that the network structure proposed in this
paper is suitable for the prediction of various objects. Table 4
shows the comparison of recall rate for various methods, and
our model basically has the highest recall rate at different
thresholds. This shows that our method has a lower miss
detection rate and is more suitable for detecting objects with
different scales.

Table 5-7 makes the statistics of the detection results for
seven categories tested at the threshold of 0.5, and from these
tables, we can draw the conclusion that our method has the best
detection results compared with other methods under different
scenes.

IOU (intersection over union) is mainly used for
measuring the overlap degree between the predicted
bounding box and the ground truth: the higher the value, the
more accurate the prediction. The threshold value set in the
experiments is actually the calculated IOU value. As shown
in Table 8, we compare the average IOU of seven categories
for all methods. At the threshold of 0.1, the average IOU of

our model reaches 89.25%, which is 3.38% higher than the
YOLOV3 network and 16.8% higher than the RCNN. When
the threshold is 0.65, the average IOU of our method reaches
61.58%, and this is also the highest IOU value of all methods.
Under other thresholds, our model shows a good advantage
over other frameworks. Table 9 analyzes the time complexity
(time consumption) of each framework. Because the RCNN
is not an end-to-end network, its time consumption is very
high, reaching 3.13s per image. In addition, our time
consumption is lower than that of SSD and Mask RCNNS.
Finally, compared with the YOLOv3 network, because our
network has only 32 layers, although we take a more detailed
partition on the original images, the overall time con-
sumption is lower than the YOLOvV3 network.

In order to show that the size of 16 x16, 32 x 32, and
64 x 64 is more adaptable for our model, we have selected
five different sizes for comparison, and the results are shown
in Figure 9. For the sake of tidiness to demonstrate, each size
represents the smallest scale of its group (for example,
16 x 16 stands for 16 x 16, 32 x 32, and 64 x 64). Because each
grid cell predicts 3 boxes, the network time consumption will
increase with the increase of feature map scale. As seen from
Figure 9, when an image is divided into a maximum of
20 x 20 grid, the effect is not as good as 16 x 16 adopted in
this paper. In addition, when the input is divided into 8 x 8
grid, the accuracy will decrease rapidly with the increase of
threshold, and this is very inappropriate. So the size of
16 x 16 in this paper can be seen as a kind of compromise
choice, and its time consumption is not too much, but its
accuracy is the best, coupled with our network itself has not
many parameters, so in aggregate, the total time con-
sumption is not very high, basically meeting the requirement
for real-time performance.
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FIGURE 9: The comparison of accuracy under different partition patterns.

Carplate
#B5%L2

Carplate
\

) L Ty

=

Carplate

Figure 10: Examples of detection results by MBNet on urban traffic dataset.

In this section, we compare the recall rate, the average
precision, the average IOU, and the time consumption with
different methods, and the accuracy under different partition
patterns is also discussed. To sum up, our network shows a
good advantage over most existing models in the above
aspects and can also meet the industry requirements for real-
time performance.

In Figure 10, we show some detection results by MBNet
on our handcrafted dataset. The results show that the al-
gorithm is effective in detecting objects with different scales,
especially for some small-scale objects (such as car plate) in
traffic scenes under different conditions such as crowded,
sparse, and insufficient illumination. This proves that the
proposed MBNet has a good application prospect and has
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FiGure 11: The P-R curves of different objects. (a) RCNN. (b) Faster RCNN. (c) SSD. (d) YOLOv3. (e) Mask RCNN. (f) SINet. (g) Ours.

TaBLE 10: The average precision (AP) of different methods on KITTI dataset.

Model Car Cyclist Pedestrian
ode

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
RCNN [4] 44.27 35.49 21.78 30.34 22.17 15.68 41.24 33.55 25.57
Faster RCNN [9] 52.14 41.23 30.77 34.54 25.24 18.29 39.67 26.54 18.23
SSD [15] 83.55 67.87 50.27 57.17 42.14 35.23 62.19 44,53 35.78
YOLOV3 [17] 87.22 71.28 64.67 72.13 60.06 42.77 77.32 65.34 55.58
Mask RCNN [13] 84.39 68.28 58.89 73.68 58.45 40.08 78.32 63.69 50.21
SINet [2] 88.35 77.49 62.57 75.72 60.29 43.12 80.49 65.97 54.68
MBNet 88.67 74.44 65.98 74.53 62.65 45.30 82.59 66.22 56.21

the potential to become an important part of intelligent
transportation systems.

4.4.2. KITTI Dataset. For further analyzing the effectiveness
of the proposed method, we train our model using the KITTI

training set and evaluate the model on the testing set of the
KITTI benchmark. Specially, we compare the detection
performance of RCNN, faster RCNN, SSD, YOLOv3, mask
RCNN, SINet, and our method for different objects (cars,
cyclists, and pedestrians). The experimental results are
shown in Figure 11.
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F1GURE 12: The partial detection results of MBNet on KITTI dataset.

As can be seen from Figure 11, the area under the P-R
curves of different objects detected by our method is larger
than other methods, that is, the average accuracy of our
method is higher, which means the detection performance of
our method is better than that of other methods. In addition,
we have calculated the average accuracy (AP) for scenes with
different complexity degree (easy, moderate, and hard) on
KITTI dataset, and the results are shown in Table 10.

As shown in Table 10, our model can better detect
different objects in scenes with different complexity degree,
which is due to the reasonable structure design of our model.
In Figure 12, we show some of the detection results by
MBNet on KITTT dataset. It can be seen from Figure 12 that
the network proposed in this paper has a good effect on the
detection of vehicles with different scales, which proves the
superiority of this algorithm in detecting various objects by
using feature maps with different scales.

5. Conclusions

To summarize, we propose a 32-layer multibranch network,
denoted as MBNet, for fast detection of objects with a large
variance of scales in traffic scenes. By designing of three
detection branches, it can accurately detect large-, medium-,
and small-scale objects from various traffic scenes, such as
sparse, crowded, daytime, or nighttime. Besides, we con-
struct a novel labeled dataset, and it contains objects with
large-scale variance in traffic scenes, which provides a
practical platform for the evaluation of different detection
algorithms. The MBNet achieves state-of-the-art perfor-
mance on both precision and recall rate, and the detection
speed is fast enough for real-time detection. The further
investigation is to apply MBNet to more challenging datasets
as well as have a shot at changing the overall structure of the
network for a better performance. What is more, in view of
the poor detection effect of most detection algorithms to the
dark scene, our follow-up work will also focus on improving
the detection effect of the algorithm to scenes with in-
sufficient light.
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