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As a representation of discriminative features, the time series shapelet has recently received considerable research interest.
However, most shapelet-based classification models evaluate the differential ability of the shapelet on the whole training dataset,
neglecting characteristic information contained in each instance to be classified and the classwise feature frequency information.
Hence, the computational complexity of feature extraction is high, and the interpretability is inadequate. To this end, the efficiency
of shapelet discovery is improved through a lazy strategy fusing global and local similarities. In the prediction process, the strategy
learns a specific evaluation dataset for each instance, and then the captured characteristics are directly used to progressively reduce
the uncertainty of the predicted class label. Moreover, a shapelet coverage score is defined to calculate the discriminability of each
time stamp for different classes. .e experimental results show that the proposed method is competitive with the benchmark
methods and provides insight into the discriminative features of each time series and each type in the data.

1. Introduction

In recent years, massive time series data have been generated
in many fields, including weather forecasting [1], malware
detection [2], voltage stability assessment [3], human
identification [4], and biomedicine [5]. Hence, the study of
time series has been widely applicable, among which clas-
sification is an important research field. .e classification
issue of time series is the same as the traditional classification
problem. We hope to find a function that can map any time
series to a target class label. Although a large number of time
series classification algorithms have been proposed, exten-
sive experiments show that the 1NN classifier combining
different distance metrics is still a competitive model in
many problem areas [6–12]. In addition to the common
Euclidean distance, alternatives have been proposed to
measure the similarity between time series, including dy-
namic time warping (DTW) [13], weighted DTW (WDTW)
[14], edit distance with real penalty (ERP) [15], time warp
edit (TWE) [16], and move-split-merge (MSM) [17].

.e improved distance function can help promote the
performance of the nearest-neighbor model, but the 1NN
classifier presents obvious drawbacks. .is classifier cannot
indicate the common characteristics of similar instances and

the dissimilarity between different classes. In other words, its
interpretability is insufficient. In reality, except for the ac-
curacy, the features of distinct instances are our concern.
.ese features provide a deeper understanding of data and
improve the interpretability of the classification model.
Unfortunately, time series usually have no definite features.
Hence, various feature prototypes are proposed to mine
potential patterns of time series [9, 18, 19]. Among them, the
most classic is the local discriminative features “shapelet”
[18].

A shapelet (as shown in Figure 1(a)) is a special dis-
criminatory subsequence of time series, which is originally
applied to construct the shapelet-based decision tree (SDT)
[18] through recursively searching for the best shapelet in the
training set. Since the shapelet can be used to establish an
interpretable classification model, it has been widely studied
[9]. Shapelet-based classification models can be divided into
two categories. One type of the method utilizes the top-k
shapelets to create a transformed dataset, on which the
traditional classification algorithms [20–24] could be ap-
plied. .e other uses the shapelets to build the classification
model directly [18, 25–28].

One major problem that all shapelet-based approaches
generally face is the massive size of the candidate shapelet
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set. To solve this problem, researchers have put forward
several methods. .ese methods can be roughly divided into
four categories: (1) training instances are selected to generate
the candidate shapelets. For example, Ji et al. [29] put
forward a subclass splitting method to sample the training
instances for candidate shapelet generation. (2) Heuristic
shapelet search method. Grabocka et al. [27] presented a
heuristic gradient descent shapelet search algorithm, which
created a smaller candidate shapelet set. Rakthanmanon
et al. [26] proposed a fast shapelet discovery algorithm based
on Symbolic Aggregate approXimation (SAX). Similarly,
Fang et al. [28] introduced a novel method to search
shapelets based on piecewise aggregate approximation
(PAA). (3) A random selection mechanism is used to select
shapelets. Renard et al. [30] first proposed a random-
shapelet algorithm to build the decision trees. Karlsson et al.
[31] constructed the shapelet-based random forest, in which
each decision tree is built based on instances and shapelets
selected randomly. Further, to omit the shapelet threshold
search, Shi et al. [32] have put forward the random pairwise
shapelet forest. (4) Reformulating the shapelet search
problem into a numerical optimization problem. For ex-
ample, Hou et al. [33] treated the shapelet search task as a
numerical optimization problem, and then the shapelets
were learned by numerical analysis methods. Likewise,
Wang et al. [34] designed a semisupervised shapelet learning
model, which transforms the feature search problem into a
joint optimization problem. Ma et al. [35] proposed an end-
to-end model to learn the most discriminative shapelets by
the gradient descent method. Zhao et al. [36] recently
proposed a regularized shapelet learning framework to
improve the shapelet learning efficiency. Although the above
methods improve the classification efficiency of shapelet-
based models to some extent, the vast majority of shapelet-
based global classification models still has the following
disadvantages:

(1) .e shapelets captured by most shapelet-based
models cannot adequately reflect the information of
feature distribution and frequency of each class in
the dataset. For example, due to the existence of
intraclass variation, a few instances in different
classes may have low-frequency discriminative
features.

(2) .e whole training set is generally applied for the
discriminatory evaluation of candidate shapelets.
Owing to the influence of the redundant instances
and the intraclass variability, the extracted shapelets
are merely the best on average for instances in the
training dataset and cannot accurately reflect the
local characteristics of the instance to be classified. In
other words, the established shapelet-based model is
not suitable or efficient for each test instance. Tar-
geted evaluation strategies are not given enough
attention.

To address these problems, we have first proposed a lazy
shapelet-based model to capture the local features of each
instance in the literature [37] (the literature [37] is a poster
in the conference ICONIP 2018. In the conference manu-
script, we simply proposed a lazy model to classify the in-
stance based on its own local features. However, in this
paper, the extended version further studies the fusion of
global and local similarity, the local feature distribution and
frequency information discovery, etc. In addition, this paper
includes details about how to discover the local features for
each instance to be classified in the shapelet-based model,
how to use the local characteristics of each instance to
determine the classwise discriminatory information, more
experiments on parameter setting, statistical analysis, model
comparison, and case studies). However, the proposed
model still cannot get insight into the feature distribution
and frequency information of the time series data. For that,
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Figure 1: (a) .e shapelet found by SDT for the ItalyPowerDemand dataset, and its corresponding training instances. .e black bold part
indicates the discovered time series shapelet. (b) .ree time series from the ItalyPowerDemand training dataset and their corresponding
shapelets captured by LSCR. Train9 and Train44 (in blue and red, respectively) are instances with different classes, while Train9 and Train46
(in blue) are instances of the same type Class2. Based on the discovered shapelets, our model can make correct predictions for the three
instances. (c) .e classwise shapelet coverage score obtained on the training set for each sampling point.
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we significantly extend the research on the data-driven,
shapelet-based model (lazy shapelet classification route,
LSCR) to study the feature distribution and frequency in-
formation discovery. Here, the advantages of our model are
interpreted in conjunction with Figure 1. From Figure 1(b),
it can be found that the heterogeneous instances are dif-
ferent, and that there are also differences between the ho-
mogeneous instances. Since LSCR performs targeted
analysis for each instance, compared with the SDT shapelet
(as shown in Figure 1(a)), our model may capture charac-
teristics that SDTcannot discover. For example, the shapelet
S460 does not appear in the model built by SDT. Further, to
evaluate the classwise discriminative feature frequency, the
shapelet coverage score is defined. From Figure 1(c), we find
that the scores can not only indicate the local discriminant
intervals for different classes but also reflect their frequency
information. For instance, the low-frequency discriminative
interval [0, 7] reflects the location of the local features de-
tected by our model on a few instances of Class2, which are
usually caused by intraclass variation and ignored by the
global shapelet-based model. .e main contributions of this
paper are summarized as follows:

(1) In contrast with the classical kNN or 1NN model
based on global similarity, our model is a fusion of
global and local similarities. For the consideration of
global similarity, the instance selection strategy is
used in evaluating the discrimination of shapelets.
.e smaller evaluation dataset can eliminate the
interference of intraclass variation and improve the
classification performance. In addition, local simi-
larity is applied instead of global similarity for
prediction, which makes the proposed model more
interpretable.

(2) To reduce the massive number of redundant can-
didate shapelets generated by the brute-force algo-
rithm, a novel strategy is proposed for extracting
candidate shapelets from the instance to be classified.
.is strategy can guarantee that the extracted
shapelets accurately reflect the local characteristics of
each test instance.

(3) .e shapelet coverage score of each sampling point is
calculated to analyze the local characteristics of
different classes in the dataset. Since the proposed
model can efficiently analyze the local features of
each instance, more accurate local characteristic
information can be obtained. In particular, the
classwise discriminative feature frequency and dis-
tribution information can be presented, which can
help us to understand the data more
comprehensively.

.e remainder of the paper is organized as follows.
Section 2 introduces related concepts and basic theories.
Section 3 describes the proposed model and algorithm
design in detail. Section 4 presents the experimental analysis.
Section 5 offers the conclusion of this paper.

2. Definitions and Notation

In this section, some definitions and formulas related to our
model will be presented.

Definition 1 (time series). A time series T is an ordered
sequence that containsm actual observation values t1, t2, . . .,
and tm, i.e., T � t1, t2, . . . , tm , ti ∈ R. .e symbol
D � T1, T2, . . . , Tn  represents the dataset containing n
time series.

Definition 2 (time series subsequence and shapelet). Given a
time series T � t1, t2, . . . , tm , a subsequence S of Tcontains
l consecutive values from T; that is, S � ti, ti+1, . . . , ti+l−1 ,
where 1 ≤ i ≤ m− l+ 1. A shapelet is a tuple (S, δ) that
consists of a subsequence S and a distance threshold δ.

Definition 3 (candidate shapelet set)..e candidate shapelet
set is composed of subsequences of time series.

.e symbol Dnode is a dataset corresponding to an ar-
bitrary tree node in the model SDTor LSCR, and Wl(Dnode)

is a set of candidate shapelets with length l built on the
dataset Dnode. Wl(Dnode) in SDT could be represented as
follows:

Wl Dnode(  � ∪
Ti∈Dnode

Wl Ti( , (1)

where Wl(Ti) denotes the set of subsequences with length l
from Ti.

However, in our work, since the best shapelets are
searched from the subsequence space of the instance to be
classified, the set of shapelet candidates of length l for each
node in LSCR is

Wl Dnode(  � Wl(T), (2)

where T is the test instance.
.en, the whole candidate shapelet sets W(Dnode) for

each node in SDT and LSCR can be obtained through the
following equation:

W Dnode(  � ∪
max

l�min
Wl Dnode( , (3)

where min and max are the minimum and maximum
candidate lengths, respectively.

.erefore, compared with SDT, LSCR reduces the scale
of candidate shapelets in a single node by an order of
magnitude.

Definition 4 (similarity of equal-length time series). Let
dist(Ti, Tj) be a similarity function of time series, which
takes Ti and Tj with equal length as the input. .e function
will return a nonnegative value, which represents the sim-
ilarity degree.

Generally, the smaller the distance is between two time
series, the more similar the two time series are. In reality, we
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often need to judge the similarity between unequal time
series. For example, in our work, we need to determine
whether a time series contains a specific local feature
through the distance between a subsequence and a whole
time series.

Definition 5 (similarity of unequal-length time series). Let
distul(T, S) be a similarity function, in which time series T
and S have different lengths. .e function returns a non-
negative optimal matching distance between two sequences
as the degree of similarity. .e distance between time series
T and sequence S is

distul(T, S) � min dist Si, S( ( , Si ∈W|S|, (4)

where the symbol W|S| represents the subsequence set with
length |S| of time series T (|S| and |T| denote the length of
sequences S and T, respectively, and |S|≤ |T|).

In our model, the distance between subsequences with
equal length is calculated by the Euclidean distance, while
the distance between complete time series is measured by the
specified distance function.

In reality, different subsequences may have disparate
discriminability. In our work, information gain is used to
measure the discrimination of shapelets. To reduce distance
computation and improve the shapelet discriminant
property, the concept of the evaluation dataset is put
forward.

Definition 6 (shapelet evaluation dataset). .e shapelet
evaluation dataset is a specific subset of the training dataset,
which is designed to evaluate the discriminability of local
features of each test case.

Definition 7 (entropy of dataset). .e entropy of a given
dataset D is calculated by the following formula:

H(D) � − 

|C|−1

i�0
p Dci

 log p Dci
  , (5)

where ci is an element in the class value set C of D, Dci
is the

subset of instances with class ci in D, and the proportion
p(Dci

) is calculated by

p Dci
  �

Dci





|D|
. (6)

Definition 8 (shapelet information gain). Given a shapelet S
and a dataset D containing instances with different classes,
the information gain of S is calculated as follows:

IG(D, S) � argmax(H(D))
s

−
Dleft




|D|
H Dleft


 

−
Dleft




|D|
H Dright



 ,

(7)

where s is a split distance that can be applied to divide the
dataset into two subsets: Dleft � Ti | distul(Ti, S)≤ s  and
Dright � Ti | distul(Ti, S)> s .

Finally, the maximum value of information gain is
normally treated as the shapelet discrimination, and the
corresponding distance s is taken as threshold δ. .e split
distance s usually takes the middle distance between two
distance points. .e detailed calculation process can be
found in the literature [18]. In our model, the shapelet
information gain calculated by equation (7) on a specific
evaluation dataset reflects the reduction in uncertainty in the
predicted class label of the test instance. Here, the mathe-
matical description of our model is introduced.

Given a specific test instance T, its uncertainty of pre-
dicted class in our model is

U(T) � H De(T)( , (8)

where De(T) is the initial evaluation dataset of T.
In the prediction process, the proposedmodel LSCR tries

to progressively reduce the uncertainty by its own charac-
teristics. .e model can be formulated as

minmize(U(T))
S

� minimize IG T,De(T)( ( 
S

− 

|S|−1

i�0
IG D(T)

i
e, Si ,

(9)

where Si denotes the ith element in the learned shapelet set S
of T.

Additionally, D(T)i
e is the corresponding evaluation

dataset of Si, which is determined by

D(T)
i
e �

De(T), i � 0,

T′
 dist T′, Si−1( ≤ Si−1.δ, T′ ∈ D(T)

i−1
e , i> 0.

⎧⎨

⎩

(10)

Finally, the main class property of the dataset D(T)|S|−1
e

would be taken as the predicted class value of T. Generally,
there will be only one type of instance left in the final
evaluation dataset.

3. Targeted Shapelet Extraction Technique

3.1. Overview. To provide a brief introduction to the model
LSCR, a schematic diagram is first presented in Figure 2. As
determined from the figure, the evaluation datasetDe for the
test instance T is first generated; second, the candidate
shapelets from T are evaluated on De, and then the best
shapelet is employed to exclude the instances that do not
contain the local feature represented by ST

0 ; third, the op-
timal shapelet on the datasetDe

′ is continually searched until
termination. Generally, there will be only one class of in-
stances left in the final dataset, and the class will be taken as
the predicted value.

.e predicted result may be different from the class value
of the nearest neighbor or the majority class in the initial
dataset. .is is the greatest difference between our model
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and the nearest-neighbor models. Here, the model will be
described in detail.

3.2. Building Shapelet Evaluation Dataset. From the per-
spective of information theory, the purpose of extracting the
best shapelet is to minimize the uncertainty of the class label
of the test instance. .e uncertainty is reflected in the class
distribution of each subdataset generated based on whether
the instance contains the specific feature. Hence, the more
unbalanced the distribution of the subset of instances se-
lected based on the shapelet, the more discriminative the
feature. For example, for a binary classification problem, it is
ideal to use the shapelet to divide the dataset containing
instances with different class values into two subsets, each of
which contains only one type of instance.

For the large-scale dataset, the running time of the
searching shapelet is unbearable, so we attempt to sample the
training instances for shapelet evaluation. In this paper,
instances are selected based on the neighbor distance and the
class value of the closest neighbor. Moreover, if the nearest-
neighbor instances in the neighborhoods corresponding to
the initial node of the classification path belong to the same
class, then the route degrades into a single node. In par-
ticular, when the size of neighborhoods is set to 1, the model
degenerates into 1NN, and the discriminant feature cannot
be extracted effectively. In view of these problems, we
propose to build a small targeted subset that contains in-
stances with different classes for the instance to be classified.
.e subset ensures that the distinguishing nature of the local
features can be evaluated. In addition, the data sampling
strategy can eliminate the impact of intraclass variation on
the local feature discriminant evaluation.

As shown in Algorithm 1, according to the class value of
the nearest-neighbor instance, we select k identical and
different instances for the test instance to construct a
shapelet evaluation dataset (lines 2–6).

3.3. Finding the Optimal Shapelet. To reduce the computa-
tional complexity of extracting the best shapelet and make
the extracted shapelets better reflect the characteristics of the

test instance, a data-driven shapelet search algorithm is
further proposed to find the best shapelet. We only search
the best shapelets from the subsequence space of the instance
to be classified so that the extracted shapelet accurately
reflects the local features of each test instance. .e process of
generating the candidate shapelets collection for the test
instance is given in Algorithm 2. In the algorithm, each
subsequence of T with starting point i and length j con-
stitutes the candidate shapelet set (line 4).

.e candidate set corresponding to each node in the
model SDTcontains O (nm2) candidate shapelets, where n is
the number of time series and m is the length of each time
series. In our model, we only consider the subsequences of
test instance T, so there are only O (m2) candidate shapelets
to be evaluated for each node. Our work reduces the size of
candidate shapelet collection of each node by one order of
magnitude.

.e purpose of extracting shapelets from time series is to
classify the time series using the discriminator. .e dis-
criminability of shapelets provides us with a way to explain
the classification results. Algorithm 3 introduces the method
for finding the best shapelet for the instance to be classified
on the evaluation dataset. First, the candidate shapelet set is
generated for T (line 3). .en, each candidate is evaluated by
equation (7) to search for the best shapelet (lines 4–8).

.e time complexity of our model to find the optimal
feature is O (km4), while that of the brute-force search al-
gorithm in SDT is O (n2m4). Considering that k is smaller
than n, the calculation in the progress of searching for the
best shapelet is significantly less. In addition, two ways to
improve the efficiency of shapelet search are used [18, 25]:
the early abandonment mechanism and the shapelet entropy
pruning strategy.

3.4. Lazy Shapelet Classification Algorithm. A classification
route based on shapelets for each instance to be classified is
built through Algorithm 4.

Algorithm 4mainly consists of five steps. First, the targeted
shapelet evaluation dataset is established for T (line 1). Second,
the candidate shapelet set is generated for T (line 2). .ird, the
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Figure 2: A shapelet classification route diagram with 3 nodes. .e symbol ST
i denotes the ith shapelet on the classification route of the

test instance T, and δi is its corresponding split threshold. .e circle, rectangle, and triangle icons represent neighbors of T from
Class1, Class2, and Class3, respectively. .ey are distributed around the center (the black spot) of the circle according to their
distances from T.
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model searches for the best shapelet on the evaluation dataset
(line 3) and judges whether the termination condition is sat-
isfied (line 4). It does not meet the termination condition at the
initial node; that is, it will not degrade to the single node route.
Generally, a best shapelet S is found. Fourth, the extracted
shapelet S is applied to update the evaluation dataset for the
child node (lines 7–8). Only the training instances whose
distances are not greater than the split threshold are selected to
form the subdataset. Fifth, themodel repeats steps 2–8 until the
termination condition is satisfied (line 10). Last, the shapelet-
based classification route for T is returned (line 11).

3.5. Computing Shapelet Coverage Score

Definition 9 (shapelet coverage). Shapelet coverage refers to
the corresponding time interval of a given shapelet S. If a
time stamp t falls within the shapelet coverage of S, then we
state that t is covered by S.

In our work, the discriminatory score is calculated for
each time stamp based on the coverage intervals of all
obtained shapelets. First, an indicator function is presented
to determine whether a time stamp t is covered by a given
shapelet S:

Input: training dataset:D; test instance: T; the number of homogeneous and heterogeneous instances: k; the distance function used
to calculate the similarity between complete time series: dist.
Output: the shapelet evaluation dataset: shapeletEvaluationData.

(1) shapeletEvaluationData⟵∅
(2) double c⟵ getNearestNeighborClass (D, T)
(3) homogeneityData⟵ getTopKHomogeneityNearestNeighbors(D, T, k, c)
(4) heterogeneousData⟵ getTopKHeterogeneousNearestNeighbors (D, T, k, c)
(5) shapeletEvaluationData⟵ homogeneityData ∪ heterogeneousData
(6) return shapeletEvaluationData

ALGORITHM 1: GetEvaluationDataForT (D, T, k, dist).

Input: test instance: T; the minimum and maximum length of the shapelet: min and max.
Output: the candidate shapelets set: CandidatesSet.
(1) CandidatesSet⟵∅
(2) for each i � 0 to |T| do
(3) for each j �min to max do
(4) S⟵ generateCandidate (T, i, j)
(5) CandidatesSet.add (S)
(6) end for
(7) end for
(8) return CandidatesSet

ALGORITHM 2: GenerateCandidatesForT (T, min, max).

Input: test instance: T; shapelet evaluation dataset for T: De(T); the minimum and maximum length of shapelet: min and max.
Output: the best shapelet of the test case: bestShapelet.
(1) bestShapelet⟵ null
(2) double bestGain⟵ 0
(3) CandidateSet⟵GenerateCandidatesForT(T, min, max)
(4) for each S ∈ CandidateSet do
(5) double gain⟵ assessCandidate (De(T), S)
(6) if gain > bestGain then
(7) bestGain⟵ gain
(8) bestShapelet⟵ S
(9) end if
(10) end for
(11) return bestShapelet

ALGORITHM 3: FindingBestShapelet (T, De(T), min, max).

6 Computational Intelligence and Neuroscience



I(t, S) �
1, if t ∈ [S.sp,  S.sp + |S| − 1],

0, otherwise,
 (11)

where sp denotes the starting position of S in the time series.
.en, based on shapelets captured on the decision path

of all correctly predicted time series, the importance of time
stamps for different classes can be evaluated through the
following formula:

score(t, c) � 
T∈Dc

correct


S∈ST

I(t, S),
(12)

where Dc
correct represents the set of correctly predicted in-

stances with class value c and ST indicates the set of shapelets
captured on the classification path of T.

In essence, the coverage score score(t, c) reflects the
discriminability of the time stamp t, which can be used to
detect the distribution of distinguishing feature intervals and
the feature frequency information for each category. Gen-
erally, the interval composed of several consecutive time
stamps with similar scores corresponds to the local differ-
entiating features. .erefore, in our work, the interval sat-
isfying the condition would be regarded as the local feature
location. In addition, the scores demonstrate their occur-
rence frequency.

Here, the algorithm of computing the shapelet coverage
scores for different classes in the dataset will be introduced.

In Algorithm 5, to compute the shapelet coverage score
for each class, the dataset Di

correct of the correctly predicted
instances with the specific class is first obtained (lines 2-3).
.en, all shapelets captured by LSCR for every instance in
Di

correct are collected (lines 4–6). Finally, the scores reflecting
the discriminability of each time stamp for every class are
calculated based on equation (12) (line 7).

4. Experiments

Experimental analyses are conducted on 20 datasets from the
UCR time series repository [38], most of which are fre-
quently used for evaluation of shapelet-based models
[9, 21, 22, 24, 27]. .e experimental data are divided into
training and test parts. .e former part is used to build the
model, while the latter part is applied to calculate the
classification accuracy. .e information of datasets is listed
in Table 1, including train (size of the training set), test (size
of the test set), max_k (the minimum number of instances of
a class in the training set; that is, the maximum value that
parameter k can take.), length (the length of time series), and
classes (the number of classes).

Input: training dataset:D; the test instance: T; the distance function used to calculate the similarity between complete time series: dist.
Output: the classification route for T: CRForT.
(1) Build the initial evaluation dataset De(T) for T at the root node by Algorithm 1
(2) Generate the candidate shapelet set W(Dnode) for T by Algorithm 2
(3) Evaluate each candidate shapelet in W(Dnode) based on De(T) using Algorithm 3 and search for the best shapelet S.
(4) if no discriminatory shapelet S can be found in W(Dnode) then
(5) return CRForT and the majority class c in De(T) is taken as the predictive value
(6) else
(7) Update the evaluation dataset De(T) to exclude instances that do not contain the feature S
(8) Build the child node
(9) end if
(10) repeat steps 2 to 9 until the end
(11) return CRForT

ALGORITHM 4: LSCRdist (D, T).

Input: the dataset of correctly predicted instances: Dcorrect; the set of class values: C; the length of time series: m.
Output: the shapelet coverage scores: Scores [][].

(1) Initialization of a |C| × m matrix Scores
(2) for each i � 1 to |C| do
(3) Select the instances with class ci from Dcorrect to form the dataset Di

correct
(4) for each T in Di

correct do
(5) Get the shapelet set ST of T on its classification route learned by Algorithm 4
(6) end for
(7) Calculate the shapelet coverage score Scores [][] based on equation (12)
(8) end for
(9) return Scores

ALGORITHM 5: ComputeScore (Dcorrect, C, m).

Computational Intelligence and Neuroscience 7



4.1. Parameter k Analysis. To study the effect of the size of
the evaluation dataset on the discriminative evaluation of
shapelets, the accuracy trends of LSCRDTW within the
specified range over 10 datasets are first analyzed as a
representative. .en, the average accuracy curves of 5 fusion
models (LSCRDTW, LSCRERP, LSCRED, LSCRTWE, and
LSCRMSM) are presented for parameter setting.

Figure 3 shows the sensitivity of prediction results of
different datasets to parameter k. From Figure 3(a), it can be
seen that most accuracy rates on 5 binary-class datasets reach
the maximum values when parameter k is 5, and then all of the
curves show a significant downward trend. From Figure 3(b),
except for the MiddlePhalanxOutlineAgeGroup, the accuracy
rates on 4 multiclass datasets exhibit a growth trend as k
increases in the previous stage. When k is greater than 6,
the accuracy on each dataset tends to be stable or de-
crease. .e above experimental results suggest that the
accuracy of LSCR generally varies regularly with k.
.erefore, we propose to set k based on the trend of
average accuracy.

In Figure 4(a), it can be seen that, on binary-class
datasets, the average accuracy variations of 5 fusion models
show two significantly different trends. One shows a trend of
increasing and gradually becoming stable, while the other
presents a significant decline in accuracy after passing the
inflection point. In Figure 4(b), on multiclass datasets, the
average accuracies of all fusion models first increase and
then decrease slowly after reaching the peak. Finally, in our
work, the value k corresponding to the highest average
accuracy is set as the final parameter of LSCRdist on binary-
class and multiclass datasets, respectively. See Table 2 for
specific settings of the 5 fusion models.

In addition, the effect of instance selection on model
performance is interpreted in Figure 5. In the scatter dia-
gram, each point stands for a dataset. .e more points there

are in the figure that fall below the diagonal line, the better
the performance of LSCRDTW. Since the targeted evaluation
dataset is very helpful to improve the feature quality, the
proposed shapelet evaluation strategy can significantly im-
prove the performance of our model. As shown in Figure 5,
LSCRDTW outperforms LSCRDTW (whole) on almost all
datasets. .e accuracy rates of the above two models are
listed in Table 3.

4.2. Fusion Strategy Analysis. In this section, the effective-
ness of the fusion strategy of global and local similarities is
analyzed. Table 3 presents the accuracies of 5 1NN models
combined with different distance functions (DTW, ERP, ED,
TWE, and MSM) and their corresponding five fusion
models. .e accuracies of the 1NN models are taken from
the website [38].

Figure 6 shows a critical difference diagram studied in
literature [39, 40] for the 10 classification models on 20
datasets. .is diagram is used for the overall test of sig-
nificance of average ranks and can group models without
significant differences into cliques. From the figure, we
find that there are no significant differences in the per-
formance of the 10 models on the 20 datasets, but the
rankings of all fusion models are better than those of the
corresponding 1NN models. .is result suggests that the
fusion model can effectively improve the classification
performance of the 1NN model to some extent. Since
LSCRDTW ranks first, it will be used for further analysis in
the following.

4.3. Performance Analysis. In this section, the proposed
model is compared with shapelet-based classifiers and 1NN
classifiers combining with many commonly used distance
functions and deep learning models.

Table 1: Introduction of the experimental datasets.

Dataset Train Test max_k Length Classes
ArrowHead 36 175 12 251 3
Beef 30 30 6 470 5
BeetleFly 20 20 10 512 2
CBF 30 900 8 128 3
ECGFiveDays 23 861 9 136 2
FaceFour 24 88 3 350 4
FacesUCR 200 2050 4 131 14
GunPoint 50 150 24 150 2
ItalyPowerDemand 67 1029 33 24 2
Lightning7 70 73 8 319 7
MedicalImages 381 760 6 99 10
MiddlePhalanxOutlineAgeGroup 400 154 55 80 3
MoteStrain 20 1252 10 84 2
Plane 105 105 9 144 7
ProximalPhalanxOutlineAgeGroup 400 205 72 80 3
SonyAIBORobotSurface1 20 601 6 70 2
SonyAIBORobotSurface2 27 953 11 65 2
ToeSegmentation1 40 228 20 277 2
ToeSegmentation2 36 130 18 343 2
Wine 57 54 27 234 2
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4.3.1. Comparison with Shapelet-Based Classifiers. Since the
classification process of the model proposed is similar to the
decision tree, for the sake of fairness, all shapelet-based
comparison models choose the decision tree to make pre-
dictions. Ourmodel is first compared with SDT, fast shapelet
tree (FS) [26], and C4.5 model [41] based on two respective

shapelet transform algorithms. .e symbol SSC4.5 denotes
the C4.5 model based on the transform algorithm proposed
by Yuan et al. [22], and STC4.5 represents the C4.5 model
based on the other one proposed by Lines et al. [20]. .e
shapelet length ranges from 3 to the full length of time series
and increases by 1 each time. All experimental results are

ItalyPowerDemand
MoteStrain
SonyAIBORobotSurface1
SonyAIBORobotSurface2
GunPoint

Accuracy

1 2 3 4 5 6 7 8 9 10 110
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a)

CBF
MedicalImages
ProximalPhalanxOutlineAgeGroup
FacesUCR
MiddlePhalanxOutlineAgeGroup

Accuracy

1 2 3 4 5 6 7 8 9 10 110
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b)

ItalyPowerDemand
MoteStrain
SonyAIBORobotSurface1
SonyAIBORobotSurface2
GunPoint
ProximalPhalanxOutlineAgeGroup
MiddlePhalanxOutlineAgeGroup
CBF
MedicalImages
FacesUCR

Time (s)

1 2 3 4 5 6 7 8 9 10 110
k

0

1000

2000

3000

4000

5000

(c)

Figure 3: .e accuracy and time variations of the model LSCRDTW on 5 binary-class and 5 multiclass datasets with the value k increasing.
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Figure 4: .e average accuracy variations of the model LSCRdist combined with different distance functions on (a) 5 binary-class and (b) 5
multiclass datasets with the parameter k increasing.
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listed in Table 4, and the accuracies of FS are obtained from
the website [38]. In addition, the last line in Table 4 provides
the average accuracy of each model over 20 datasets.

As observed from Figure 7, it is clear that although there
is no significant difference between LSCRDTW and the other
4 shapelet-based models, the average rank of LSCRDTW is the
best.

Figure 8 presents the scatter plot of accuracy comparison
between LSCRDTW and the 4 classical shapelet-based

classifiers. Figure 8(a) shows that LSCRDTW is better than
SDT (14 of 20) over the 20 datasets. From Table 4, we find
that compared with that of SDT built on the entire training
set, the accuracies of LSCRDTW on datasets MoteStrain,
FacesUCR, SonyAIBORobotSurface2, etc., are significantly
improved. In particular, on the dataset FacesUCR, the ac-
curacy of LSCRDTW is 20% greater than that of SDT. In
Figures 8(b)–8(d), it can be concluded that LSCRDTW is also
better than STC4.5 (13 of 16), SSC4.5 (13 of 20), and FS (14 of

Table 3: .e accuracies of LSCRDTW (whole), 5 fusion, and 1NN models.

Dataset LSCRDTW DTW LSCRERP ERP LSCRED ED LSCRTWE TWE LSCRMSM MSM LSCRDTW
(whole)

ArrowHead 0.749 0.800 0.749 0.800 0.794 0.800 0.743 0.794 0.726 0.806 0.629
Beef 0.733 0.667 0.667 0.667 0.700 0.667 0.733 0.600 0.700 0.467 0.733
BeetleFly 0.800 0.650 0.700 0.750 0.750 0.750 0.800 0.700 0.700 0.600 0.500
CBF 0.991 0.994 0.993 0.998 0.984 0.852 0.989 0.991 0.997 0.969 0.994
ECGFiveDays 0.863 0.797 0.905 0.806 0.880 0.797 0.879 0.829 0.900 0.891 0.533
FaceFour 0.909 0.898 0.864 0.864 0.909 0.784 0.886 0.852 0.818 0.943 0.807
FacesUCR 0.924 0.908 0.926 0.921 0.811 0.769 0.854 0.920 0.926 0.971 0.821
GunPoint 0.880 0.913 0.893 0.947 0.887 0.913 0.873 0.953 0.927 0.973 0.720
ItalyPowerDemand 0.948 0.955 0.935 0.955 0.948 0.955 0.948 0.948 0.932 0.944 0.881
Lightning7 0.589 0.712 0.616 0.740 0.548 0.575 0.521 0.753 0.658 0.753 0.548
MedicalImages 0.699 0.747 0.682 0.676 0.653 0.684 0.628 0.711 0.696 0.741 0.507
MiddlePhalanxOutlineAgeGroup 0.539 0.519 0.519 0.481 0.519 0.519 0.545 0.519 0.494 0.494 0.422
MoteStrain 0.903 0.866 0.858 0.872 0.859 0.879 0.908 0.797 0.881 0.855 0.550
Plane 1.000 1.000 1.000 1.000 1.000 0.962 1.000 1.000 1.000 1.000 0.990
ProximalPhalanxOutlineAgeGroup 0.810 0.785 0.815 0.795 0.800 0.785 0.805 0.805 0.727 0.790 0.678
SonyAIBORobotSurface1 0.750 0.696 0.815 0.689 0.775 0.696 0.734 0.681 0.785 0.730 0.704
SonyAIBORobotSurface2 0.843 0.859 0.864 0.823 0.877 0.859 0.846 0.853 0.885 0.871 0.703
ToeSegmentation1 0.816 0.750 0.851 0.833 0.662 0.680 0.811 0.820 0.789 0.816 0.632
ToeSegmentation2 0.900 0.908 0.915 0.923 0.823 0.808 0.938 0.785 0.892 0.754 0.815
Wine 0.611 0.611 0.611 0.611 0.574 0.611 0.593 0.574 0.648 0.593 0.574
Average 0.813 0.802 0.809 0.807 0.788 0.767 0.802 0.794 0.804 0.798 0.687

Table 2: Parameter settings of all fusion models.
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Figure 5: Accuracy comparison between LSCRDTW combining instance selection for shapelet evaluation and LSCRDTW (whole) using the
whole training set as the evaluation set on 20 datasets.
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20). Hence, Figure 8 demonstrates that LSCRDTW outper-
forms the existing shapelet-based decision tree model on the
20 datasets.

To compare the time complexity of LSCRDTW with other
shapelet-based models, the changes in running times of 6
shapelet-based models with increasing number of instances
and instance length are shown in Figure 9, respectively.

LSCRDTW(single) represents the training time of a single
model LSCRDTW for a specific test instance, while LSCRDTW
represents the model running on the entire test set. In the
experiment, a binary-class dataset with uniform distribution
is designed to run the analysis models, and the size of the
training set is always the same as that of the test dataset. For
the first experiment, the sizes of training and test datasets
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Figure 6: .e critical difference diagram for 5 fusion models and 5 corresponding 1NN models on 20 datasets.

Table 4: .e accuracies of 5 shapelet-based models and 3 DTW variants on 20 datasets.

Dataset LSCRDTW SDT STC4.5 SSC4.5 FS WDTW CID DDDTW

ArrowHead 0.749 0.754 0.686 0.686 0.594 0.817 0.829 0.789
Beef 0.733 0.533 0.500 0.600 0.567 0.700 0.633 0.667
BeetleFly 0.800 0.750 0.600 0.700 0.700 0.700 0.750 0.650
CBF 0.991 0.939 0.881 0.979 0.940 0.997 0.999 0.997
ECGFiveDays 0.863 0.994 0.958 0.990 0.998 0.796 0.782 0.769
FaceFour 0.909 0.795 0.750 0.750 0.909 0.875 0.875 0.830
FacesUCR 0.924 0.645 0.662 0.631 0.706 0.920 0.895 0.904
GunPoint 0.880 0.947 0.893 0.913 0.947 0.980 0.927 0.980
ItalyPowerDemand 0.948 0.958 0.954 0.942 0.917 0.950 0.956 0.950
Lightning7 0.589 0.507 0.699 0.575 0.644 0.767 0.699 0.671
MedicalImages 0.699 0.516 0.487 0.638 0.624 0.737 0.742 0.737
MiddlePhalanxOutlineAgeGroup 0.539 0.474 0.448 0.825 0.545 0.519 0.513 0.539
MoteStrain 0.903 0.823 0.760 0.818 0.777 0.859 0.796 0.833
Plane 1.000 0.933 0.905 0.838 1.000 1.000 1.000 1.000
ProximalPhalanxOutlineAgeGroup 0.810 0.781 0.771 0.844 0.780 0.805 0.790 0.800
SonyAIBORobotSurface1 0.750 0.735 0.877 0.849 0.686 0.737 0.815 0.742
SonyAIBORobotSurface2 0.843 0.659 0.757 0.795 0.790 0.831 0.877 0.892
ToeSegmentation1 0.816 0.895 0.899 0.882 0.956 0.794 0.737 0.807
ToeSegmentation2 0.900 0.869 0.869 0.800 0.692 0.892 0.877 0.746
Wine 0.611 0.796 0.759 0.778 0.759 0.574 0.611 0.574
Average 0.813 0.765 0.756 0.792 0.777 0.813 0.805 0.794

CD

5 4 3 2 1

2.350 LSCRDTW
2.950 FS 
2.975 SDT
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Figure 7: .e critical difference diagram for LSCRDTW and 4 shapelet-based models on 20 datasets.
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increase by 10 at a time. .e length of all instances remains
100. For another, the instance length increases by 10 at a
time. .e sizes of training and test sets are 100.

From Figures 9(a) and 9(b), we can determine that the
training time of LSCRDTW (single) is not sensitive to the size
of the training set and is polynomial with respect to the
length of the time series. In particular, it is faster than the
current fastest shapelet-based model FS. Further, as ob-
served from Figures 9(c) and 9(d), with increasing training
set size and instance length, the time consumption gap
between SDT, STC4.5, and LSCRDTW widens, while the gap
between LSCRDTW and SSC4.5 is not obvious.

In conclusion, LSCRDTW is an accurate and rapid
shapelet-based classification model, which is the basis of
learning feature distribution and frequency information.

4.3.2. Comparison with Various 1NN Classifiers. In this
section, except for the five distance functions listed above, we
further compare our model with several DTW variants,
including WDTW, complexity-invariant DTW (CID) [42],
and derivative distanceDTW (DDDTW) [43]. .e accuracies
for the above 1NN models are provided by the website [38]
(see Table 4).

Figure 10 demonstrates that our model exhibits no
significant difference from DTW and its variants, but the
average ranks of LSCRDTW are the best. In Figure 11, it is
clear that LSCRDTW is better than ED (16 of 20), TWE (14 of
20), ERP (13 of 20), MSM (12 of 20), DTW (11 of 20),
WDTW (14 of 20), CID (11 of 20), and DDDTW (13 of 20).

In summary, LSCRDTW is competitive with the 1NN
model that depends on global similarity. .e comparison
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Figure 8: Accuracy comparison between LSCRDTW and 4 shapelet-based classifiers.
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Figure 9: .e running time trends of 6 shapelet-based models with increasing training dataset size and instance length, respectively.
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results suggest that continuously narrowing the search space
of class attributes based on local similarity is an effective way
to make prediction.

4.3.3. Comparison with Deep Learning Models. Now, various
deep learning models have been widely studied in the field of
time series classification. Karim et al. [44] attempted to improve
the univariate time series classification performance of fully
convolutional neural networks (FCNs) by using the long short-
term memory recurrent neural network (LSTM-RNNs) sub-
modules and attention mechanism and proposed the excellent
models LSTM-FCN and ALSTM-FCN. Furthermore, the au-
thors applied the above two models to the multivariate time
series classification problem [45] and studied the reasons why
the two models have superior performance [46]. Fawaz et al.
[47] have reviewed some deep learning models of time series
classification. Here, our model is compared with LSTM-FCN
and 9 deep learning models (ResNet, FCN, Encoder, MLP,
Time-CNN, TWIESN, MCDCNN, MCNN, and t-LeNet) an-
alyzed in the literature [47]. All the experimental results were
obtained from the corresponding literature (see Table 5).

Figure 12 shows that, except for ResNet and FCN,
LSTM-FCN is significantly better than other models, and

that our model is significantly better than MCNN and
t-LeNet. Among the 10 deep learning models, the average
rank of our model is better than 7 of them. In Figure 13, it
can be seen that LSCRDTW is better than Encoder (12 of 20),
Time-CNN (12 of 20), MLP (12 of 20), TWIESN (13 of 20),
MCDCNN (17 of 20), t-LeNet (19 of 20), and MCNN (20 of
20).

Generally, to improve performance, deep learning model
tuning requires an enormous computational cost. To pursue
the optimal accuracy rate, Fawaz et al. [48] even proposed
the neural network ensemble model with 60 deep learning
models, but it is still not better than the traditional ensemble
model HIVE-COTE [49]. It is unfair to compare our model
with the deep learning model based on accuracy alone. In
addition to improving accuracy, we believe that the model
interpretability and data comprehensibility require more
attention. However, the existing feature extraction methods
for time series usually cannot simultaneously obtain the
feature distribution and frequency information. For the deep
learning model, it is difficult to train a targeted model for the
specific instance on a small dataset. Accordingly, in our
work, a highly interpretable classification model based on
the lazy learning strategy is built for each target instance,
which can be applied to gain insight into the local feature
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Figure 11: Accuracy comparison between LSCRDTW and 8 1NN classifiers based on different distance functions.
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Figure 10: .e critical difference diagram for LSCRDTW, DTW, and 3 DTW variants on 20 datasets.
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distribution and frequency information. .e following is a
detailed introduction.

4.4. Interpretability. To demonstrate the stronger inter-
pretability of our model, this section separately analyses
LSCRDTW on a binary-class dataset, MoteStrain, and the
CBF multiclass dataset.

4.4.1. MoteStrain Dataset. Sensing data in MoteStrain are
originally collected to detect potential variables online in the
sensor network [50]. .e classification task on this dataset is
to distinguish whether the sensor is used for humidity
measurement or temperature measurement. .e classifica-
tion performance of our model is significantly better than
that of the model used for comparison and is close to the

current best classification result provided by Bagnall et al.
[38] on this dataset.

To further investigate the proposed model, the shapelet
decision tree built by SDT is shown in Figure 14, where the
symbol S4(0,0) represents the shapelet extracted from the
fourth training instance Train4 in the root node of the
shapelet decision tree. As seen from Figure 14, there is only
one shapelet in the decision tree, where d denotes the dis-
tance between the test instance and the shapelet and δ
represents the split threshold of the shapelet. Based on the
shapelet decision tree, when the distance between the test
instance and the shapelet corresponding to the root node is
not greater than the split threshold, the class prediction value
of the test instance is Class1. Otherwise, it is Class2.

Figure 15 shows six instances and their shapelets
extracted through LSCRDTW. Our model can correctly
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Figure 12: .e critical difference diagram for LSCRDTW and 10 deep learning models on 20 datasets.

Table 5: .e classification accuracies of 10 deep learning models on 20 datasets.

Dataset LSTM-
FCN MLP FCN ResNet Encoder MCNN t-

LeNet MCDCNN Time-
CNN TWIESN

ArrowHead 0.909 0.778 0.843 0.845 0.804 0.339 0.303 0.685 0.723 0.659
Beef 0.900 0.720 0.697 0.753 0.643 0.200 0.200 0.563 0.763 0.537
BeetleFly 0.950 0.870 0.860 0.850 0.745 0.500 0.500 0.580 0.890 0.730
CBF 0.998 0.872 0.994 0.995 0.947 0.332 0.332 0.820 0.957 0.890
ECGFiveDays 0.992 0.970 0.987 0.975 0.982 0.499 0.497 0.762 0.882 0.698
FaceFour 0.943 0.840 0.928 0.955 0.815 0.268 0.295 0.712 0.906 0.855
FacesUCR 0.929 0.833 0.946 0.955 0.874 0.153 0.143 0.756 0.869 0.644
GunPoint 1.000 0.927 1.000 0.991 0.936 0.513 0.493 0.867 0.932 0.961
ItalyPowerDemand 0.963 0.954 0.961 0.963 0.965 0.500 0.499 0.955 0.955 0.880
Lightning7 0.836 0.630 0.827 0.845 0.625 0.310 0.260 0.534 0.651 0.664
MedicalImages 0.801 0.721 0.779 0.770 0.734 0.514 0.514 0.640 0.676 0.649
MiddlePhalanxOutlineAgeGroup 0.813 0.531 0.553 0.569 0.579 0.188 0.571 0.585 0.566 0.581
MoteStrain 0.939 0.858 0.937 0.928 0.840 0.508 0.539 0.765 0.882 0.785
Plane 1.000 0.978 1.000 1.000 0.976 0.130 0.134 0.965 0.965 1.000
ProximalPhalanxOutlineAgeGroup 0.893 0.856 0.831 0.853 0.844 0.488 0.488 0.838 0.828 0.844
SonyAIBORobotSurface1 0.982 0.672 0.960 0.958 0.743 0.443 0.429 0.653 0.687 0.638
SonyAIBORobotSurface2 0.978 0.834 0.979 0.978 0.839 0.594 0.617 0.774 0.841 0.697
ToeSegmentation1 0.983 0.583 0.961 0.963 0.659 0.505 0.526 0.490 0.595 0.865
ToeSegmentation2 0.931 0.745 0.880 0.906 0.795 0.632 0.815 0.443 0.738 0.842
Wine 0.870 0.565 0.587 0.744 0.500 0.500 0.500 0.500 0.517 0.759
Average 0.930 0.787 0.876 0.890 0.792 0.406 0.433 0.694 0.791 0.759
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Figure 15: Six test instances from the MoteStrain dataset and their shapelets found by LSCRDTW..e three instances (a–c) are from Class1,
and the other three (d–f) are from Class2. (a) Test11, (b) Test129, (c) Test189, (d) Test3, (e) Test41, and (f) Test55.
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Figure 14: .e shapelet decision tree and the shapelets found by SDT.
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Figure 13: Accuracy comparison between LSCRDTW and 10 deep learning models.
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predict the class properties of these six instances, while SDT
fails. Meanwhile, it is obvious that there are not only sig-
nificant differences between instances of different types but
also intraclass variations among similar instances. For ex-
ample, the differences among the three instances with the
same class label, Test11, Test129, and Test189, are noticeable,
while there are no obvious common features. However, in
the shapelet decision tree built by SDT, only a shapelet is
found, which is not sufficient to distinguish the two classes.
In contrast to the illustration of the shapelet given in Fig-
ure 14, it is not difficult to find that the optimal shapelet
obtained in the shapelet decision tree is not the most dis-
criminatory feature for the test instances. .is result verifies

that the shapelets extracted from the entire dataset are the
most discriminatory for each training instance in the average
sense; this is also the reason for the poor performance of
SDT on the MoteStrain dataset.

Since the characteristics of each test instance have been
considered in our model, in light of this situation, we can
achieve better classification results. In addition, based on the
shapelet obtained by LSCRDTW, the prediction process of
each instance can be explained. For example, as shown in
Figure 15, the reason why the 11th test instance belongs to
Class1 is that the local feature S110 lies in its initial stage, while
the local feature S410 of the 41st test instance in the middle
part determines its predicted class label.
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Figure 17: .e shapelet coverage scores obtained on the CBF test dataset.
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Figure 16: .e shapelet coverage scores obtained on training and test datasets of MoteStrain: (a) training dataset and (b) test dataset.
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Figure 16 displays the scores of shapelets coverage on the
MoteStrain training and test datasets. It is obvious that the
high score intervals on training and test sets are very similar.
Since there are only 20 instances in the training set, the
scores of shapelet coverage (as shown in Figure 16(a)) may
not accurately reflect the local characteristics. However, we
propose to directly evaluate the local characteristics of test
cases, which can help us utilize large amounts of test data. In
Figure 16(b), it can be seen that local features with different
coverage frequencies of various classes have been detected
from the test dataset, which cannot be captured by other
shapelet-based models. For example, the intervals [9, 16]
(low frequency), [44, 54] (medium frequency), and [59, 76]
(high frequency) (as shown in Figure 16(b)) are three sig-
nificant discriminative intervals of Class2, while the interval
[21, 50] (high frequency) is the most discriminative part of
Class1. Based on the proposed model, using more instances
with accurate labels results in obtaining more accurate local
feature information. .e statistical information helps us
acquire more comprehensive local characteristic informa-
tion of time series data, such as feature distribution and
frequency.

4.4.2. CBF Dataset. .is section studies the multiclass
dataset CBF, which contains three types: Cylinder, Bell, and
Funnel. Figure 17 shows the coverage scores of the CBF test
dataset. It can be determined that the interval [31, 75] covers
the most discriminative intervals for all three classes. In
addition, unlike Cylinder and Funnel, the local interval [0,
15] with relatively low coverage frequency is discriminative
for Bell.

Next, four specific test instances are presented. As shown
in Figure 18, for the multiclass dataset, our model can not
only detect high-frequency shapelets (as shown in
Figures 18(a)–18(c)) but also effectively capture low-fre-
quency shapelets (as shown in Figure 18(d)). .e proposed
model LSCRdist is helpful to make a targeted analysis of each
category of data and each test instance.

5. Conclusions

Aiming at the problems of global shapelet-based models built
on the whole training set, a data-driven model fusing global

and local similarities is proposed. In the model, the shapelet
discriminability is evaluated through a specific subdataset. A
smaller evaluation dataset reduces the computational time
and improves the quality of shapelets. Moreover, target
learning for each instance helps us understand the prediction
process clearly. For example, the shapelets extracted by our
LSCR model can be directly used to explain what charac-
teristics determine the class value of the test instance. Fur-
thermore, the proposed shapelet coverage score is applied to
accurately analyze the local feature information of each class,
which provides comprehensive insight into data character-
istics. In the future, the application of the model in specific
fields will be further studied, including ECG detection and
image contour feature discovery.
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