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)e need for an efficient power source for operating the modern industry has been rapidly increasing in the past years. )erefore,
the latest renewable power sources are difficult to be predicted. )e generated power is highly dependent on fluctuated factors
(such as wind bearing, pressure, wind speed, and humidity of surrounding atmosphere).)us, accurate forecasting methods are of
paramount importance to be developed and employed in practice. In this paper, a case study of a wind harvesting farm is
investigated in terms of wind speed collected data. For data like the wind speed that are hard to be predicted, a well built and tested
forecasting algorithm must be provided. To accomplish this goal, four neural network-based algorithms: artificial neural network
(ANN), convolutional neural network (CNN), long short-term memory (LSTM), and a hybrid model convolutional LSTM
(ConvLSTM) that combines LSTM with CNN, and one support vector machine (SVM) model are investigated, evaluated, and
compared using different statistical and time indicators to assure that the final model meets the goal that is built for. Results show
that even though SVM delivered the most accurate predictions, ConvLSTMwas chosen due to its less computational efforts as well
as high prediction accuracy.

1. Introduction

)e need to move towards renewable and clean energy
sources has increased considerably over the previous years.
Fossil fuels are being misused excessively and eventually
will waste away. However, renewable energy (RE) sources
such as wind, solar, and hydraulic or hydroelectric are
regularly replenished and will sustain forever. Grid oper-
ators who use RE face many challenges which lead to
variability and uncertainty in power generation. For in-
stance, in the case of solar power where the existence of
clouds that move above solar power plants can narrow
power generation for brief intervals of time. Cloud cover
may introduce a very quick shift in the outcome of solar

structures, but solar energy is still considered to be highly
predictable as the sun motion is understood clearly [1].
However, wind power generation is less predictable due to
the fact that fluctuations in wind speed are stochastic in
nature. )is issue will cause a break between supply and
demand. So, in order to enhance and optimize renewable
wind power generation, wind speed or power production
forecasting models are recently being used to resolve this
problem. )is has led to huge increase in installing wind
power plants [2].

As the demand for wind power has increased over the
last decades, there is a serious need to set up wind farms and
construct facilities depending on accurate wind forecasted
data. Collected short-term wind forecasting has a significant
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effect on the electricity [3], which is also necessary to identify
the size of wind farms.

It is obvious that there is a need for an accurate wind
forecasting technique to substantially reduce the cost by
wind power scheduling [4].)ere are several methods which
are aimed at short-time wind forecasting (e.g., statistical
time series and neural networks). For an advanced and more
accurate forecasting, the hybrid models are used. )ese
models combine physical and statistical approaches, short
and medium-term models, and combinations of alternative
statistical models.

)e concept of artificial neural networks (ANNs) was
first introduced by McCulloch and Pitts [5] in 1943 as a
computational model for biological neural networks. Con-
volutional neural network (CNN) was influenced by
“Neocognitron” networks which were first introduced by
Fukushima in 1980 [6]. CNN was based on biological
processes which were hierarchical multilayered neural
networks used for image processing. )ese networks are
capable of “learning without a teacher” for recognition of
various catalyst shapes depending on their geometrical
designs [7].

Long short-term memory (LSTM) [8] is built upon
recurrent neural network (RNN) structure. It was designed
by Hochreiter and Schmidhuber in 1997. LSTM uses the
concept proposed in [9] which depends on feedback con-
nections between its layers. Unlike standard feedforward
neural networks, LSTM can process entire sequences of data
(such as voice or video) and not just single data points (such
as images).

Support vector machine (SVM) [10] is a popular ma-
chine learning technique, which is advanced enough to deal
with complex data. It is aimed to deal with challenges in
classification problems.

In 2016, Convolutional LSTM (ConvLSTM) was used to
build a video prediction model by Shi et al. [11]. A tool is
developed to prognose action-conditioned video that
modeled pixel movement, by predicting a distribution over
pixel movement from earlier frames. Stacked convolutional
LSTM was employed to generate motion predictions. )is
approach has gained the finest outcomes in predicting future
object motion.

An end-to-end learning of drivingmodels was developed
in [12] using a LSTM-based algorithm. A trainable structure
for learning how to accurately predict a distribution among
upcoming vehicle movement is developed through learning
a generic vehicle movement from large-scale crowd-sourced
video. )e data source used a rapid monocular camera,
observations, and past vehicle state. )e images were
encoded through long short-term memory fully convolu-
tional network (FCN-LSTM) to determine the related
graphical illustration in every input frame, side by side with a
temporal network to use the movement history information.
)e authors were able to compose an innovative hybrid
structure for time-series prediction (TSP) that combined an
LSTM temporal encoder utilizing a fully convolutional visual
encoder.

Various papers have been explored in the literature
on wind speed forecasting. For instance, a model was

introduced by Xu et al. [13] to predict short-term wind
speed using LSTM, empirical wavelet transformation
(EWT), and Elman neural network approaches. )e EWT
is implemented to break down the raw wind speed data
into multiple sublayers and employ them in Elman
neural network (ENN) and LSTM network to predict the
low and high frequency sublayers. Unscented Kalman
filter (UKF) along with support vector regression (SVR)
based state-space model was applied by Chen and Yu [14]
to efficiently correct the short-term estimation of wind
speed chain.

A nonlinear-learning scheme of deep learning time
series prediction, EnsemLSTM, was developed by Chen
et al. [15]. )is scheme relied on LSTMs, support vector
regression machine (SVRM), and extremal optimization
algorithm (EO). Wind speed data are forecasted separately
by an array of LSTMs that contained covered layers.
Neurons are built in every hidden layer. )e authors
proved that the introduced EnsemLSTM is capable of
achieving an improved forecasting execution along with
the least mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE),
and the highest R-squared (R2).

A hybrid model constructed of wavelet transform
(WT) and SVM was proposed by Liu et al. [16] to predict
wind speed in the short term. )e model is improved by
genetic algorithm (GA), which is implemented to vary
essential specifications of SVM through reducing the
produced errors and searching the optimum specifica-
tions to bypass the danger of instability. )e presented
model is proved to be more efficient than SVM-GAmodel.
Wang [17] developed a genetic algorithm of wavelet
neural network (GAWNN) model. )e developed model
showed an enhanced operation as compared to the normal
wavelet neural network (WNN) model in predicting short-
term wind power. )e model can be located at the be-
ginning of network training as well as in convergent
precision.

A prediction model was proposed by Sheikh et al. [18]
based on support vector regression (SVR) and neural
network (NN) with backpropagation technique. A win-
dowing data preprocessing was combined with cross and
sliding window validations in order to predict wind speed
with high accuracy. A hybrid method was presented by
Nantian et al. [19], which included variational mode
decomposition (VMD), partial autocorrelation function
(PACF) feature selection, and modular weighted regu-
larized extreme learning machine (WRELM) prediction.
)e optimal number of decomposition layers was ana-
lyzed by the prediction error of one-step forecasting with
different decomposition layers.

A robust forecasting model was proposed by Haijian
and Deng [20] by evaluating seasonal features and lag
space in wind resource. )e proposed model was based on
the multilayered perceptron with one hidden layer neural
network using the Levenberg–Marquardt optimization
method. Least squares support vector machine (LSSVM)
was used by Xiaodan [21] for the wind speed forecasting.
)e accuracy of the prediction model parameters was
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optimized utilizing the particle swarm optimization (PSO)
to minimize the fitness function in the training process.
Ningsih et al. [22] predicted wind speed using recurrent
neural networks (RNNs) with long short-term memory
(LSTM). Two optimization models of stochastic gradient
descent (SGD) and adaptive moment estimation (Adam)
were evaluated. )e Adam method was shown to be better
and quicker than SGD with a higher level of accuracy and
less deviation from the target.

A nonlinear autoregressive neural network (NAR-
NET) model was developed by Datta [23]. )e model
employed univariate time series data to generate hourly
wind speed forecast. )e closed loop structure provided
error feedback to the hidden layer to generate forecast of
the next point. A short-term wind speed forecasting
method was proposed by Guanlong et al. [24] using a
backpropagation (BP) neural network. )e weight and
threshold values of BP network are trained and optimized
by the improved artificial bee colony algorithm. )en, the
gathered samples of wind speed are trained and opti-
mized. When training is finished, test samples are used to
forecast and validate.

Fuzzy C-means (FCM) clustering was used by Gonggui
et al. [25] to forecast wind speed. )e input data of BP
neural network with similar characteristics are divided into
corresponding classes. Different BP neural networks are
established for each class. )e coefficient of variation is used
to illustrate the dispersion of data, and statistical knowledge
is used to illuminate the input data with large dispersion
from the original dataset. Artificial neural networks (ANNs)
and decision trees (DTs) were used by ZhanJie and Mazharul
Mujib [26] to analyze meteorological data for the application
of data mining techniques through cloud computing in wind
speed prediction. )e neurons in the hidden layer are en-
hanced gradually, and the network performance in the form
an error is examined. Table 1 highlights the main charac-
teristics of the existing schemes developed for wind speed
forecasting.

)e novelty of this work lies in enhancing the accuracy of
wind speed forecasting by using a hybrid model called
ConvLSTM and comparing it with other four commonly
used models with optimized lags, hidden neurons, and
parameters. )is includes testing and comparing the per-
formance of these five different models based on historical
data as well employing multi-lags-one-step (MLOS) ahead
forecasting concept. MLOS provided an efficient general-
ization to new time series data. )us, it increased the overall
prediction accuracy. )e remainder of this paper is orga-
nized as follows. Section 2 describes the four learning al-
gorithms in addition to a hybrid algorithm investigated for
an accurate wind speed forecasting. Section 3 illustrates the
study methodology. Section 4 shows a real case study of a
wind farm. Section 5 introduces the results and discussion.
Finally, conclusions and future works are presented in
Section 6.

1.1. Acronyms and Notations. Table 2 illustrates the acro-
nyms and notations used through the paper.

2. Prediction Algorithms

In this section, the algorithms used for wind speed fore-
casting are summarized as follows.

2.1. LSTM Algorithms. LSTM is built in a unique archi-
tecture that empowers it to forget the unnecessary in-
formation, by turning multiplication into addition and
using a function whose second derivative can preserve for
a long range before going to zero in order to reduce the
vanishing gradient problem (VGP). It is constructed of the
sigmoid layer which takes the inputs xtand ht−1 and then
decides by generating the zeros which part from the old
output should be removed. )is process is done through
forget gate ft. )e gate output is given as ft ∗ ct−1. After
that, a vector of all the possible values from the new input
is created by tan h layer. )ese two results are multiplied
to renew the old memory ct−1 that gives ct. In other words,
the sigmoid layer decides which portions of the cell state
will be the outcome. )en, the outcome of the sigmoid
gate is multiplied by all possible values that are set up
through tan h. )us, the output consists of only the parts
that are decided to be generated.

LSTM networks [8] are part of recurrent neural net-
works (RNNs), which are capable of learning long-term
dependencies and powerful for modeling long-range
dependencies. )e main criterion of the LSTM network is
the memory cell which can memorize the temporal state.
It is also shaped by the addition or removal of information
through three controlling gates. )ese gates are the input
gate, forget gate, and output gate. LSTMs are able to renew
and control the information flow in the block using these
gates in the following equations:

sit � σ xt · θxi + ht−1 · θhi + θibias
 , (1)

ft � σ xt · θxf + ht−1 · θhf + θfbias
 , (2)

ct � tan h xt · θx~c + ht−1 · θh~c + θ~cbias
 , (3)

c � ct ⊙ it + ct−1⊙ft, (4)

ot � σ xt · θxo + ht−1 · θho + θobias
 , (5)

ht � ot ⊙ tan h ct( , (6)

where “·” presents matrix multiplication, “⊙” is an ele-
mentwise multiplication, and “θ” stands for the weights. c is
the input to the cell c which is gated by the input gate, while
ot is the output. )e nonlinear functions σ and tan h are
applied elementwise, where σ(x) � 1/1 + e− x. Equations (1)
and (2) establish gate activations, equation (3) indicates cell
inputs, equation (4) determines the new cell states, where the
‘memories’ are stored or deleted, and equation (5) results in
the output gate activations which are shown in equation (6),
the final output.
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Table 1: Main characteristics of the existing wind speed forecasting schemes.

Aim Technique Merits/outcomes Demerits Dataset

Hybrid wind
speed
prediction [13]

Empirical wavelet
transformation (EWT), long
short-term memory neural
network, and a deep learning

algorithm.

)e proposed model has the
satisfactory multistep
forecasting results.

)e performance of the
EWT for the wind speed
multistep forecasting has

not been studied

Four sets of original wind
speed series including 700

samples.

Wind speed
forecasting [14]

Unscented Kalman filter
(UKF) is integrated with
support vector regression

(SVR) model

)e proposed method has
better performance in both

one-step-ahead and
multistep-ahead predictions

than ANNs, SVR,
autoregressive, and

autoregressive integrated
with Kalman filter models

Needs to develop the
predictive model-based
control and optimization
strategies for wind farm

operation.

Center for Energy Efficiency
and Renewable Energy at
University of Massachusetts

Wind speed
forecasting [15]

Long short-term memory
neural networks, support
vector regression machine,
and extremal optimization

algorithm.

)e proposed model can
achieve a better forecasting
performance than ARIMA,
SVR, ANN, KNN, and GBRT

models.

Needs to consider more
interrelated features like

weather conditions, human
factors, and power system

status.

A wind farm in Inner
Mongolia, China

A hybrid short-
term wind
speed
forecasting [16]

Wavelet transform (WT),
genetic algorithm (GA), and
support vector machines

(SVMs)

)e proposed method is
more efficient than a

persistent model and a SVM-
GA model without WT

Needs to augment external
information such as the air
pressure, precipitation, and
air humidity besides the

temperature.

)e wind speed data every
0.5 h in a wind farm of

North China in September
2012

Short-term
wind speed
prediction [18].

Support vector regression
(SVR) and artificial neural

network (ANN) with
backpropagation

)e proposed SVR and ANN
models are able to predict
wind speed with more than

99% accuracy.

Computationally expensive

Historical dataset
(2008–2014) of wind speed
of Chittagong costal area

from Bangladesh
Meteorological Division

(BMD)

Hybrid wind
speed
forecasting [19]

Variational mode
decomposition (VMD), the
partial autocorrelation
function (PACF), and

weighted regularized extreme
learning machine (WRELM)

(i) )e VMD reduces the
influences of randomness

and volatility of wind speed.
(ii) PACF reduces the feature
dimension and complexity of

the model.
(iii) ELM improves the
prediction accuracy.

)e forecasting accuracy of
two-step-ahead and three-
step-ahead predictions
declined to different

degrees.

USA National Renewable
Energy Laboratory (NREL)

in 2004.

Short-term
wind speed
forecasting
[20].

Wavelet analysis and
AdaBoosting neural network.

(i) Benefits the analysis of the
wind speed’s randomness

and optimal neural network’s
structure.

(ii) It can be used to promote
the model’s configuration
and show the confidence in
high-accuracy forecasting.

Needs to consider the
dynamical model with

ability of error correction
and adaptive adjustment.

USA National Renewable
Energy Laboratory (NREL)

in 2004.

Short-term
wind speed
forecasting
[21].

Support vector machine
(SVM) with particle swarm

optimization (PSO)

)e proposed model has the
best forecasting accuracy
compared to classical SVM
and backpropagation neural

network models.

Needs to consider
additional information for
efficient forecasting such as

season and weather
variables.

Wind farm data in China in
2011.

Wind speed
predictions
[22].

Recurrent neural network
(RNN) with long short-term

memory (LSTM).

)e model provides 92.7%
accuracy for training data
and 91.6% for new data.

High rate epochs increased
the process time and

eventually provided low
accuracy performance.

Nganjuk Meteorology and
Geophysics Agency
(BMKG), East Java

(2008–2017).

Forecasting
multistep-
ahead wind
speed [23]

NARNETmodel to forecast
hourly wind speed using an
artificial neural network

(ANN).

)e model is cost effective
and can work with minimum
availability of statistical data

(i) Faulty measurements of
inputs are likely to affect the

model parameters.
(ii) Removing rapid changes
using a low-pass filter might

result in neglecting
important information.

Meteorological data from
the National Oceanic and

Atmospheric
Administration (NOAA)
located in Dodge City,
Kansas (January 2010
-December 2010).
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Table 1: Continued.

Aim Technique Merits/outcomes Demerits Dataset

Short-term
wind speed
prediction [24]

Backpropagation (BP) neural
network based on improved

artificial bee colony
algorithm (ABC-BP).

)e model has high precision
and fast convergence rate
compared with traditional
and genetic BP neural

networks.

Sensitive for noisy data.
)erefore, data should be
filtered, which may affect

the nature of data.

Wind farm in Tianjin,
China (December

2013–January 2014).

Short-term
wind speed
forecasting [25]
2019

Fuzzy C-means clustering
(FCM) and improved mind
evolutionary algorithm-BP

(IMEA-BP).

)e proposed model is
suitable for one-step

forecasting and enhances the
accuracy of multistep

forecasting.

)e accuracy of multistep
forecasting needs to be

further improved.
Wind farm in China

Predicting wind
speed [26].

Artificial neural network and
decision tree algorithms

)e platform has the ability
of mass storage of

meteorological data, and
efficient query and analysis of

weather forecasting.

Needs improvement in
order to forecast more

realistic weather
parameters.

Meteorological data
provided by the Dalian
Meteorological Bureau

(2011–2015)

Our scheme

Employing multi-lags-one-
step (MLOS) ahead

forecasting technique with
artificial learning-based

algorithms

)e provided results suggest
that the ConvLSTM model
has the best performance as
compared to ANN, CNN,
LSTM, and SVM models.

Increasing the number of
hidden layers may increase
the computational time

exponentially.

National Wind Institution,
West Texas Mesonet

(2012–2015)

Table 2: Acronyms and notations used.

Category Items/symbols Description

Acronyms

ANN Artificial neural network
CNN Convolutional neural network
LSTM Long short-term memory

ConvLSTM Convolutional LSTM hybrid model
SVM Support vector machine
RE Renewable energy
RNN Recurrent neural network
EWT Empirical wavelet transformation
ENN Elman neural network

FC-LSTM Fully connected-long short-term memory
FCN-LSTM Long short-term memory fully convolutional network

TSP Time-series prediction
UKF Unscented Kalman filter
SVR Support vector regression
SVRM Support vector regression machine
EO Extremal optimization
MAE Mean absolute error
RMSE Root mean square error
MAPE Mean absolute percentage error
R2 R-squared
WT Wavelet transform
GA Genetic algorithm

GAWNN Genetic algorithm of wavelet neural network
WNN Wavelet neural network
MLOS Multi-lags-one-step
VGP Vanishing gradient problem
LM Levenberg–Marquardt
RBF Radial basis function
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2.2. CNN Algorithms. CNN is a feed-forward neural net-
work. To achieve network architecture optimization and
solve the unknown parameters in the network, the attributes
of a two-dimensional image are excerpted and the back-
propagation algorithms are implemented. To achieve the
final outcome, the sampled data are fed inside the network to

extract the needed attributes within prerefining. Next, the
classification or regression is applied [27].

)eCNN is composed of basically two types of layers: the
convolutional and the pooling layers.)e neurons are locally
connected within the convolution layer and the preceding
layer. Meanwhile, the neurons’ local attributes are obtained.

Table 2: Continued.

Category Items/symbols Description

Notations

ft Forget gate
Ct )e cell state
sit Input gate
xt Current input data

ht−1 )e previous hidden output
ct Input to cell c
c Memory cell
ct Input to cell c
it Input gate

Ct−1 Past cell status
Ot Output gate
ht Hidden state
· Matrix multiplication
⊙ An elementwise multiplication
θ Weight
c )e input to the cell
σ Nonlinear function
zj )e jth hidden neuron
p Number of inputs to the network
m Number of hidden neurons
wij )e connection weight from the ith input node to the jth hidden node
yk−i i-step behind previous wind speed

fh(.) )e activation function in the hidden layer
wj )e connection weight from the jth hidden node to the output node
yk )e predicted wind speed at the kth sampling moment
fo )e activation function for the output layer
yk Actual wind speed
xi Input vector
yi Output vector
Rm Regularized function

f(x) A function that describes the correlation between inputs and outputs.
ϕx(.) Preknown function
R[f] Structure risk

w )e regression coefficient vector
b Bias term
c Punishment coefficient

L(xi, yi, f(xi)
) )e ε-insensitive loss function

ε )reshold
ζ i, ζ
∗
i Slack variables that let constraints feasible

ai, a∗i )e Lagrange multipliers
K(xixj) )e kernel function

W )e weight matrix
∗ Convolution operation

bi, bf, bc Bias vectors
∘ Hadamard product

Ht Hidden state
Xt Current wind speed measure

Xt−1 Previous wind speed measure
Xt+1 Future wind speed measure
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)e local sensitivity is found through the pooling layer to
obtain the attributes repeatedly. )e existence of the con-
volution and the pooling layers minimizes the attribute
resolution and the number of network specifications which
require enhancement.

CNN typically describes data and constructs them as a
two-dimensional array and is extensively utilized in the area
of image processing. In this paper, CNN algorithm is con-
figured to predict the wind speed and fit it to process a one-
dimensional array of data. In the preprocessing phase, the
one-dimensional data are reconstructed into a two-di-
mensional array. )is enables CNN machine algorithm to
smoothly deal with data. )is creates two files: the property
and the response files. )ese files are delivered as inputs to
CNN. )e response file also contains the data of the expected
output value.

Each sample is represented by a line from the property
and the response files. Weights and biases can be obtained as
soon as an acceptable number of samples to train the CNN is
delivered. )e training continues by comparing the re-
gression results with the response values in order to reach
the minimum possible error. )is delivers the final trained
CNN model, which is utilized to achieve the needed
predictions.

)e fitting mechanism of CNN is pooling. Various
computational approaches have proved that two approaches
of pooling can be used: the average pooling and the max-
imum pooling. Images are stationary, and all parts of image
share similar attributes. )erefore, the pooling approach
applies similar average or maximum calculations for every
part of the high-resolution images.)e pooling process leads
to reduction in the statistics dimensions and increase in the
generalization strength of the model. )e results are well
optimized and can have a lower possibility of over fitting.

2.3. ANN Algorithms. ANN has three layers which build up
the network. )ese are input, hidden, and output layers.
)ese layers have the ability to correlate an input vector to an
output scalar or vector using activation function in various
neurons.)e jth hidden neuron Zjcan be computed by the p

inputs and m hidden neurons using the following equation
[14]:

Zj � fh 

p

i�1
wijyk−i

⎛⎝ ⎞⎠, (7)

where wij is the connection weight from the ith input node to
the jth hidden node, yk−i is i-step behind previous wind
speed, and fh(.) is the activation function in the hidden
layer. )erefore, the future wind speed can be predicted
through

yk � fo 

m

j�1
wjzj

⎛⎝ ⎞⎠, (8)

where wj is the connection weight from the jth hidden node
to the output node and yk is the predicted wind speed at the
kth sampling moment while f0 is the activation function for
the output layer. By minimizing the error between the actual
and the predicted wind speeds, yk and yk, respectively, using
Levenberg–Marquardt (LM) algorithm, the nonlinear
mapping efficiency of ANN can be obtained [28].

2.4. SVM Algorithms. Assuming a set of samples xi, yi ,
where i � 1, 2, . . . , N, with input vector xi ∈ Rm and out-
put vectoryi ∈ Rm. )e regression obstacles aim to identify
a function f(x)that describes the correlation between inputs
and outputs. )e interest of SVR is to obtain a linear re-
gression in the high-dimensional feature space delivered by
mapping the primary input set utilizing a preknown func-
tion ϕ(x(.))and to minimize the structure riskR[f]. )is
mechanism can be written as follows [15]:

f(x) � w
Tϕ(x) + b,

R[f] �
1
2
‖W‖

2
+ C 

N

i�1
L xiyif xi( ) ,

(9)

where W, b, and C,respectively, are the regression coefficient
vector, bias term, and punishment coefficient. L(xi, yi, f(xi)

)

is the e-insensitive loss function.)e regression problem can
be handled by the following constrained optimization
problem:

min ,
1
2
‖W‖

2
+ C 

N

i�1
L ζ iζ

∗
i( ,

s.t., yi − wTϕ(x) + b  ≤ ε + ζ i wTϕ(x) + b  − yi ≤ ε + ζ ∗i ζ i, ζ
∗
i ≥ 0, i � 1, 2, . . . , N,

(10)

where ζ iand ζ ∗i represent the slack variables that let con-
straints feasible. By using the Lagrange multipliers, the re-
gression function can be written as follows:

f(x) � 
N

i�1
ai − a

∗
i( K xixj  + b, (11)

where aiand a∗i are the Lagrange multipliers that fulfil
the conditions ai ≥ 0, a∗i ≥ 0 and 

N
i�1(ai − a∗i ) � 0. K(xixj)

is a general kernel function. In this study, the well-known
radial basis function (RBF) is chosen here as the kernel
function:

Computational Intelligence and Neuroscience 7



K xixj  � exp −
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (12)

where σ defines the RBF kernel width [15].

2.5. ConvLSTM Algorithm. ConvLSTM is designed to be
trained on spatial information in the dataset, and its aim is to
deal with 3-dimentional data as an input. Furthermore, it
exchanges matrix multiplication through convolution op-
eration on every LSTM cell’s gate. By doing so, it has the
ability to put the underlying spatial features in multidi-
mensional data.)e formulas that are used at each one of the
gates (input, forget, and output) are as follows:

it � σ Wxi ∗ xt + Whi ∗ ht−1 + bi(  ,

ft � σ Wxf ∗ xt + Whf ∗ ht−1 + bf ,

ot � σ Wxo ∗xt + Who ∗ ht−1 + bo( ,

Ct � ft ∘Ct−1 tan h Wxc ∗xt + Whc ∗ ht−1 + bc( ,

Ht � o − t ∘ tan h ct( ,

(13)

where it, ft, and ot are input, forget, and output gates and W

is the weight matrix, while xt is the current input data. ht−1 is
the previous hidden output, and Ct is the cell state.

)e difference between these equations in LSTM is that
the matrix multiplication (·) is substituted by the convo-
lution operation (∗) between W and each xt, ht−1 at every
gate. By doing so, the whole connected layer is replaced by a
convolutional layer. )us, the number of weight parameters
in the model can be significantly reduced.

3. Methodology

Due to the nonlinear, nonstationary attributes and the
stochastic variations in the wind speed time series, the ac-
curate prediction of wind speed is known to be a challenging
effort [29]. In this work, to improve the accuracy of the wind
speed forecasting model, a comparison between five models
is conducted to forecast wind speed considering available
historical data. A new concept called multi-lags-one-step
(MLOS) ahead forecasting is employed to illustrate the effect
on the five models accuracies. Assume that we are at time
index Xt. To forecast one output element in the future Xt+1,
the input dataset can be splitted into many lags (past data)
Xt−I, where I ∈ {1–10}. By doing so, the model can be trained
on more elements before predicting a single event in the
future. In addition to that, the model accuracy showed an
improvement until it reached the optimum lagging point,
which had the best accuracy. Beyond this point, the model
accuracy is degraded as it will be illustrated in the Results
section.

Figure 1 illustrates the workflow of the forecasting
model. Specifically, the proposed methodology entails four
steps.

In Step 1, data have been collected and averaged from 5
minutes to 30 minutes and to 1 hour, respectively. )e
datasets are then standardized to generate a mean value of 0

and standard deviation of 1. )e lagging stage is very im-
portant in Step 2, as the data are split into different lags to
study the effect of training the models on more than one
element (input) to predict a single event in the future. In Step
3, the models have been applied taking into consideration
that somemodels such as CNN, LSTM, and ConvLSTM need
to be adjusted from matrix shape perspective. )ese models
normally work with 2D or more. In this stage, manipulation
and reshaping of matrix are conducted. For the sake of
checking and evaluating the proposed models, in Step 4,
three main metrics are used to validate the case study (MAE,
RMSE, and R2). In addition, the execution time and opti-
mum lag are taken into account to select the best model.

Algorithm 1 illustrates the training procedure for
ConvLSTM.

4. Collected Data

Table 3 illustrates the characteristics of the collected data in 5
minutes time span. )e data are collected from a real wind
speed dataset over a three-year period from the West Texas
Mesonet, with 5-minute observation period from near Lake
Alan, Garza [30]. )e data are processed through averaging
from 5 minutes to 30 minutes (whose statistical charac-
teristics are given in Table 4) and one more time to 1 hour
(whose statistical characteristics are also given in Table 5).
)e goal of averaging is to study the effect of reducing the
data size in order to compare the five models and then select
the one that can achieve the highest accuracy for the three
dataset cases. As shown in the three tables, the data sets are
almost identical and reserved with their seasonality. Also,
they are not affected by the averaging process.

)e data have been split into three sets (training, vali-
dation, and test) with fractions of 53 :14 : 33.

5. Results and Discussion

To quantitatively evaluate the performance of the predictive
models, four commonly used statistical measures are tested
[20]. All of them measure the deflection between the actual
and predicted wind speed values. Specifically, RMSE, MAE,
and R2 are as follows:

RMSE �

������������


Ni

i�1 yi − yi( 
2

Ni



,

MAE �
1
N


N

i�1 yi − yi


,

R
2

� 1 −


Ni

i�1 yi − yi( 
2


Ni

i�1 yi − yi( 
2,

(14)

where yi and yi are the actual and the predicted wind speed,
respectively, while yi is the mean value of actual wind speed
sequence. Typically, the smaller amplitudes of these mea-
sures indicate an improved forecasting procedure, while R2

is the goodness-of-fit measure for the model. )erefore, the
larger its value is, the fitter the model will be. )e testbed
environment configuration is as follows:
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Figure 1: )e proposed forecasting methodology.

Input: the wind speed time series data
Output: forecasting performance indices

(1) )e wind speed time series data are measured every 5minutes, being averaged two times for 30minutes and 1 hour, respectively.
(2) )e wind datasets are split into Training, Validation, and Test sets.
(3) Initiate the multi-lags-one-step (MLOS) arrays for Training, Validation, and Test sets.
(4) Define MLOS range as {1 :10} to optimize the number of needed lags.
(5) loop 1:

Split the first set based on MLOS range
Initiate and Extract set features with CNN layer
Pass the output to a defined LSTM layer
Select the first range of the number of hidden neurons
Generate prediction results performance indices
Count time to execute and produce prediction results
Save and compare results with previous ones
loop 2:
Select next MLOS range
If MLOS range�maximum range, then goto loop 3 and initialize MLOS range
goto loop 1
loop 3:
Select new number of hidden neurons
If number of hidden neurons range�maximum range, then goto loop 4 and initialize number of hidden neurons range
goto loop 1

(6) loop 4:
Select new dataset from the sets {5min, 30min, and 1 hr}
goto loop 1
If set range�maximum range, then:
Generate the performance indices of all tested sets.
Select the best results metrics

ALGORITHM 1: ConvLSTM training.
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(1) CPU : Intel (R) Core(TM) i7-8550U CPU @
1.80GHz, 2001 Mhz, 4 Core (s), 8 Logical Processor
(s)

(2) RAM : Installed Physical Memory 16.0 GB
(3) GPU :AMD Radeon(TM) RX 550 10GB
(4) Framework: Anaconda 2019.07, Python 3.7

Table 6 illustrates the chosen optimized internal pa-
rameters (hyperparameters) for the forecasting methods
used in this work. For each method, the optimal number of
hidden neurons is chosen to achieve the maximum R2 and
the minimum RMSEand MAE values.

After the implementation of CNN, ANN, LSTM,
ConvLSTM, and SVM, it was noticed that the most fitted
model was chosen depending on its accuracy in predicting
future wind speed values. )us, the seasonality is considered
for the forecast mechanism.)e chosen model has to deliver
the most fitted data with the least amount of error, taking
into consideration the nature of the data and not applying
naive forecasting on it.

To achieve this goal, the statistical error indicators are
calculated for every model and time lapse and fully repre-
sented as Figure 2 illustrates. )e provided results suggest
that the ConvLSTM model has the best performance as
compared to the other four models.)e chosen model has to
reach the minimum values of RMSE and MAE while
maximum R2 value.

Different parameters are also tested to ensure the right
decision of choosing the best fitted model. )e optimum
number of lags which is presented in Table 7 is one of the
most important indicators in selecting the best fitted model.
Since the less historical points are needed by the model, the
computational effort will be less as well. For each method,
the optimal number of lags is chosen to achieve the max-
imum R2and the minimum RMSE and MAE values. For
instance, Figures 3 and 4 show the relation between the

statistical measures and the number of lags and hidden
neurons, respectively, for the proposed ConvLSTM method
for the 5 minutes time span case. It can be seen that 4 lags
and 15 hidden neurons achieved maximum R2 and mini-
mum RMSE and MAE values.

)e execution time shown in Table 8 is calculated for
each method and time lapse to assure that the final and
chosen model is efficient and can effectively predict future
wind speed. )e shorter the time for execution is, the more
efficient and helpful the model will be. )is is also a sign that
the model is efficient for further modifications. According to
Table 8, the ConvLSTM model beats all other models in the
time that it needed to process the historical data and deliver a
final prediction; SVM needed 54 minutes to accomplish the
training and produce testing results while ConvLSTM made
it in just 1.7 minutes. )is huge difference between them has
made the choice of using ConvLSTM.

Table 3: Dataset characteristic for 5min sample.

Dataset Max Median Min Mean Std
All datasets 18.73 3.53 0.01 3.91 2.10
Training dataset 18.73 3.47 0.01 3.83 2.05
Test dataset 14.87 3.67 0.01 4.05 2.20

Table 4: Dataset characteristic for 30min sample.

Dataset Max Median Min Mean Std
All datasets 17.66 3.53 0.01 3.91 2.08
Training dataset 17.66 3.47 0.01 3.837309 2.02
Test dataset 14.32 3.67 0.02 4.05 2.18

Table 5: Dataset characteristic for 1 hour sample.

Dataset Max Median Min Mean Std
All datasets 17.61 3.53 0.07 3.91 2.05
Training dataset 17.61 3.46 0.07 3.83 2.00
Test dataset 14.22 3.66 0.07 4.05 2.15

Table 6: Optimized internal parameters for the forecasting
methods.

Method Sets of parameters

LSTM
5min: 17 hidden neurons
30min: 20 hidden neurons
1 hour: 8 hidden neurons

CNN
5min: 15 hidden neurons
30min: 5 hidden neurons
1 hour: 15 hidden neurons

ConvLSTM
5min: 15 hidden neurons
30min: 8 hidden neurons
1 hour: 20 hidden neurons

ANN
5min: 15 hidden neurons
30min: 15 hidden neurons
1 hour: 20 hidden neurons

SVR
5min: C� 7, ε� 0.1, c � 0.2.

30min: C� 1, ε� 0.25, c � 0.15.
1 hour: C� 1, ε� 0.1, c � 0.05.
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Figure 5 shows that the 5-minute lapse dataset is the
most fitted dataset to our chosen model. It declares how
accurate the prediction of future wind speed will be.

For completeness, to effectively evaluate the investi-
gated forecasting techniques in terms of their prediction
accuracies, 50 cross validation procedure is carried out in
which the investigated techniques are built and then
evaluated on 50 different training and test datasets, re-
spectively, randomly sampled from the available overall
dataset. )e ultimate performance metrics are then re-
ported as the average and the standard deviation values of
the 50 metrics obtained in each cross validation trial. In
this regard, Figure 6 shows the average performance
metrics on the test dataset using the 50 cross validation
procedure. It can be easily recognized that the forecasting
models that employ the LSTM technique outperform the
other investigated techniques in terms of the three per-
formance metrics, R2, RMSE, and MAE.

From the experimental results of short-term wind speed
forecasting shown in Figure 6, we can observe that
ConvLSTM performs the best in terms of forecasting metrics
(R2, RMSE, andMAE) as compared to the other models (i.e.,
CNN, ANN, SVR, and LSTM). )e related statistical tests in
Tables 6 and 7, respectively, have proved the effectiveness of
ConvLSTM and its capability of handling noisy large data.
ConvLSTM showed that it can produce high accurate wind
speed prediction with less lags and hidden neurons. )is
was indeed reflected in the results shown in Table 8 with
less computation time as compared to the other tested
models. Furthermore, we introduced the multi-lags-one-
step (MLOS) ahead forecasting combined with the hybrid
ConvLSTMmodel to provide an efficient generalization for
new time series data to predict wind speed accurately.
Results showed that ConvLSTM proposed in this paper
is an effective and promising model for wind speed
forecasting.

CNN ANN LSTM SVM ConvLSTM
5min 0.9873 0.9873 0.9876 0.9815 0.9876
30min 0.9091 0.9089 0.9097 0.9078 0.9098
1hour 0.8309 0.8302 0.8315 0.8211 0.8316

V
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CNN ANN LSTM SVM ConvLSTM
5min 0.2482 0.2483 0.2424 0.2462 0.2419
30min 0.6578 0.6588 0.6467 0.6627 0.6463
1hour 0.8862 0.8881 0.8718 0.9116 0.8717
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CNN ANN LSTM SVM ConvLSTM
5min 0.1806 0.1798 0.1758 0.1855 0.1755
30min 0.4802 0.4799 0.4721 0.4818 0.4741
1hour 0.6468 0.6473 0.6392 0.6591 0.6369

Models

MAE

0
0.06
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0.18
0.24
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0.54

0.6
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(c)

Figure 2: Models’ key performance indicators (KPIs).

Table 7: Optimum number of lags.

Method 5min 30min 1 hour
CNN 9 4 4
ANN 3 3 3
LSTM 7 6 10
ConvLSTM 4 5 8
SVR 9 4 5
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Figure 3: ConvLSTM measured statistical values and number of hidden neurons.
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Figure 4: ConvLSTM measured statistical values and number of lags.
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Similar to our work, the proposed EnsemLSTM model
by Chen et al. [15] contained different clusters of LSTM
with different hidden layers and hidden neurons. )ey
combined LSTM clusters with SVR and external optimizer
in order to enhance the generalization capability and ro-
bustness of their model. However, their model showed a
high computational complexity with mediocre perfor-
mance indices. Our proposed ConvLSTM with MLOS

assured boosting the generalization and robustness for the
new time series data as well as producing high performance
indices.

6. Conclusions

In this study, we proposed a hybrid deep learning-based
framework ConvLSTM for short-term prediction of the wind

Table 8: Execution time.

(5min) time (min) (30min) time (min) (1 hour) time (min)
ConvLSTM 1.7338 0.3849 0.1451
SVR 54.1424 0.8214 0.2250
CNN 0.87828 0.1322 0.0708
ANN 0.7431 0.2591 0.0587
LSTM 1.6570 0.3290 0.1473
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Figure 5: ConvLSTM true/predicted wind speed and number of samples.
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Figure 6: Average performance metrics obtained on the test dataset using 50 cross validation procedure.

Computational Intelligence and Neuroscience 13



speed time series measurements. )e proposed dynamic
predictionmodel was optimized for the number of input lags
and the number of internal hidden neurons. Multi-lags-one-
step (MLOS) ahead wind speed forecasting using the pro-
posed approach showed superior results compared to four
other different models built using standard ANN, CNN,
LSTM, and SVM approaches. )e proposed modeling
framework combines the benefits of CNN and LSTM net-
works in a hybrid modeling scheme that shows highly ac-
curate wind speed prediction results with less lags and
hidden neurons, as well as less computational complexity.
For future work, further investigation can be done to im-
prove the accuracy of the ConvLSTM model, for instance,
increasing and optimizing the number of hidden layers,
applying a multi-lags-multi-steps (MLMS) ahead forecast-
ing, and introducing reinforcement learning agent to op-
timize the parameters as compared to other optimization
methods.
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index.php). Data are provided freely for academic research
purposes only and cannot be shared/distributed beyond
academic research use without permission from the West
Texas Mesonet.
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