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Nature-inspired computing has attracted huge attention since its origin, especially in the field of multiobjective optimization.*is
paper proposes a disruption-based multiobjective equilibrium optimization algorithm (DMOEOA). A novel mutation operator
named layered disruption method is integrated into the proposed algorithm with the aim of enhancing the exploration and
exploitation abilities of DMOEOA. To demonstrate the advantages of the proposed algorithm, various benchmarks have been
selected with five different multiobjective optimization algorithms. *e test results indicate that DMOEOA does exhibit better
performances in these problems with a better balance between convergence and distribution. In addition, the new proposed
algorithm is applied to the structural optimization of an elastic truss with the other five existing multiobjective optimization
algorithms. *e obtained results demonstrate that DMOEOA is not only an algorithm with good performance for benchmark
problems but is also expected to have a wide application in real-world engineering optimization problems.

1. Introduction

Conventional mathematical optimization methods have the
disadvantage of getting trapped in local optima for nonlinear
optimization problems. Moreover, such optimization al-
gorithms are highly complex and specialized. Inspired by the
idea of biological evolution in nature, metaheuristic opti-
mization algorithms have attracted huge attention due to the
advantages of local avoidance and easy implementation.
Research on optimization algorithms achieves rapid de-
velopment due to the emergence of metaheuristic optimi-
zation algorithms. Many nature-inspired optimization
algorithms have been proposed in the past few decades,
including particle swarm optimization (PSO) [1], ant colony
optimization (ACO) [2], evolution strategies (ES) [3], ge-
netic algorithm (GA) [4], artificial bee colony algorithm
(ABC) [5], gravitational search algorithm (GSA) [6], bat
algorithm (BA) [7], flower pollination algorithm (FPA) [8],
grey wolf optimizer (GWO) [9], whale optimization

algorithm (WOA) [10], disruption particle swarm optimi-
zation (DPSO) [11], and equilibrium optimization algorithm
(EO) [12]. Most of them are used to handle single objective
optimization problems.

However, there is usuallymore than one objective needs to
be optimized in real-world optimization problems, which
means the common characteristic of real problems is mul-
tiobjective. In contrast to single objective problem, a multi-
objective problem takes several conflicting objectives into
consideration simultaneously. Instead of a single optimal
solution, there is usually a set of alternative trade-offs between
the objectives called Pareto optimal solutions in a multi-
objective optimization problem [13]. Traditional methods to
handle multiobjective optimization problems sometimes
cannot produce well-distributed solutions along the Pareto
front, and it may have difficulty in finding Pareto optimal
solutions in nonconvex regions [14]. In 1985, Schaffer et al.
[15] proposed the vector evaluated genetic algorithm (Vega)
and applied it to solve the optimization problem involving
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multiple objectives for the first time. *en, a series of initial
multiobjective optimization algorithms based on Pareto op-
timal were proposed successively, such as multiple objective
genetic algorithms (MOGA) [16], niched Pareto genetic al-
gorithm (NPGA) [17], and a nondominated sorting genetic
algorithm (NSGA) [18]. *e characteristics of these multi-
objective optimization algorithms are the individual selection
method based on nondominant ranking and the population
diversity maintaining strategy based on fitness sharing
mechanism. Due to the effectiveness of nature-inspired op-
timization algorithms, research on multiobjective optimiza-
tion algorithms has attracted lots of attention in the past few
decades. Some classical multiobjective evolutionary algo-
rithms have been proposed, including nondominated sorting
genetic algorithm version 2 (NSGA-II) [19], region-based
selection in evolutionarymultiobjective optimization (PESA2)
[20], improving strength-Pareto evolutionary algorithm
(SPEA2) [21], a multiobjective evolutionary algorithm based
on decomposition (MOEA/D) [22], multi objective particle
swarm optimization (MOPSO) [23], and multiobjective
simulated-annealing algorithm (MOSA) [24]. In recent years,
various novel multiobjective optimization algorithms have
been proposed such as multiobjective gravitational search
algorithm (MOGSA) [25], grid-based evolutionary algorithm
(GrEA) [26], multiobjective grey wolf algorithm (MOGWO)
[27], multiobjective ant lion optimizer (MOALO) [28], and
multiobjective whale optimization (MOWOA) [29].

On the basis of absorbing the excellent searching mech-
anism of the equilibrium optimization algorithm and a novel
mutation operator proposed in this work, this paper presented
a disruption-based multiobjective equilibrium optimization
algorithm (DMOEOA), which is able to handle multiobjective
optimization problems. *e novel mutation operator named
layered disruption method is first proposed in this work with
the aim of enhancing the exploration and exploitation abilities
of DMOEOA. In addition, according to the No Free Lunch
theorem [30], one optimization algorithm cannot solve all
optimization problems effectively. *is theorem also provides
researchers with opportunities and motivations to propose
new multiobjective optimization algorithms.

In this paper, the basic concepts of multiobjective op-
timization problems and grid mechanism are given in
Section 2. *e introduction of equilibrium optimization
operator and layered disruption method is presented in
Section 3.Section 4 provides experimental results and
analysis of DMOEOA on benchmark functions with five
multiobjective optimization algorithms. *e analysis of the
layered disruption method and the parametric study is also
conducted in this section. In addition, the application of
DMOEOA in the structural optimization of an elastic truss is
presented in Section 5. Finally, some concluding remarks are
given in Section 6.

2. Basic Concepts

In this section, the concepts of multiobjective optimization
problems (MOPs) are given first, then some definitions of
grid mechanism are provided.

2.1.MultiobjectiveOptimization Problems. *e optimization
of a problem with more than one objective is called mul-
tiobjective optimization. Without a loss of generality, the
MOP can be formulated as a minimization problem as
follows:

Min: F(X) � f1(X), f2(X), . . . , fk(X) 
T
,

S.t. Ls ≤ xs ≤ Js, s � 1, 2, . . . , n,
(1)

where X � (x1, x2, . . . , xn) refers to the decision vector in
the search space Rn, fk(X) denotes the kth objective to be
optimized in the objective space Rk, Ls, and Js represent the
lower limit and upper limit of the decision variable,
respectively.

Definition 1 (Pareto dominance). Given two decision vec-
tors X, Y, the corresponding objective vectors are denoted as
F(X), F(Y), respectively. X dominates Y (denoted as X≺Y)
iff

∀i ∈ (1, 2, . . . , k),

fi(X)≤fi(Y)∧∃j ∈ (1, 2, . . . , k),

fj(X)<fj(Y).

(2)

Definition 2 (Pareto optimality). An obtained solution X is
Pareto optimal iff

∄Y ∈ R
n
: Y≺X. (3)

Definition 3 (Pareto optimal set). *e set of Pareto optimal
solutions is called the Pareto optimal set (PS) iff it is defined
as follows:

PS � X ∈ R
n
|∄Y ∈ R

n
: Y≺X . (4)

Definition 4 (Pareto optimal front). Given a Pareto optimal
set (PS), the Pareto optimal front is defined as follows:

PF � F(X)X ∈ PS{ }. (5)

2.2. Grid Mechanism. Grid mechanism [23, 26, 29] is in-
troduced into DMOEOA due to its conciseness and high
efficiency. In this mechanism, each individual is assigned a
grid location in each dimension of the objective space. *e
grid mechanism is able to reflect the diversity and con-
vergence of the obtained solutions. Some definitions of grid
mechanism used in this work are as follows [26]:

Definition 5 (Grid boundary). minfi(x) and maxfi(x)

represent the minimum and maximum values of the ith

objective, respectively; the lower limit li and the upper limit
ui of the grid in the ith objective space are as follows:
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li � minfi(x) −
maxfi(x) − minfi(x)

2 · div
, (6)

ui � maxfi(x) +
maxfi(x) − minfi(x)

2 · div
, (7)

where div represents the number of divisions (i.e., grids) in
the objective space in each dimension.

Definition 6 (Grid location). *e grid location of an indi-
vidual can be determined as follows:

GLi(x) �
fi(x) − li

di

 , (8)

where di is the width of the grid in the ith objective, [·]

represents the function of rounding up. For example, in
Figure 1, the grid locations of individuals B and C are (1, 4)

and (2, 3), respectively.

Definition 7. (Grid ranking). *e grid ranking (GR) of an
individual is defined as the summation of its grid location in
each objective as follows:

GR(x) � 
k

i�1
GLi(x). (9)

*e smaller the GR(x) value, the more individuals in the
obtained solutions are dominated by an individual x. As
shown in Figure 1, the grid ranking of A is 4; in contrast, the
grid ranking of D is 6, which means that the individual A is
closer to the true Pareto front than the individual D.

Definition 8. (Grid coordinate point distance). *e nor-
malized Euclidean distance between an individual and the
minimal boundary point in its grid is called grid coordinate
point distance (GCPD) , which is defined as follows:

GCPD(x) �

��������������������������������


k

i�1

fi(x) − li + GLi(x) − 1(  · di( ( 

di

 

2




.

(10)

As for individuals who have the same grid ranking, the
one who has a smaller GCPD value should be selected first.
For example, in Figure 1, individuals E and F have the same
GR value. However, the GCPD of the individual E is smaller
than the individual F, so the individual E should be pre-
ferred. *e general framework of the grid mechanism is
shown in Algorithm 1.

3. The Proposed Algorithm

3.1. Equilibrium Optimizer (EO). *e equilibrium optimi-
zation algorithm is first proposed by Faramarzi et al. [12].
*e equilibrium optimizer is inspired by the control volume
mass balance model, which is applied to the estimation of
dynamic and equilibrium states. In equilibrium optimizer,
each individual (solution) with its concentration C (posi-
tion) is regarded as a search agent. In EO, each individual in

the population is similar to a solution and the individual’s
concentration is similar to a particle’s position in the particle
swarm optimization algorithm [1]. More information about
EO may refer to [12]. Due to the simple principle, easy
implementation, and fast convergence, EO has been widely
applied to solve various single objective optimization
problems, including economic dispatch [31], structural
design optimization [32], and image segmentation [33]. *e
position updating formulation of EO is as follows [12]:

C � Ce + C − Ce( .F +
G

λV
(1 − F), (11)

where V is defined as unit, Ce refers to the equilibrium
candidate, F and G represent exponential term and gen-
eration rate, respectively. λ � (λ1, λ2, . . . , λn)T is a random
vector in the interval of [0, 1], n is the number of dimensions
of the individual’s concentration C.

3.1.1. Equilibrium Pool Ce,pool and Equilibrium Candidate Ce.
*e equilibrium state indicates the final convergence state of
EO. At the beginning of the search process, there is no
knowledge about the final equilibrium state, and the equi-
librium candidate Ce is used to provide a search guide for
individuals in the population. In equilibrium optimizer,
equilibrium candidates are defined by the four best indi-
viduals selected according to their fitness value during the
whole optimization process and an individual whose con-
centration is the average of the above four best individuals.
*e equilibrium pool consists of five individuals.

Ce,pool � Ce(1), Ce(2), Ce(3), Ce(4), Ce(ave) . (12)

However, as for multiobjective optimization problems,
there is usually a set of alternative trade-offs between these
objectives. We cannot sort the solutions based on their
fitness value. *erefore, in DMOEOA, the classical external
repository Rep in MOPSO [23] is used to construct the
equilibrium pool. Solutions in the external repository are

f1

f2

A(2, 2)

B(1, 4)

C(2, 3)

G(4, 4)

D(3, 3)

E(3, 1) F(3, 1)

GCPD

Figure 1: Illustration of grid mechanism in a biobjective space.
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regarded as equilibrium candidates. *e equilibrium pool in
DMOEOA is shown below:

Ce,pool � Rep , (13)

where Rep represents the external repository, and the Rep is
used to keep a historical record of the nondominated so-
lutions found along the whole search process. Each indi-
vidual in each iteration updates its concentration C

(position) with roulette wheel selection among equilibrium
candidates Ce. *e more equilibrium candidates with the
same GR value in the equilibrium pool, the less likely they
are to be selected to guide the particles in the population.*e
above selection method is able to maintain the diversity of
the obtained solutions in the search process.

3.1.2. Exponential Term F. *e concentration updating rule
is mainly controlled by the exponential term F.

F � e
− λ t− t0( ), (14)

t � 1 −
iter
IT

 
a2(iter/IT)( )

, (15)

where t is the function of iterations, t decreases with the
number of iterations, iter and IT represent the current it-
eration and the maximum iteration, respectively. a2 is a
constant value which controls the exploitation ability of EO.
With the aim of achieving high convergence by slowing
down the search speed, t0 is defined as follows:

t0 �
1
λ
ln − a1sign r0 − 0.5(  1 − e

− λt
   + t, (16)

where a1 is a constant value that affects the exploration
ability, sign(r0 − 0.5) is applied to control the direction of
exploration and exploitation, r0 is a random number in [0,
1]. In this work, the values of a1 and a2 are set to 2 and 1,
respectively. *e selection of the two values is consistent
with the original EO algorithm. *erefore, the exponential
term F can be formulated as follows:

F � a1sign r0 − 0.5(  e
− λt

− 1 . (17)

3.1.3. Generation Rate G. Generation rate plays an impor-
tant role in the equilibrium algorithm. It is used to improve
the exploitation ability of EO.

G � G0e
− κ t− t0( ),

G0 � GCP Ce − λC( ,

GCP �
0.5r1, r2 ≥GP,

0, r2 <GP,


(18)

where G0 represents the initial value. GCP is called the
generation rate control probability. GP represents the
generation probability, which is set to 0.5 according to the
original EO algorithm. r1 and r2 are two random numbers in
[0, 1]. κ indicates the decay vector. *is study assumes κ � λ.
*us, the generation rate can be formulated as follows:

G � G0F. (19)

3.2. Layered Disruption Method (LDM). Inspired by the
disruption phenomenon of astrophysics, a novel operator
named “Disruption” and its variants are introduced into
single objective evolutionary algorithms [11, 34, 35]. In this
paper, a layered disruption method is integrated into a
multiobjective equilibrium optimization algorithm to en-
hance its exploration and exploitation abilities.

3.2.1. Disruption Phenomenon. “When a swarm of gravi-
tationally bound particles having a total mass, m, approaches
too close to a massive object, M, the swarm tends to be torn
apart. *e same thing can happen to a solid body held
together by gravitational forces when it approaches a much
more massive object” [36]. *is is called disruption phe-
nomena. *e disruption phenomenon is originated from
astrophysics [36]. As shown in Figure 2, the swarm will be
torn apart when the following condition is satisfied [11]:

R
3

r
3 <

2M

m
, (20)

Input: Pop K�Number of Object in Rk N� Size of population
Ouput: Pop
Create grid for Pop by equations (7)-(8)
for i� 1: N do
for j� 1: K do
Calculate GLj for each individual by equation (9)

end for
Calculate GR and GCPD for each individual by equations (10)-(11)

end for

ALGORITHM 1: Grid Mechanism.
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where R is the distance between the center of mass of the
swarm m and the mass M, and r represents the radius of the
swarm m.

3.2.2. Layered Disruption Condition. In order to simulate
the disruption phenomenon, individuals in the population
Pop with the same GR value are treated as one group, and
different groups have different disruption conditions. It is
different from Liu et al. [11], Sarafrazi et al. [34], and Ding
et al. [35]. All individuals are treated as one group. Here, we
define the disruption coefficient Qi as follows:

Qi � exp −
i

c
 

2
⎡⎣ ⎤⎦, (21)

where c is the number of groups. i represents the ith index
after sorting all groups by increasing order according to GR
values.

In the ith group, individuals with the Si smallest GCPD
values are treated as a whole and denoted as the mass M.
Other individuals who will be disrupted have the total mass
m. Si is defined as follows:

Si � Qi · Ui , (22)

where Ui is the number of individuals in the ith group, and
[·] is the function of rounding up.

3.2.3. Disruption Operator. When the individual satisfies the
disruption condition, a random number which obeys the
Cauchy distribution is utilized to disrupt the individual. *e
cauchyrnd is defined as follows:

f(x) �
1

π · 1 + x
2

 
, x ∈ [− ∞, +∞]. (23)

*e disruption equation is as follows:

Cj(iter) �
iter
IT

  · Cj(iter) + Cau · 1 −
iter
IT

  · Cj(iter),

(24)

where Cj is the position vector of individual j, iter is the
current iteration, IT represents the max iteration. Cau refers
to the disruption operator which is a matrix consisting of a
set of Cauchy random numbers. It is worth noting that
different dimensions of individual j have different Cauchy
random numbers, which is different from Liu et al. [11]. All
dimensions of individual j have the same cauchyrnd.

We can observe that the individual with large GR value
and GCPD value is more likely to be disrupted to explore in a
wide region at the early stage. As the number of iterations
increases, the individual will fully exploit its surrounding
area. *erefore, the disruption method proposed in this
paper is able to enhance the exploration and exploitation
abilities of the proposed algorithm. *e general framework
of the layered disruption method is shown in Algorithm 2.

3.3. @e Pseudocode of the DMOEOA Algorithm. *e pseu-
docode of the DMOEOA algorithm is shown in Figure 3.

3.4. Computational Complexity Analysis of the DMOEOA
Algorithm. *e computational complexity of an algorithm
indicates the number of resources required to run it; the
computational complexity of an algorithm can reflect the
performance of the algorithm. N refers to the number of
individuals in the population and K represents the number
of objectives. *e computational complexity of the main
steps of DMOEOA is shown in Table 1.

*erefore, the computational complexity of DMOEOA
is of O(KN2). *e computational complexity of DMOEOA
is the same as the algorithms employed to compare with
DMOEOA in this paper, including MOPSO, MOALO,
NSGAII, MOWOA, and MOGWO.

4. Simulation Results and Discussion

4.1. Parameter Setting and Instances. In this section, three
kinds of standard benchmark test suites including ZDT
suites [37], DTLZ suites [38], and UF suites [39] are utilized
to validate the performance of the proposed DMOEOA
algorithm. *e optimal Pareto fronts of these test functions
include continuous, discontinuous, convex, and concave.
Five multiobjective optimization algorithms, including
MOPSO, MOALO, MOWOA, NSGAII, and MOGWO, are
employed to compare with DMOEOA. *e parameters of
algorithms shown in Table 2 are chosen. *ese parameters
are selected in accordance with the original algorithms. For
all of the following simulation experiments, the maximum
number of iterations and populations is set to 300 and 200,
respectively. As for ZDT suites [37] and UF suites [39], the
dimension of the search space is set to 30 and the dimension
of the search space of DTLZ suites [38] is set to 12. To
eliminate the randomness of the results, each algorithm runs
30 times on each benchmark test function.

4.2. PerformanceMetrics. In order to minimize the distance
of the Pareto front produced by DMOEOA with respect to
the optimal Pareto front and maximize the diversity of
solutions found, two performance metrics are employed to
quantify the performance of multiobjective optimization
algorithms, including Inverted Generational Distance (IGD)
[40] and metric of Delta (Δ) [19].

*e performance metrics of Inverted Generational
Distance and Delta are formulated as follows:

M m

R

r

Figure 2: Illustration of disruption phenomenon.
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IGD �
1
P

·

�����



P

i�1
D

2
i




, (25)

where P represents the number of true Pareto optimal so-
lutions, Di indicates the Euclidean distance between the ith

true Pareto optimal solution and its nearest solutions in the
external repository. In addition to reflecting the convergence
of the obtained solutions, IGD can reflect the uniformity and
coverage of the obtained solutions. *e smaller the IGD
value, the better coverage and convergence of the obtained
solutions.

Δ �
df + dl + 

E− 1
i�1 di − �d




df + dl +(E − 1)d
, (26)

Input: Pop Ui �Number of individuals in the ith group c Number of groups
Output: Pop
for i� 1:c do

Qi � exp[− (i/r)2]

Si � [Qi Ui]
Calculate GCPD of each individual in the Pop by equation (11)
Sort individuals in the ith group by increasing order according to the GCPD value
for j� Si+ 1:Ui do
Disrupt the jth individual in ith group by disruption equation (27)

end for
end for

ALGORITHM 2: Layered Disruption Method.

Figure 3: Pseudocode of the DMOEOA algorithm.

Table 1: Computational complexity about DMOEOA.

Step Computational complexity
Position updating O(KN)

Grid mechanism O(KN2)

Layered disruption method O(KN2)

Maintenance of external repository O(KN2)
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where di is the Euclidean distance between consecutive
solutions in the obtained solutions and d is the mean of these
distances. df and dl represent the extreme solutions and the
boundary solutions of the obtained solutions, respectively. E

is the number of obtained solutions. *e smaller the Delta
value, the better the diversity of the solution set.

4.3. Discussion and Analysis. *is section provides the
statistical results of DMOEOA and five multiobjective
optimization algorithms, including MOPSO, MOALO,
MOWOA, NSGAII, and MOGWO, for IGD metric and
Delta metric. *e results obtained by those six algorithms
upon test functions are shown in Tables 3 and 4 and
Figures 4 and 5. *e best value is shown in bold. In ad-
dition, theWilcoxon rank-sum test is employed to compare
the IGD results obtained by DMOEOA, and those five
compared algorithms at a significance level of 0.05. *e
IGD results for two-objective test functions and three-
objective test functions are shown in Tables 3 and 4, re-
spectively, in which the “+/�/− ” represent the proposed
algorithm is better than, similar to, or worse than its
corresponding competitor, respectively. *e results are
represented by “w/t/l“, which means that compared to the
competitor, DMOEOA wins on w test functions, ties on t

test functions, and loses on l test functions.
*e statistical results shown in Table 3 indicate that

DMOEOA provides better performance in convergence and
coverage than MOPSO, MOALO, MOWOA, and NSGA-II.
From Figure 5, we can observe that MOPSO shows better
diversity of obtained solutions than other five algorithms on
ZDT1. *e statistical results of the algorithms on ZDT2 and
ZDT3 for IGD in Table 3 show that the proposed DMOEOA
algorithm provides better results on average and standard
deviation of IGD than the other five algorithms. IGD is a
performance metric that reflects the convergence and cov-
erage performance of an algorithm, which means that the
DMOEOA algorithm provides better convergence and
coverage of obtained solutions on ZDT3. In Figure 5, the
boxplot of Delta on ZDT2 indicates that DMOEOA and

MOALO show similar performance in a diversity of ob-
tained solutions, and the boxplot of Delta on ZDT3 suggests
that the DMOEOA algorithm has better performance in a
diversity of obtained solutions than MOALO, MOWOA,
and MOGWO.

As shown in Table 3, the statistical results of the six
algorithms on ZDT4 and ZDT6 test problems for IGD show
that the proposed DMOEOA algorithm is able to outper-
form the other five algorithms on average, and the Wilcoxon
rank-sum test results indicate that the proposed algorithm
has superiority in both coverage and convergence perfor-
mance. From Figure 5, we can observe that although
MOPSO and NSGAII outperform the other four algorithms
in a diversity of obtained solutions on ZDT4 and ZDT6, the
above two algorithms show poor convergence ability on
ZDT4 and ZDT6 test functions.

*e statistical results of the algorithms on UF1 and UF2
for IGD in Table 3 show that the proposed DMOEOA al-
gorithm provides better results on average and standard
deviation of IGD than the other five algorithms, which
means that the DMOEOA algorithm shows better perfor-
mance in convergence and coverage on UF1 and UF2. As
shown in Figure 5, the boxplot of Delta on UF1 indicates that
DMOEOA provides better performance in the diversity of
obtained solutions than MOALO, NSGA-II, and MOGWO.
In contrast, the boxplot of Delta on UF2 indicates that
MOPSO shows better performance in diversity than the
other five algorithms.

*e best results on average and standard deviation of IGD
for UF3 belong to MOGWO and MOWOA, respectively (see
Table 3). *e statistical results of the algorithms on UF4 for
IGD (see Table 3) indicate that DMOEOA shows better
performance in convergence and coverage than the other five
algorithms. *e boxplot of Delta on UF3 and UF4 shown in
Figure 5 indicates that DMOEOA has better performance in
diversity than MOALO, MOWOA and NSGA-II.

UF5 test function has discontinuous Pareto optimal
front. As shown in Figure 4, the best obtained optimal Pareto
fronts of the six algorithms for UF5 suggest that the non-
dominated solutions obtained by DMOEOA are more
uniformly distributed than the other five algorithms.
According to the Wilcoxon rank-sum test results, the
convergence ability of the proposed algorithm on UF5 is
similar to that of MOGWO. *e statistical results of the
algorithms for the IGD metric on UF6 (see Table 3) show
that the convergence and coverage performance of the
proposed algorithm DMOEOA is similar to that of MOPSO,
MOALO, and MOWOA.

UF7 benchmark has a linear Pareto optimal front.
Compared to test functions with disconnected Pareto optimal
fronts, it is easier for algorithms to obtain well-distributed
solutions on the UF7 test problem.*e statistical results of the
algorithm for the IGD metric (see Table 3) on UF7 prove that
the DMOEOA algorithm has better performance in con-
vergence and coverage than MOPSO, MOALO, and NSGAII.
As depicted in Figure 5, the boxplot of Delta on UF7 suggests
that the DMOEOA algorithm shows better performance in
the diversity of obtained nondominated solutions than
MOALO, MOGWO, and MOWOA.

Table 2: Parameters of five multiobjective optimization algorithms.

Algorithm Parameter Value

DMOEOA

Division 10
a1 2
a2 1
GP 0.5

MOPSO

nGrid 10
Inertia weight 0.5

c1 1
c2 2

MOWOA h 10

NSGA-II Crossover probability 1
Mutation probability 0.1

MOGWO

Alpha 0.1
Beta 4

Gamma 2
nGrid 10

Computational Intelligence and Neuroscience 7



UF8, UF9, and UF10 are triobjective test problems, and
these three benchmarks have complex Pareto optimal
fronts, which make them challenging for all the six algo-
rithms. As shown in Figure 4, the best obtained Pareto
optimal front of DMOEOA on UF8 is more distributed
than the other five algorithms. Meanwhile, the statistical
results shown in Table 4 suggest that DMOEOA provides
better results on average and standard deviation of IGD. It
can be stated that the proposed DMOEOA algorithm has
better performance in both convergence and distribution
than the other five algorithms on the UF8 test problem.
From Figure 4, we can observe that all the six algorithms
show poor convergence and distribution on UF9. Com-
pared to the other five algorithms, the DMOEOA has
superiority in both coverage and convergence of obtained
solutions on UF10 according to the Wilcoxon rank-sum
test results shown in Table 4.

DTLZ1 and DTLZ2 are triobjective test problems and
they have multiple local Pareto optimal fronts.*e statistical

results of the algorithm for IGD on DTLZ1 in Table 4 show
that the proposed DMOEOA algorithm performs better in
convergence than the other five algorithms. As shown in
Figure 4, the best obtained optimal Pareto front of NSGA-II
on DTLZ2 is far from the true Pareto optimal front. In
contrast, the obtained optimal Pareto fronts of DMOEOA
and MOPSO are more uniformly distributed than the other
four algorithms. Meanwhile, the statistical results of the
DMOEOA for IGD on DTLZ2 in Table 4 prove that
DMOEOA and MOPSO have superiority in convergence
ability.

Both DTLZ3 and DTLZ4 have concave Pareto optimal
fronts.*e statistical results of the algorithms onDTLZ3 and
DTLZ4 for IGD (see Table 4) show that DMOEOA shows
better results on average and standard deviation of IGD than
the other five algorithms. MOPSO and MOGWO provide
better performance in the diversity of obtained solutions
than the other four algorithms on both DTLZ3 and DTLZ4
(see Figure 5).

Table 3: IGD metric results obtained by DMOEOA and five multiobjective algorithms on two-objective test functions.

Problem Metric DMOEOA MOPSO MOALO NSGAII MOWOA MOGWO

ZDT1
Ave 1.30 E− 02 1.86E− 02 1.91 E− 01 2.12 E+ 00 1.62E− 02 9.46 E−03
Std 1.22E−03 5.27E− 03 7.20 E− 02 2.43E− 01 8.63E− 03 2.12 E− 03

+ + + + −

ZDT2
Ave 9.98E−03 4.30E− 02 4.93E− 01 3.31 E+ 00 1.15E− 02 1.04 E− 02
Std 1.01E−03 1.18E− 01 1.48E− 01 2.61 E− 01 1.56E− 03 3.37 E− 03

+ + + + +

ZDT3
Ave 1.47E−02 5.84E− 02 1.22E− 01 2.84E− 01 1.72E− 02 1.68 E− 02
Std 2.18E−03 4.79E− 02 2.81E− 02 5.90E− 02 3.08E− 03 5.98 E− 03

+ + + + �

ZDT4
Ave 2.21E−02 5.78E+ 00 2.90 E+ 01 9.69 E+ 00 2.29E− 02 1.02 E+ 01
Std 2.01E− 02 1.92E+ 00 1.12E+ 01 3.49E− 01 7.75E−03 1.55 E+ 01

+ + + + +

ZDT6
Ave 2.68E−02 2.77E+ 00 5.82E− 01 6.17 E+ 00 1.75E− 01 1.99E− 01
Std 5.31E− 02 1.99E+ 00 7.81E− 02 2.38 E+ 00 3.80E−03 7.99 E− 02

+ + + + +

UF1
Ave 1.13E−01 2.86E− 01 2.04E− 01 1.25 E+ 00 1.69E− 01 1.34E− 01
Std 1.95E−02 1.06E− 01 3.15E− 02 1.28E− 01 2.50E− 02 4.53 E− 02

+ + + + +

UF2
Ave 5.31E−02 2.00E− 01 2.12 E− 01 4.99E− 01 9.60E− 02 7.45 E− 02
Std 6.98E−03 3.89E− 02 3.33 E− 02 5.41 E− 02 7.79E− 03 8.91 E− 03

+ + + + +

UF3
Ave 5.81 E− 01 6.51E− 01 6.80E− 01 1.26 E+ 00 3.08E− 01 2.77E−01
Std 4.90 E− 02 1.68E− 01 1.74E− 01 1.07E− 01 1.30E−02 3.75 E− 02

+ + + − −

UF4
Ave 6.48E−02 9.79E− 02 9.12E− 02 1.89E− 01 6.92E− 02 6.80 E− 02
Std 4.60E−03 6.68E− 03 1.77 E− 02 5.76E− 03 5.92E− 03 5.28 E− 03

+ + + + +

UF5
Ave 1.88E+ 00 2.44E+ 00 2.16E+ 00 1.23E+ 00 2.23E+ 00 1.93 E+ 00
Std 5.08E− 01 8.97E− 01 1.98E− 01 1.46E−01 3.56E− 01 6.38E− 01

+ + − + �

UF6
Ave 1.08E+ 00 1.12 E+ 00 1.10E+ 00 5.63E− 01 1.14E+ 00 3.48E−01
Std 2.76E− 01 2.62E− 01 3.02E− 01 6.80E− 02 5.06E− 01 1.48E−02

� � − � −

UF7
Ave 2.18 E− 01 2.87E− 01 2.73E− 01 2.83E− 01 2.68E− 01 8.20E−02
Std 8.66 E− 02 1.34E− 01 9.77 E− 02 1.33E− 01 1.25E− 01 1.13E−02

+ + + � −

w\t\l 11\1\0 11\1\0 10\0\2 9\2\1 6\2\4
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Table 4: IGD metric results obtained by DMOEOA and five multiobjective algorithms on three-objective test functions.

Problem Metric DMOEOA MOPSO MOALO NSGAII MOWOA MOGWO

UF8
Ave 2.97E−01 1.31E+00 7.24E− 01 4.37E− 01 6.38 E− 01 6.75E− 01
Std 2.97E−02 2.88 E− 01 1.60E− 01 4.92E− 02 1.17E− 01 2.73E− 01

+ + + + +

UF9
Ave 4.78E− 01 1.50E+ 00 6.64E− 01 3.66E− 01 8.15E− 01 2.69E−01
Std 5.53E− 02 2.57 E− 01 1.26E− 01 2.22E−02 9.63E− 02 1.14 E− 01

+ + − + −

UF10
Ave 6.91E−01 7.69E+ 00 4.44E+ 00 7.09E− 01 5.33E+ 00 2.71E+ 00
Std 7.46E−02 1.32E+ 00 9.25E− 01 8.04E− 02 6.13E− 01 9.23E− 01

+ + + + +

DTLZ1
Ave 5.45E+ 01 8.82E+ 01 5.48E+ 01 3.95E+ 02 8.98E+ 01 7.77 E+ 01
Std 5.34E+ 00 6.40E+ 00 3.93E+ 01 3.72E+ 01 3.06E+ 00 3.26 E+ 01

+ � + + +

DTLZ2
Ave 9.16E− 02 7.84E−02 2.51E− 01 3.34E+ 00 8.89E− 02 4.06E− 01
Std 5.02E− 03 4.33E−03 5.51E− 02 3.43E− 01 6.66E− 03 3.97 E− 02

− + + � +

DTLZ3
Ave 1.82E+ 02 1.88E+ 02 1.92E+ 02 5.19E+ 02 1.89E+ 02 2.08 E+ 02
Std 1.09E+ 01 1.13E+ 01 3.58E+ 01 6.96E+ 01 1.15E+ 01 2.22 E+ 01

+ + + + +

DTLZ4
Ave 7.94E−02 8.54E− 02 2.10E− 01 5.53E− 01 9.54E− 02 8.08 E− 02
Std 1.01E−02 1.09E− 02 6.10E− 02 6.27E− 02 2.48E− 02 2.40 E− 02

+ + + + �

DTLZ5
Ave 2.28E− 02 2.23E− 02 6.59E− 02 3.81E− 01 3.76E− 02 2.07E−02
Std 3.66E−03 3.73E− 03 1.83E− 02 4.35E− 02 5.94E− 03 4.56 E− 03

� + + + �

DTLZ6
Ave 1.66E− 02 8.54E−03 1.17E− 01 8.42 E+ 00 1.72E− 02 8.73 E− 03
Std 1.41E− 03 6.39E−04 8.50E− 02 1.20E− 01 4.83E− 03 6.96 E− 04

− + + � −

DTLZ7
Ave 8.90E−02 1.12E− 01 1.28E+ 00 8.70 E+ 00 8.98E− 02 4.89E− 01
Std 6.25E−03 5.41E− 02 1.81E− 01 7.83E− 01 6.91E− 03 2.08E− 01

+ + + � +
w\t\l 7\1\2 9\1\0 9\0\1 7\3\0 6\2\2
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Figure 4: Continued.
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DTLZ5 and DTLZ6 are both three-objective test prob-
lems with degenerate Pareto optimal fronts. As shown in
Table 4, the statistical results of the algorithms for IGD on
DTLZ5 indicate that DMOEOA has a similar performance
in convergence and coverage with MOPSO and MOGWO.
MOPSO shows better performance in both diversity and
convergence of obtained solutions than DMOEOA,
MOPSO,MOALO, andNSGA-II on DTLZ6 (see Table 4 and
Figure 5).

DTLZ7 is disconnected in both the Pareto optimal set
and the Pareto optimal front. In Table 4, the statistical results
of the algorithms for IGD on DTLZ7 suggest that DMOEOA
provides better results on average and standard deviation of
IGD than the other five algorithms, which means that the
DMOEOA algorithm shows superiority in both convergence

and coverage ability on DTLZ7, and the boxplot of Delta on
DTLZ7 indicates that DMOEOA shows better performance
in the diversity of obtained solutions than MOALO,
MOWOA, and NSGA-II (see Figure 5).

*e above results demonstrate that the DMOEOA al-
gorithm is able to show competitive and promising results
on multiobjective test functions, especially for three-ob-
jective test problems, and the test results indicate that
DMOEOA does exhibit better performances in these
problems with a better balance between convergence and
distribution. *e statistical results for IGD demonstrate the
high convergence ability of DMOEOA. *e layered dis-
ruption method plays an important role in improving the
convergence and distribution performance of DMOEOA.
LDM can prompt the population to conduct extensive
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Figure 4: *e shape of best Pareto optimal fronts obtained by DMOEOA, MOPSO, MOALO, MOWOA, NSGAII, and MOGWO on some
hard test problems.
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searches in each iteration. As the number of iterations in-
creases, the individual will fully exploit its surrounding area.
*us, the exploration and exploitation ability of the pro-
posed algorithm can be enhanced.

4.4. Analysis of Layered Disruption Method (LDM). In this
work, the layered disruption method (LDM) is introduced
into DMOEOA with the aim of enhancing its exploration
and exploitation abilities. *us, it is important to investigate
the impact of the LDM on DMOEOA. In this section, ZDT3,
ZDT4, ZDT6, and DTLZ2 test problems which include
discontinuous, convex, and concave Pareto optimal fronts
are employed as test instances. Different intermediate
generations of nondominated solutions obtained by
DMOEOA and DMOEOA without LDM (denoted as
MOEOA) are recorded to see the impact of LDM on the
proposed algorithm. *e numbers of recorded intermediate
generations include 20, 40, 60, 80, 100, 150, 300. Other

parameters of the DMOEOA algorithm are the same as in
Table 1. Simulation results are depicted in Figures 6–9. *e
results of the algorithms on ZDT3 depicted in Figure 6 show
that DMOEOA is able to find the true optimal Pareto front
after the 60th generation. In contrast, MOEOA cannot
completely converge to the true optimal solutions even in
the 300th generation. As shown in Figure 7, the DMOEOA
converges to the true Pareto front after the 80th generation
on ZDT4. By comparison, MOEOA shows poor conver-
gence and distribution ability on ZDT4. Similarly, simula-
tion results of the algorithms on ZDT6 in Figure 8 indicate
that DMOEOA converges to the optimal Pareto front after
the 60th generation. As for MOEOA, there are still some
poor solutions in the 300th generation. In addition, as shown
in Figure 8, the distribution of best obtained optimal Pareto
solutions of DMOEOA is better thanMOEOA. Compared to
MOEOA, the DMOEOA is able to find the optimal solutions
of DTLZ2 shown in Figure 9 faster. From simulation results
depicted in Figures 6–9, we can observe that the LDM is able
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Figure 5: Boxplot of the statistical results for Delta obtained by DMOEOA, MOPSO, MOALO, MOWOA, NSGAII, and MOGWO.
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to enhance the exploration and exploitation ability of the
proposed algorithm.

4.5. Parametric Study. *e proposed DMOEOA algorithm
introduces the grid mechanism. Meanwhile, the layered
disruption method is based on the grid mechanism, and the
number of grid divisions is a key parameter in the grid
mechanism.*erefore, it is necessary to investigate the effect

of grid division in the performance of the DMOEOA al-
gorithm. In this section, UF {5, 6, 7, 8, 9, 10} test suites are
utilized as test instances. Inverted Generational Distance
(IGD) is employed as the performance metric. We per-
formed runs using different numbers of grid division to see
the effect of this parameter in the performance of the
DMOEOA algorithm. *e number of grid divisions ranges
from 5 to 15. Other parameters of the DMOEOA algorithm
are the same as in Table 1. To eliminate the randomness of
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Figure 6: Pareto solutions of different intermediate generations on ZDT3 obtained by DMOEOA (a) and MOEOA (b).
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Figure 7: Pareto solutions of different intermediate generations on ZDT4 obtained by DMOEOA (a) and MOEOA (b).
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the results, for each given grid division, the proposed al-
gorithm runs 30 times on each benchmark test function.

As shown in Figure 10, with the increase of grid divisions
from 5 to 9, mean IGD values of DMOEOA on UF {5, 6, 8, 9}
test instances decreased gradually, then the mean values of
IGD increased with the number of divisions. As for UF7 and
UF10 test instances, the mean IGD values increased slowly
with the numbers of grid divisions from 9 to 15. From
Figure 10, we can observe that too many or too few divisions
will affect the performance of the algorithm.*e appropriate
number of grid divisions is beneficial to improve the

convergence and coverage ability of the proposed algorithm.
In general, DMOEOA performs well at div ∈ [9, 11] for both
biobjective and triobjective test problems.

5. Application in Structural Optimization of an
Elastic Truss

In this section, the proposed DMOEOA algorithm is applied
to the structural optimization of a 4-bar elastic truss as a
demonstration. *e 4-bar elastic truss design optimization
problem is a well-known engineering problem in the
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Figure 9: Pareto solutions of different intermediate generations on DTLZ2 obtained by DMOEOA (a) and MOEOA (b).
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Figure 8: Pareto solutions of different intermediate generations on ZDT6 obtained by DMOEOA (a) and MOEOA (b).
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structural optimization field [41]. *e structure of the 4-bar
truss is shown in Figure 11.

*e truss is designed with joint displacement and
structural volume as the objectives. And areas of member
cross sections are set as design variables. Mathematically,
this engineering problem is as follows:
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(27) where F � 10 kN, E � 2 · 105 kN/cm2, L � 200 cm, σ � 10
kN/cm2. f1(x) and f2(x) represent the structural volume
and joint displacement of the truss, respectively. xi (i �

1, 2, 3, 4) is the area of cross section of ith member.
IGD metric is utilized as the performance metric. *e

above five algorithms including MOPSO, MOALO,
MOWOA, NSGAII, and MOGWO are employed to be
compared with DMOEOA. *e maximum number of it-
erations and populations is set to 100 and 100, respectively.
To eliminate the randomness of the results, each algorithm
runs 30 times. *e statistical results obtained by those six
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Figure 10: IGD of DMOEOA with different numbers of division on UF {5, 6, 7, 8, 9, 10} test suites. (a) IGD of DMOEOA with different
numbers of divisions on UF5. (b) IGD of DMOEOA with different numbers of divisions on UF6. (c) IGD of DMOEOA with different
numbers of divisions on UF7. (d) IGD of DMOEOA with different numbers of divisions on UF8. (e) IGD of DMOEOA with different
numbers of divisions on UF9. (f ) IGD of DMOEOA with different numbers of divisions on UF10.
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Figure 12: Continued.

Table 5: Results of the IGD for the structural optimization problem.

IGD DMOEOA MOPSO MOALO NSGAII MOWOA MOGWO
Best 1.02E+ 01 1.14E+ 01 2.29E+ 01 5.41E+ 01 1.12E+ 01 1.07 E+ 01
Worst 1.75E+ 01 1.62E+ 01 1.39E+ 02 1.92E+ 02 1.92E+ 01 2.30 E+ 01
Average 1.27E+ 01 1.29E+ 01 3.95E+ 01 1.12E+ 02 1.37E+ 01 1.56 E+ 01
Std. 1.38E+ 00 1.41 E+ 00 2.20E+ 01 3.64E+ 01 2.01 E+ 00 2.66 E+ 00
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algorithms upon the above structural optimization problem
are shown in Table 5 and Figure 12.

*e statistical results shown in Table 5 suggest that
DMOEOA provides better results on best, average, and
standard deviation of IGD than the other five algorithms.

Although the better result on the worst of IGD is obtained by
MOPSO, the superiority of DMOEOA in convergence is
significant. From Figure 12, we can observe that DMOEOA is
able to converge to the true optimal Pareto front. In contrast,
NSGAII andMOALO show the poor distribution of obtained
solutions on this structural optimization problem.

6. Conclusion

*is paper proposes a disruption-based multiobjective
equilibrium optimization algorithm (DMOEOA). *is al-
gorithm integrates a layered disruption method proposed
in this work. Layered disruption method (LDM) is pro-
posed to enhance the exploration and exploitation abilities
of the proposed algorithm. To validate the effectiveness of
the DMOEOA algorithm, three kinds of benchmark test
suites have been selected with five different multiobjective
optimization algorithms which include well-known algo-
rithms and state-of-the-art algorithms. *e test results
suggest that the DMOEOA algorithm is able to show well
performance in these test problems with a better balance
between convergence and distribution. *e impact of the
layered disruption method is analyzed. In addition, we
discuss the influence of division numbers on the perfor-
mance of the proposed DMOEOA algorithm. Moreover,
the new proposed algorithm is also applied for solving the
structural optimization problem of a four-bar elastic truss.
Compared with the other five optimizers, the results show
that DMOEOA is not only an algorithm with well per-
formance for benchmark test functions but also expected to
have a wide application in engineering design optimization
problems. Future research should focus on applying the
proposed DMOEOA algorithm to handle constrained real
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Figure 12:*e shape of best Pareto optimal fronts obtained by (a) DMOEOA, (b)MOPSO, (c) MOALO, (d) MOWOA, (e) NSGAII, and (f)
MOGWO on the structural optimization problem.

Table 6: Nomenclature table for variables and parameters.

X Decision vector
F(X) Objective vector
GL(X) Grid location
GR(X) Grid ranking
GCPD(X) Grid coordinate point distance
C Concentration of an individual
Ce Equilibrium candidate
Ce,pool Equilibrium pool
Q Disruption coefficient
F Exponential term
G Generation rate
Pop Population
Rep External repository
Δ Metric of delta
IGD Inverted generational distance
div Number of grid divisions
d Width of the grid
V Unit
a1 Exploration parameter
a2 Exploitation parameter
GP Generation probability
κ Decay vector
IT Max iteration
K Number of objectives
N Size of population
R Size of external repository
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engineering problems and many-objective optimization
problems (Table 6).
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