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,e shearer is one of the core equipment of the fully mechanized coal face. ,e fast and accurate positioning of the shearer is the
prerequisite for its memory cutting, intelligent height adjustment, and intelligent speed adjustment. Inertial navigation technology
has many advantages such as strong autonomy, good concealment, and high reliability.,e accurate positioning of the shearer based
on inertial navigation can not only determine its operating position but also measure the direction of movement. However, when
inertial navigation is used to locate the shearer in motion, the cumulative errors will occur, resulting in inaccurate positioning of the
shearer. ,e accuracy of the initial alignment is directly related to the working precision of the inertial navigation system. In order to
improve the efficiency and accuracy of initial alignment, an improved initial alignmentmethod is proposed in this paper, which uses a
fruit fly-optimized Kalman filter algorithm for initial alignment. In order to improve the filtering performance, the fruit fly-optimized
Kalman filter algorithm uses an improved fruit fly algorithm to realize the adaptive optimization of system noise variance. Finally,
simulation and experiments verify the effectiveness of the fruit fly-optimized Kalman filter algorithm.

1. Introduction

Coal is the main energy in China. With the development of
the mining industry, coal mine accidents occur frequently,
and coal mining technology tends to be unmanned and
intelligent. ,e application of inertial navigation on the
shearer has become one of the important mining technol-
ogies for unmanned and intelligent coal mining [1, 2], which
is used for the rapid and effective autonomous positioning of
the shearer. Due to the error accumulation problem in
inertial navigation, the initial error should be minimized
before the navigation calculation. ,e accuracy of the initial
alignment is directly related to the working precision of the
inertial navigation system. ,erefore, the rapid and accurate
initial alignment becomes a research hotspot [3–5]. For an
inertial navigation system, the initial alignment is to

determine an initial value such as an attitude matrix at the
initial moment. In the initial alignment, using the output
information of the inertial component, the appropriate
filtering method is selected for initial alignment. ,en, the
misalignment angle between the calculated navigation co-
ordinate system and the real navigation coordinate system is
estimated to correct the attitude matrix, so that the calcu-
lated coordinate system and the real coordinate system are
obtained as close as possible [6, 7]. Kalman filtering (KF) has
a good application for linear system filtering, but Kalman
filter (KF) cannot filter nonlinear systems. For the nonlinear
systems, the Extended Kalman Filter (EKF) and the Un-
scented Kalman Filter (UKF) were invented, and their
principle is to convert nonlinear systems into linear systems
for filtering [8, 9]. ,e Extended Kalman Filter (EKF) ap-
proximates the nonlinear model to a linear model by Taylor
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expansion while the Unscented Kalman Filter (UKF) ap-
proximates the nonlinear model to a linear model through
Unscented Transformation (UT); such methods can solve
nonlinear model filtering, but they introduce a large amount
of computation [10–12].

In recent years, intelligent algorithms have been
widely used in the field of artificial intelligence and deep
learning, and the more classical ones are genetic algo-
rithms (GA) [13], particle swarm optimization (PSO), and
so on [14]. ,e fruit fly optimization algorithm (FOA) is
an intelligent algorithm that seeks global optimization
based on fruit fly foraging behavior. ,e fruit fly itself is
superior to other species in sensory perception, especially
in the sense of smell and vision, and the olfactory organs
can find all kinds of scents floating in the air and even
smell food sources 40 kilometers away. ,en, after flying
near the food location, it can use its sensitive vision to find
food and the location where the companions gather and
fly in that direction [15, 16]. Compared with other clas-
sical intelligent algorithms, the fruit fly optimization al-
gorithm (FOA) has been applied to various fields because
of its simple structure, fast convergence speed, and high
convergence precision, and it attracted the interest of a
large number of researchers. Since the search path of the
fruit fly optimization algorithm (FOA) has difficulty in
meeting the requirements of practical engineering re-
quirements, many scholars have improved the search path
of the fruit fly optimization algorithm (FOA) [17, 18]. ,e
search path of fruit fly optimization algorithm (FOA) is
subject to uniform distribution, for the difficulty of
meeting the practical engineering application. Literature
19 proposes several improved fruit fly optimization paths
and uses improved fruit fly optimization algorithm to
optimize the dual-tree complex wavelet algorithm
(DTCWT) for denoising in practical engineering appli-
cations and achieved reliable results [19]. In the literature
20, Gaussian distribution replaces the original uniform
distribution path in fruit fly optimization algorithm
(FOA), and it is used to optimize wavelet decomposition
(WT) and empirical mode decomposition (EMD) to
denoise the cutting sound of the shearer and then improve
the recognition accuracy of the shearer cutting state [20].
Since the selection of the system noise variance Q pa-
rameter of Kalman filter (KF) has a significant influence
on the filtering effect [21], the selection of the Q is a major
difficulty for scholars to study; most of them now use
experience to choose Q, but, in practical engineering
applications, it is difficult to find a suitable empirical
value. In this paper, an improved fruit fly optimization
algorithm is used to find the appropriate Q value of
Kalman filter (KF) and then the improved Kalman filter is
used to optimize the initial alignment of the shearer
positioning.

,e rest of the paper is organized as follows. Section 2 is
the basic theory. In Section 3, the initial alignment method
based on the fruit fly-optimized Kalman filter algorithm is
presented. ,e simulation test and physical experiment are
described in Section 4, and the conclusions are drawn in
Section 5.

2. Basic Theory

2.1. Kalman Filter. With the development of mathematical
theory and technology, many filtering ideas and methods
suitable for inertial navigation have emerged, and the classic
algorithm is Kalman filter (KF). In the early 1960s, Kalman
and Bucy proposed this linear filtering method, which
combines the concepts of recursive ideas and state variables.
KF can estimate the state quantity of the system according to
the observation measurement that can be observed in the
system and continuously correct the state value and use the
system state equation and observation equation to calculate
and recurse the parameters. Since the mean square error
obtained by estimating the state quantity is less than or equal
to the other estimated mean square error, the KF method is
also called the optimal estimation method.

Assume that the state equation and the observation
equation of the system are as follows:

X(k) � AX(k − 1) + ΓW(k − 1),

Z(k) � HX(k) + V(k),
(1)

where X(k) represents the state vector at system k, A rep-
resents the state transition matrix of the system from k − 1 to
k, and W(k − 1) represents the process noise of the system.
Z(k) represents the observation vector at the time of system k
and V(k) represents the observed noise. Γ represents the
noise drive matrix of the system and H represents the ob-
servation matrix. Generally, it is assumed that W(k − 1) and
V(k) are mutually independent white noises, and their co-
variances are QK and RK, respectively, and the correlation
covariance of the two is 0. ,e recursive process of the
estimated value X(k | k) of the state value X(k) at time k is as
follows.

,e predicted equation of the state variables is

X(k | k − 1) � A X(k − 1 | k − 1). (2)

,e updated equation for estimating the state variables is
X(k | k) � X(k | k − 1) + K(k)[Z(k) − H X(k | k − 1)].

(3)

,e expression matrix of the filter gain is

K(k) �
P(k | k − 1)H

T

HP(k | k − 1)H
T

+ Rk 
. (4)

,e matrix equation for predicting covariance is

P(k | k − 1) � AP(k − 1 | k − 1)A
T

+ ΓQk− 1Γ
T
. (5)

,e updated equation of the covariance matrix is

P(k | k) � [I − K(k)H]P(k | k − 1). (6)

All the above equations are the recursive process of the
Kalman filter. Only X0 and P0 need to be known, and the
optimal estimation value of the state quantity at time k can
be derived from the observation at the corresponding
time.
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2.2. Fruit Fly Optimization Algorithm. ,e fruit fly opti-
mization algorithm is a bionic algorithm based on the
foraging behavior of fruit fly, and the basic flow of the
original fruit fly optimization algorithm can be divided into
the following steps:

Step 1. Initialization algorithm parameters: population
size, sizepop; maximum number of iterations, maxgen;
initial position range, LR; and random flight distance,
FR; and equation (7) is the initial position calculation of
the fruit fly:

X axis � rand(LR),

Y axis � rand(LR).
 (7)

Step 2. ,e random direction and distance of the fruit
fly searching for food are given, and the random search
direction and distance are as shown in the following
equation:

X(i) � X axis + rand(FR),

Y(i) � Y axis + rand(FR).
 (8)

Step 3. Since the position of the food cannot be known,
the distance from the origin of the coordinate (Disti) is
estimated in advance, and, then, the reciprocal is used
as the taste concentration determination value (Si). ,e
calculation formulas of the two are as shown in the
following equation:

Disti �

�����������

X
2
(i) + Y

2
(i)



,

S(i) �
1

Disti
.

(9)

Step 4. ,e taste concentration determination value
(S(i)) is substituted into the taste concentration de-
termination function; the taste concentration (smell(i))
of the individual position of the fruit fly is obtained; the
minimum concentration value is found; and then they
are saved and recorded, as shown in the following
equation:

Smell(i) � function(S(i)), [bestsmell, bestindex]

� min(Smell(i)),

(10)

where bestsmell is the minimum taste concentration,
bestindex is the corresponding fruit fly individual, and
Smell is the set of taste concentration in this group.
Step 5. ,e latest taste concentration will be compared
with the best taste concentration obtained before; if the
latest taste concentration is better than the previous
generation, the latest fruit fly position and taste con-
centration will be updated, as in the following equation:

smellbest � bestsemll
X axis � X(bestindex),

Y axis � Y(bestindex).
 (11)

Otherwise, Step 2 to Step 4 will be repeated until a
better taste density value is found.
Step 6. When the taste density value reaches the preset
precision value or the run reaches the maximum
number of iterations, the loop ends; otherwise, Step 2 to
Step 5 will be repeated.

2.3. Model of Navigation. ,e shearer inertial navigation
positioning is to fix the inertial sensor (gyroscope and ac-
celerometer) on the shearer and obtain the angular velocity
and acceleration information of the shearer separately after
the calculation of the navigation computer, the attitude,
speed, and position of the shearer in the navigation coor-
dinate system are obtained. ,e positional parameters in
strap-down inertial navigation system are determined by
mutual conversion between different coordinate systems,
and several coordinate systems need to be defined, and the
required coordinate systems are shown in Figure 1.

,e inertial coordinate system (i-system) is the mea-
surement reference of the inertial sensor and the origin at the
center of the Earth; the coordinate axis has no rotation with
respect to the star; the axial direction is defined as xi, yi, and
zi; and the zi is consistent with the direction of the polar axis
of the Earth. Earth coordinate system (e-system) is fixed to
the Earth and the origin also at the center of the Earth.
Similarly, each axis is defined as xe, ye, and ze, and the ze

direction is consistent with the direction of the polar axis of
the Earth and xe along the intersection of the Greenwich
meridian and the equatorial plane. ,e e system rotates at an
angular velocity ωie with respect to the i system about ze, and
ωie is the Earth’s rotational speed.,e navigation coordinate
system (n-system), also known as the local geographic co-
ordinate system, is located at the position where the navi-
gation system is located, and this paper is set at the end of the
working face at the start position of the shearer. ,e co-
ordinate axes point in the direction of the east (xn), the true
north (yn), and the sky (zn) direction (the direction of the
local vertical line). ,e calculated navigation coordinate
system (t-system) is calculated by calculation, and there is a
platform error with the real navigation coordinate system
(n-system). ,e carrier coordinate system (b-system), which
can be called the shearer coordinate system, is fixed with the
shearer, and the origin is located at the center of gravity of
the shearer. As shown in Figure 1(b), it is an orthogonal
coordinate system, and the zb points are vertically up, the xb

along the direction of advancing, and the yb points to the
direction of running.,e angle of rotation about the x-axis is
called the roll angle, which is recorded as θ; the angle of
rotation about the y-axis is called the pitch angle, which is
recorded as c; and the angle of rotation about the z-axis is
called the yaw angle, which is recorded as φ. ,e attitude
angle of the shearer is represented by the transformation
relationship between the shearer coordinate system and the
navigation coordinate system.

When the shearer is performing inertial navigation, the
navigation parameters are obtained through the mathe-
matical relationships, and the calculation errors of mathe-
matical relationships have a close relationship with the
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system accuracy. ,erefore, the correct navigation equations
need to be established.

Consider the shearer as a rigid body and set the shearer
position vector to r. ,e inertial navigation system has many
mechanical arrangement methods and because the shearer
runs along the surface of the Earth, this paper selects the
arrangement of the navigation coordinate system. ,e fol-
lowing are the derivation process of the navigation equations
based on this arrangement. According to the Coriolis
equation, the inertial velocity can be expressed in terms of
the Earth’s velocity, as shown in the following equation:

dr

dt

i
�
dr

dt

e
+ wie × ri. (12)

wie is the angular velocity of the Earth’s rotation.
Let(dr/dt)|e � ve; when equation (12) is derived, in the
following equation can be obtained:

d2r
dt2

i
�
dve

dt

i
+
d
dt

ωie × ri( 

i
. (13)

Combining equations (12) and (13) and taking the an-
gular velocity of the Earth’s rotation as a constant, the ex-
pression can be obtained, as shown in in the following
equation:

d2r
dt2

i
�
dv

dt

i
+ ωie × ve + ωie × ωie × r . (14)

It is known that the specific force f is the vector sum of
the inertial force and the gravitational force, that is,
f �(d2r/dt2)|i − g. Setting it in equation (14), the following
equation can be obtained:

dv

dt

i
� f − ωie × ve − ωie × ωie × r  + g. (15)

In equation (15), ωie × ve is the Coriolis acceleration and
ωie × [ωie × r] is the centripetal acceleration, which cannot

be separated from the gravitational acceleration g caused by
mass gravity. ,e sum of the acceleration caused by mass
gravitation and centripetal force constitutes the local gravity
vector; therefore, g − ωie × [ωie × r] can be regarded as the
local gravity vector, which is represented by g1.,e available
expression is as shown in the following equation:

dve

dt

i
� f − ωie × ve + g1. (16)

In the mechanical arrangement of the navigation co-
ordinate system, Earth velocity is expressed as vn

e , and its rate
of change relative to the n-system can be expressed by the
rate of change under the i-system, as shown in the following
equation:

dve

dt

n
�
dve

dt

i
− ωie + ωen  × ve. (17)

In equation (17), ωie is the angular velocity of the Earth’s
rotation and ωen is the rotational angular velocity of the n-
system relative to the e-system. Combining equation (16),
equation (17) can be expressed as a form in the navigation
coordinate system, as shown in the following equation:

_v
n
e � f

n
− 2ωn

ie + ωn
en  × v

n
e + g

n
1. (18)

Equation (18) is the basic equation of the coal mining
machine inertial navigation system. fn is the specific ac-
celeration in the navigation system, and its component form
is fn � fE fN fU 

T. vn
e is the projection of the speed of

the shearer relative to the Earth in the n-system and the
coordinate axes are along the east, north, and local vertical
lines. Its component form is vn

e � vE vN vU 
T. ωn

ie is the
angular velocity of the Earth’s rotation in the n-system,
which can be expressed as ωn

ie � 0 ωie cos L − ωie sin L 
T,

and L is the latitude where the n system is located. ωn
en is the

projection of the angular velocity of the n-system relative to
the e-system in the n-system, which can also be the rotational
angular velocity of the n-series relative to the e-system, and it

yn

xn

zn

zezi
ωie

xi
xe

ye

yi

oe/oi

Equatorial

Greenwich
Meridian
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xb
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zb

Running
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Figure 1: Coordinate systems schematic diagram.
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can be expressed as the rate of change of longitude and
latitude: ωn

en � − _L _l cos L − _l sin L 
T
. Since the working

environment of the shearer is a fully mechanized face, the
deviation between the local gravity vector and the vertical
can be ignore, so, g1 can be expressed as g1 � 0 0 g1 

T.
Combining the above conditions and the algorithm of vector
cross multiplication, the scalar representation of equation
(19) can be obtained:

_vE

_vN

_vU

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

fE + vN 2ωie + _l sin L + vU 2ωie + _l cos L

fN − vE 2ωie + _l sin L + vU
_L

fU − vE 2ωie + _l cos L − vU
_L + g1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(19)

,e rate of change of longitude l can be expressed by
_l � (vE/[(R0 + h)cos L]) and the rate of change of latitude L
can be expressed by _L � (vN/(R0 + h)). R0 is the average
radius of the Earth and h is the altitude at which the nav-
igation coordinate system is located. In addition, there is a
relationship: fn � Cn

bfb, where Cn
b is the direction cosine

matrix, also known as the attitude matrix, which can be used
to convert the measured value of the specific force into the
navigation coordinate system, and fb is the measured value
of the triaxial accelerometer. ,en, equation (20) can also be
expressed as

_vE

_vN

_vU

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� C

n
bf

b
−

2ωie vN sin L + vU cos L(  +
vE

R0 + h( 
vN tan L + vU( 

− 2ωievE sin L +
vUvN − v

2
E tan L

R0 + h( 

− 2ωievE cos L −
v
2
E + v

2
N 

R0 + h( 
+ g1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

3. The Proposed Initial Alignment Method

3.1. Improved Fruit Fly Optimization Algorithm. Due to the
simple structure and fast convergence of the fruit fly opti-
mization algorithm, it is widely used in engineering
scheduling, neural network parameter optimization, pattern
recognition, signal denoising, and so forth. However, after
deep research, domestic and foreign scholars found that the
algorithm is easy to fall into local optimum, and its pop-
ulation diversity is less, lacking a mutation mechanism.

,e original fruit fly optimization algorithm has two
drawbacks:

(1) From equation (8), the position of each fruit fly is a
random step size at the optimal position of the
current population during the generation of the next
generation of individual flies. ,is method only
depends on the optimal position of the current
population and has nothing to do with its own
position, which greatly reduces the diversity of the
population and is easy to fall into local optimum.

(2) In the process of producing the next generation of
fruit fly individuals, the search range of the fruit fly is
determined by the random flight distance FR.
Choosing a larger random step size FR has a better
ability to jump out of the local optimum, but it is easy
to cause the search to be too slow. Choosing a smaller
FR has a faster convergence rate, but it is easy to fall
into the local optimum, so the original FR is difficult
to meet the actual requirements.

In response to the above shortcomings, two improve-
ments to the fruit fly optimization algorithm are presented in
this paper:

(1) Fruit flies are divided into two parts. When the next
generation group is generated, if the optimal value is
not updated for more than two generations, the
current optimal position of the fruit fly is accepted,
and, otherwise, the current position of the fruit fly
itself is accepted.

(2) New search path is taken. When the optimal value
is not updated for more than two generations,
Student’s t-distribution is used instead of the
uniform distribution as the search step. ,at is,
the original rand (FR) is replaced by trnd (FR) and
the number of iterations of the algorithm is used
as the degree of freedom of the student’s t-dis-
tribution. On the contrary, according to the
characteristic that the frequency is inversely
proportional to the wavelength, the frequency
variable f is introduced and the difference be-
tween the current position and the optimal po-
sition is multiplied by the frequency variable f as
the search step. Student’s t-distribution is shown
in Figure 2.

In the first improvement, this improved scheme divides
the fruit fly population into two parts, adopting different
starting positions, increasing the diversity of fruit flies, and
helping the algorithm to jump out of local optimum.

Computational Intelligence and Neuroscience 5



In the second improvement, for path 1, as shown in
Figure 2, when the degree of freedom of Student’s t-dis-
tribution is larger, the distribution is closer to the Gaussian
distribution. In this paper, the number of iterations is taken
as its degree of freedom; as the number of iterations in-
creases, the previous step size of the search path is larger, and
the later step size is smaller. And it has a faster search speed
and the ability to jump out of local optimum. For path 2, the
fruit fly itself moves in the direction of the optimal value by f
times the linear distance, so the search speed is faster.
According to the inverse of the frequency and the wave-
length, the frequency variable f is used to control the distance
of the flight. f constantly changes to meet the open flight
distance, which has a good effect on the algorithm jumping
out of local optimum. ,e basic process of the improved
fruit fly optimization algorithm can be divided into the
following steps:

Step 1. Initialization algorithm parameters: population
size, sizepop; maximum number of iterations, maxgen;
initial position range, LR; random flight distance, FR;
dimension, d; frequency variables, fmin and fmax;
number of iterations, g; and so on. Equation (7) is the
initial position calculation of the fruit fly and obtains
the optimal value of the current population by Step
2–Step 4 in Section 2.2.
Step 2. When more than two generations do not update
the optimal value, the current population optimal po-
sition is taken as the starting point, Student’s t-distri-
bution is used instead of the uniform distribution as the
search step, and the degree of freedom is selected as the
number of iterations, as shown in the following equation:

X(i) � X axis + trnd(g, 1, d),

Y(i) � Y axis + trnd(g, 1, d).
 (21)

Otherwise, the position of the fruit fly itself is taken as
the starting point, and the search process is as shown in
in the following equation:

f(i) � fmin +(fmin − fmax)
∗ rand,

X(i) � X(i − 1) +(X(i − 1) − X axis)∗f(i),

Y(i) � Y(i − 1) +(Y(i − 1) − Y axis)∗f(i).

⎧⎪⎪⎨

⎪⎪⎩
(22)

Step 3. ,e distance from the origin of the coordinate
(Disti) and the taste density judgment value (S(i)) are
estimated, and the calculation process of the two is as
shown in equation (9).
Step 4. ,e taste concentration determination value (Si)
is substituted into the taste concentration determina-
tion function to obtain the taste concentration
(smell(i)) of the individual position of the fruit fly; find
the minimum concentration value, then, save it, and
record its position. ,e process is as shown in equation
(10).
Step 5. ,e latest taste concentration will be compared
to the best taste concentration obtained before. If the
latest taste concentration is better than the previous
generation, the latest fruit fly position and taste con-
centration will be updated as shown in equation (11).
Otherwise, Step 2 to Step 4 are repeated until a better
taste density value is found.
Step 6. When the taste density value reaches the preset
precision value or reaches the maximum number of
iterations, the loop ends; otherwise, Step 2 to Step 5 are
repeated.

3.2. Initial Alignment Based on a Fruit Fly-OptimizedKalman
Filter Algorithm. When using strap-down inertial naviga-
tion to locate the shearer, in order to reduce the influence of
interference signal and error, it is necessary to study the
filtering method, especially the initial alignment. ,e ef-
fective filtering method can not only reduce the operation
speed but also improve the system alignment accuracy.
Based on the analysis of the advantages and disadvantages of
common filtering algorithms, a fruit fly-optimized Kalman
filter algorithm is proposed to improve the initial alignment
accuracy of the inertial navigation system. In order to im-
prove the filtering performance, the fruit fly-optimized
Kalman filter algorithm uses an improved fruit fly algorithm
to realize the adaptive optimization of system noise variance,
and, then, it is used to conduct initial alignment. ,e initial
alignment is divided into coarse alignment and fine
alignment.

3.2.1. Coarse Alignment. In the coarse alignment, the atti-
tude matrix Cn

b is directly estimated by the measurable
quantities such as the gravity vector and the Earth angular
velocity vector. Given the local longitude l and latitude L, the
components of the gravity acceleration g and the Earth
rotation speed ωie in the navigation system can be deter-
mined. Setting a new vector r � g × wie, according to the
transformation matrix Cn

b between the navigation system
and the carrier system, the following expression can be
obtained:

0

Degree of freedom is 1
Degree of freedom is 2

Degree of freedom is 10
Gaussian distribution

0.05

0.10

0.15

0.20

0.25
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Figure 2: Student’s t-distribution.
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,en, the following equation can be obtained:

C
n
b �

gn( 
T

ωn
ie( 

T

gn × ωn
ie( 

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1 g
b

 
T

ωb
ie 

T

g
b

× ωb
ie 

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

,e coarse alignment of Cn
b can be carried out by the

abovementioned equation.

3.2.2. Fine Alignment. ,e coarse alignment results in the
transformation matrix between the carrier coordinate sys-
tem and the calculated navigation coordinate system. Be-
cause there are instrument errors in both gyroscopes and
accelerometers, the direct calculation results cannot meet the
alignment accuracy required by the project. ,erefore, after
the initial alignment, the precise alignment is required. ,e
fine alignment is based on the coarse alignment, and the
platform error angle [ϕ×] is accurately estimated; then,
obtain the accurate initial attitude matrix Cn

b . From the
literature [22–24], the error model can be obtained.

,e attitude error equation is
_ϕ ≈ − ωn

in × ϕ + δωn
in − δωn

ib, (26)

where ϕ � ϕE ϕU ϕN 
T, ωn

in is the angular velocity of the n
series relative to the i-system projected under the n-system,
δωn

inis the calculated error vector of ωn
in, and δωn

ibindicates
that the gyro output error in the navigation coordinate
system is gyro drift εw.

,e velocity error equation is

δ _v
n

� f
n

− f
n

+ 2ωn
ie + ωn

en(  × δv
n

− 2δωn
ie + δωn

en(  × v
n

− δg
n
1,

(27)

where‘ ∼ ’means the calculated value, the angular velocity of
the n series relative to the i series is projected under the n
series, ωn

ie and ωn
en are obtained in Section 2.3, δωn

ie is the
calculated error vector of ωn

ie, δωn
en is the calculated error

vector of ωn
en, and δgn

1 is the calculated error vector of gn
1:

f
n

− f
n

� C
t
nf

n
+ εa − f

n
� C

t
n − I  + εa, (28)

where Ct
n means the transformation matrix for the navi-

gation coordinate system and calculated coordinate system,
and it can be expressed as

C
t
n � (I − [ϕ×]) �

1 ϕU − ϕN

− ϕU 1 ϕE

ϕN − ϕE 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (29)

[ϕ×] is an antisymmetric matrix of vectors
ϕE ϕN ϕU ; ϕE, ϕN, and ϕU represent the angle error of

east, north, and sky, respectively. εa is the zero offset of
output error of the accelerometer.

,e position error equation is

δ _L �
δvN

RM + h
,

δ _l �
δvE

RN + h
sec L +

vE

RN + h
tan L sec LδL,

(30)

where RM and RNare the Earth’s radii of the meridian circle
and the prime vertical circle, L and l are the longitude and
latitude, and vE and vN are the east and north velocity with
their velocity errors δvE and δvN, respectively.

Because the initial alignment time is short, the gyro drift
and acceleration bias can be considered as random con-
stants. ,e model of the inertial device can be written as

_εw � 0,

_εa � 0,
(31)

where εw � εwE εwN εwU  and εa � εaE εaN εaU .
Since the shearer’s speed is basically unchanged during

actual operation, the system error equation of the inertial
navigation of the shearer can be obtained from equation
(31):

_X � f[X, W], (32)

where the X is error vector and W is inertial device error
vector, and their expressions are as follows:

X � δvE δvN ϕE ϕN ϕU εax εay εwx εwy εwz 
T
,

W � wδvE
wδvN

wϕE
wϕN

wϕU
05×1 

T
.

(33)

In this paper, two horizontal velocity errors are selected
as the observed measurement; they are δvE and δvN. ,en,
the observation equation of the system is

Z � HX + V. (34)

In the above equation, H � I2 02×8  and V is the
system observation noise. In order to conveniently and
efficiently use the optimized KF algorithm for recursive
calculation, equations (32) and (34) are discretized, and the
expression is as shown in the following equation:

Xk � Οk,k− 1Xk− 1 + Γk− 1Wk− 1,

Zk � HkXk + Vk.
(35)

In the above equation, Xk is the state vector of the
system, Zk is the observation sequence, Wk is the process
noise sequence, Vk is the observed noise sequence, Οk,k− 1 is
the state transitionmatrix, Γk− 1 is the noise input matrix, and
Ηk is the observation matrix.

,e fitness function of the algorithm is selected as
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fitness � E xP − xt( ∗ xP − xt( 
T

 , (36)

where xP is the predicted value, xt is the true value, the
fitness is the fitness function, and E[∗ ] is the mean value.
,e basic flow of the improved Kalman filter algorithm can
be divided into the following steps:

Step 1. Initialization algorithm parameters: population
size, sizepop; maximum number of iterations, maxgen;
initial position range, LR; random flight distance, FR;
dimension, d; frequency variables, fmin and fmax;
number of iterations, g; and so on. Equation (7) is the
initial position calculation of the fruit fly and obtains
the optimal value of the current population by Step 2 to
Step 4 in Section 2.2.
Step 2. ,e optimal value is not updated for more than
two generations, and equation (21) is searched by
optimization; otherwise, equation (22) is used.
Step 3. ,e distance from the origin of the coordinate
(Disti) and the taste concentration determination value
(S(i)) are estimated, and the calculation process of the
two is as shown in equation (9).
Step 4. For Kalman filter alignment, the state equation
and observation equations are (32) and (34), respec-
tively, and the discretization equation is (35). ,e taste
concentration judgment value is taken as the system
noise variance of the Kalman filter algorithm, and the
Kalman (S(i)) update process is as follows:
X(k | k − 1) � A X(k − 1 | k − 1),

X(k | k) � X(k | k − 1) + K(k)[Z(k) − H X(k | k − 1)],

K(k) �
P(k | k − 1)H

T

HP(k | k − 1)H
T

+ Rk 
,

P(k | k − 1) � AP(k − 1 | k − 1)A
T

+ ΓS(i)ΓT,

P(k | k) � [I − K(k)H]P(k | k − 1),

(37)

and the mean state error and the estimated state var-
iable are calculated as the fitness evaluation standard,
and the minimum concentration value is found and
saved, and its position is recorded. ,e process is as
shown in the following equation:

smell(i) � MSE(Kalman(s(i))), [bestsmell, bestindex]

� min(Smell(i)).

(38)

Among them, bestsmell is the minimum taste con-
centration, bestindex is the corresponding fruit fly
individual, and Smell is the concentration set in this
group.
Step 5. ,e latest taste concentration will be compared
to the best taste concentration obtained before. If the

latest taste concentration is better than the previous
generation, the latest fruit fly position and taste con-
centration will be updated as shown in equation (11),
and the optimal noise variance will be updated as the
following equation:

Sbest �

������������������

(X axis)2 +(Y axis)2


,

Q � Sbest.
(39)

Otherwise, Step 2 to Step 4 are repeated until a better
taste density value is found.
Step 6. When the taste density value reaches the preset
precision value or reaches the maximum number of
iterations, the loop ends; otherwise, Step 2 to Step 5 are
repeated.

,e flow chart of the improved algorithm is shown in
Figure 3.

,e pseudocode for the improved Kalman filter algo-
rithm is shown in Algorithm 1.

4. Simulation and Experimental

4.1. Simulation. ,e simulation processing software of this
article is MATLAB2014; the hardware configuration is
processor Intel Xeon E5506 (2.13GHz), memory 8G,
graphics card NVIDIA Tesla C1060, and hard disk capacity
240G, and software environment is Windows7 (x64).

4.1.1. Simulation of Improved Fruit Fly Optimization
Algorithm. ,is paper selected the original fruit fly opti-
mization algorithm FOA [15] and replaced the original fruit
fly step with the Gaussian distribution algorithm GFOA
[20], the particle swarm algorithm PSO [14], and the im-
proved fruit fly optimization algorithm IFOA for
comparison.

In this simulation, some parameters set for the FOA and
GFOA are the same. Some key parameters are given:
maximum iteration is 100, population size is 20, and location
range is [− 1.0, 1.0]. In the IFOA algorithm, the frequency
variables fmin and fmax are 0 and 2, respectively, the other
parameters are the same as FOA and GFOA.

In the PSO, maximum iteration is 100, population size is
20, two acceleration coefficients are 1.49, inertia weight
factor is 0.65, population range is [− 5, 5], and velocity range
is [− 1, 1].

,is paper selects the following six test functions to
verify the effectiveness of the algorithm.,e optimal value of
the Ackley function is 0, the optimal value of the Griewank
function is 0, the optimal value of the Zettl function is
− 0.003791, and the optimal value of the Testtubeholder
function is − 10.8723. ,e optimal value of the Helicalvalley
function is 0, and the optimal value of the Wood function is
0. Comparison of the optimization process of the four al-
gorithms is in Figure 4.
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Optimal values of different algorithms are given in
Table 1; it can be seen from the above table that the IFOA
algorithm proposed in this paper can be the closest to the
optimal value of the test function. From Figure 4, the

declining curve of the IFOA algorithm proposed in this
paper is faster than others, which proves that the IFOA
algorithm takes the shortest time to reach the optimal value,
and the search process is the fastest.

Begin

Initialize 
sizepop, maxgen, d, 

fmin, fmax and g

Obtain group local 
optimal value

g > mxgen?

Calculate the taste 
concentration 

determination value S(i) 

Kalman (S(i)) and 
obtain fitness value of 

each individual

Select the bestsmell and 
bestindex

bestsmell < smellbest?

Stop

N

Y

Number of optimum 
values not updated > 2?

Y

Y N

Obtain X and Q

g = g + 1

N

X(i) = X_axis + trnd(g,1,d)
Y(i) = Y_axis + trnd(g,1,d)

X = AX + W
Z = HX + V

smellbest = bestsmell
X_axis = X(bestindex)
Y_axis = Y(bestindex)

Xk = Ok,k–1Xk–1 + Γk–1Wk–1
Zk = HkXk + Vk

f(i) = f min + (f min – f max)∗rand
X(i) = X(i–1) + (X(i – 1)-X_axis)∗f(i)
Y(i) = Y(i–1) + (Y(i – 1)-Y_axis)∗f(i)

Figure 3: Algorithm flowchart.
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4.1.2. Simulation of the Initial Alignment Method. To verify
the effectiveness of the proposed initial alignment method,
this paper selected the original fruit fly optimization algorithm
to optimize the Kalman algorithm FOA-KF and replaced the
original fruit fly step with the Gaussian distribution to improve
the Kalman filter GFOA- KF; particle swarm optimization

Kalman filter algorithm PSO-KF is compared with the pro-
posed algorithm IFOA-KF. ,e parameters set for the FOA-
KF, GFOA-KF, IFOA-KF, and PSO-KF are the same as the
simulation of improved fruit fly optimization algorithm.

,e parameters of the initial alignment are listed in
Table 2.

Inputs: sizepop, maxgen, d, fmin, fmax. etc.
Outputs: X
% Initialization
Set the parameters of the improved Kalman filter algorithm: population size sizepop, maximum iteration numbermaxgen, dimension
d, frequency variables fmin and fmax, etc.
% Obtain the current population optimal concentration
For i� 1, 2, . . ., sizepop

X(i) � X axis + rand(1, d)

Y(i) � Y axis + rand(1, d)


Disti �

�����������

X
2
(i) + Y

2
(i)



S(i) � (1/Disti)
_X � AX + W

Z � HX + V


Xk � Οk,k− 1Xk− 1 + Γk− 1Wk− 1
Zk � HkXk + Vk



Kalman (S(i))
% Obtain smell concentration
Smell (i)�MSE (Kalman (S(i)))
End
% Obtain the best individual concentration
Sbest, X⟵min(Smell(i))

% Obtain the optimal system noise covariance
Q⟵ Sbest
% Iterative optimization
For g � 1: maxgen
For i� 1, 2, ..., sizepop
If Number of optimum values not updated >2.

X(i) � X axis + trnd(g, 1, d)

Y(i) � Y axis + trnd(g, 1, d)


Else
f(i) � fmin + (fmin − fmax)∗ rand
X(i) � X(i − 1) + (X(i − 1) − X axis)∗f(i)

Y(i) � Y(i − 1) + (Y(i − 1) − Y axis)∗f(i)

⎧⎪⎨

⎪⎩

End

Disti �

�����������

X
2
(i) + Y

2
(i)



S(i) � (1/Disti)
_X � AX + W

Z � HX + V


Xk � Οk,k− 1Xk− 1 + Γk− 1Wk− 1
Zk � HkXk + Vk



Kalman (S(i))
% Obtain smell concentration
Smell(i)�MSE (Kalman (S(i)))
End
% Obtain the best individual concentration
Sbest, X⟵min(Smell(i))

% Obtain the optimal system noise covariance
Q⟵ Sbest
End

ALGORITHM 1: Initial alignment based on a fruit fly-optimized Kalman filter.
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Figure 4: Comparison of the optimization process of the four algorithms. (a) Ackley. (b) Griewank. (c) Zettl. (d) Testtubeholder. (e)
Helicalvalley. (f ) Wood.
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4.1.3. Simulation Results and Analysis. Figure 5 is the errors
of angles, the best overall is the algorithm IFOA-KF pro-
posed in this article, the best of the remaining three is the
GFOA-KF algorithm, followed by the FOA-KF algorithm,
and the worst is the PSO-KF algorithm.,e errors are shown
in Table 3.

As can be seen from Table 3, the algorithm proposed in
this paper has the smallest error in the three angles of pitch,
roll, and yaw. From the average error point of view, the
smallest algorithm is the algorithm proposed in this paper,
only 0.000029257. From the analysis of alignment accuracy,
it is 45.71% higher than the PSO-KF algorithm, 24.82%
higher than the FOA-KF algorithm, and 15.98% higher than
the GFOA-KF algorithm. It can be seen that the best al-
gorithm is the algorithm proposed in this paper. ,e above
analysis can conclude that the fruit fly-optimized Kalman
filter algorithm is superior to several other algorithms.

,ere are two reasons for the above phenomenon:

(1) ,e original Kalman filter has a good estimation speed
and accuracy for the pitch and the roll angle, but the
estimation accuracy and speed of yaw angle are poor,
which is determined by the nature of the error. ,e
filtering of εwU value is relatively difficult in a short
time; this is because it takes the longest time to reflect
the velocity observation. When it has a large deviation,
the initial error will be continuously amplified after
several integrations, resulting in a relatively short es-
timation speed and accuracy of the yaw angle.

(2) ,e optimized Kalman algorithm uses the intelligent
algorithm to adaptively optimize the KalmanQ value
and judges the appropriate Q value based on the
variance of the true value and the predicted value.
,is method improves the filtering accuracy of the
Kalman algorithm. ,e proposed algorithm has
made two improvements in the original fruit fly
optimization algorithm, which enhances the diver-
sity and the ability to jump out of the local optimum,
and improves the search speed.

4.2. Experimental. In order to further verify the research
results, an initial alignment experiment was conducted in
this paper, and the experimental local parameters are shown
in Table 4.

,e experimental platform is shown in Figure 6.
In this experiment, the low-precision inertial measure-

ment module JY901 fixed on the body of the shearer was
used to collect the three-axis acceleration and angular ve-
locity of the shearer. In the Raspberry Pi 3b, the initial
alignment based on a fruit fly-optimized Kalman filter al-
gorithmwas used to process the measured raw data obtained
by the JY901. Finally, the result is displayed on the host
computer. Use the high-precision inertial measurement
module ADIS16448 to obtain the shearer’s true attitude
angle, the pitch angle is − 0.002 degrees, the roll angle is 0.008
degrees, and the yaw angle is 0.004 degrees; they are used as
true comparison values to verify the performance of the
algorithm in this paper. ,e initial alignment process at
three angles is shown in Figure 7.

,e red line in Figure 7 is the initial alignment based
on a fruit fly-optimized Kalman filter algorithm proposed
in this paper. It can be clearly seen that the algorithm
proposed in this paper is superior to several other algo-
rithms in the initial alignment of the yaw angle, pitch
angle, and roll angle. ,e final alignment result of the
pitch angle is 0.0078 degrees, the final alignment result of
the roll angle is 0.0100 degrees, and the final alignment
result of the yaw angle is 0.0415 degrees. ,e final
alignment errors of pitch angle, roll angle, and yaw angle
are 0.0098 degrees, 0.0020 degrees, and 0.036 degrees,
respectively; the alignment errors in the three directions
are all within 0.05 degrees, and the effectiveness of the
method proposed in this paper is proved. From the
alignment accuracy of three angles, the alignment accu-
racy of yaw angle is the worst, which is because the initial
alignment time of yaw angle is the longest, and the
alignment accuracy is poor in a short time. ,e proposed
algorithm in this paper uses the intelligent algorithm to
adaptively optimize the Kalman Q value that improves the

Table 2: Simulation parameters.

Name Value Unit
Longitude 110 deg
Latitude 40 deg
Height 40 m
Average radius 6371393 m
Gravity acceleration 9.7803267714 m/s2

Simulation time 5 s

Table 1: Optimal value of different algorithms.

Name PSO FOA GFOA IFOA
Ackley 0.440788 0.049512 0.017546 7.11∗10− 15

Griewank 0.001394 9.29∗10− 5 2.43∗10− 5 3.33∗10− 16

Zettl 0.013575 0.002592 0.001333 3.07∗10− 11

Testtubeholder − 10.843774 − 10.700662 − 10.766711 − 10.872299
Helicalvalley 6.926416 0.739871 0.679324 0.389474
Wood 1.777238 0.852053 1.414687 1.61∗10− 4
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Table 3: Comparison of initial alignment errors for the four algorithms.

Name Pitch Roll Yaw Average error
PSO-KF 0.000050336 0.000065926 0.000045396 0.000053886
FOA-KF 0.000047334 0.000062827 0.000006588 0.000038916
GFOA-KF 0.000042335 0.000057818 0.000004314 0.000034822
IFOA-KF 0.000036726 0.000052809 0.000000242 0.000029257

Table 4: Experimental parameters.

Name Value Unit
Longitude 117.18 deg
Latitude 39.84 deg
Height 36 m
Average radius 6371393 m
Gravity acceleration 9.7803267714 m/s2

Experimental time 50 s

10–7

10–6

10–5

10–4

10–3

10–2
Er

ro
r o

f p
itc

h 
(°

)

30 1 42 5
Time (s)

PSO-KF
FOA-KF

GFOA-KF
IFOA-KF

(a)

10–8

10–6

10–4

10–2

Er
ro

r o
f r

ol
l (

°)

30 1 42 5
Time (s)

PSO-KF
FOA-KF

GFOA-KF
IFOA-KF

(b)

10–12

10–10

10–8

10–6

10–4

10–2

Er
ro

r o
f y

aw
 (°

)

30 1 42 5
Time (s)

PSO-KF
FOA-KF

GFOA-KF
IFOA-KF

(c)

Figure 5: Errors of angles.
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filtering accuracy of the Kalman algorithm. ,erefore, it
has the best initial alignment accuracy than the other three
algorithms.

5. Conclusions

,e selection of the system noise variance Q of the filtering
algorithm has a great influence on the filtering effect. Be-
cause the fruit fly optimization algorithm has a simple

structure and high search efficiency, the fruit fly optimi-
zation algorithm was used to optimize the Q value to seek
optimal filtering effect in this paper. On the other hand, the
fruit fly optimization algorithm also has the disadvantage of
being easily trapped in local optimum and so on. Two
improvements to the fruit fly optimization algorithm are
proposed in this paper. When the fitness function value is
not updated for more than two generations, the optimal
position is accepted; otherwise, its own position is accepted.
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Figure 7: Initial alignment of three angles.

Shearer

Host computer

Raspberry Pi 3B

JY901

Scraper conveyor

Hydraulic support

ADIS16448

Figure 6: Experimental platform.
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Secondly, the original search path is instead by the two new
search paths; the diversity and search speed of the fruit fly
optimization algorithm are improved and are easier to jump
out of local optimum. In the simulation experiment, the
good results are achieved by using the improved fruit fly
optimization algorithm to optimize the Kalman filter in this
paper. ,en, the industrial experiment was carried out and
the effectiveness of the proposed algorithm is proved.
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