
Research Article
Supporting Risk-Aware Use of Online Translation Tools in
Delivering Mental Healthcare Services among
Spanish-Speaking Populations

Wenxiu Xie ,1 Meng Ji ,2 Mengdan Zhao ,2 Xiaobo Qian ,3 Chi-Yin Chow ,1

Kam-Yiu Lam ,1 and Tianyong Hao 3

1Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
2School of Languages and Cultures, !e University of Sydney, Darlington, Australia
3School of Computer Science, South China Normal University, Guangzhou, China

Correspondence should be addressed to Meng Ji; christine.ji@sydney.edu.au

Received 14 September 2021; Revised 1 October 2021; Accepted 15 October 2021; Published 28 October 2021

Academic Editor: Heng Liu

Copyright © 2021 Wenxiu Xie et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neural machine translation technologies are having increasing applications in clinical and healthcare settings. In multicultural
countries, automatic translation tools provide critical support to medical and health professionals in their interaction and
exchange of health messages with migrant patients with limited or non-English proficiency. While research has mainly explored
the usability and limitations of state-of-the-art machine translation tools in the detection and diagnosis of physical diseases and
conditions, there is a persistent lack of evidence-based studies on the applicability of machine translation tools in the delivery of
mental healthcare services for vulnerable populations. Our study developed Bayesianmachine learning algorithms using relevance
vector machine to support frontline health workers and medical professionals to make better informed decisions between risks
and convenience of using online translation tools when delivering mental healthcare services to Spanish-speaking minority
populations living in English-speaking countries. Major strengths of the machine learning classifier that we developed include
scalability, interpretability, and adaptability of the classifier for diverse mental healthcare settings. In this paper, we report on the
process of the Bayesian machine learning classifier development through automatic feature optimisation and the interpretation of
the classifier-enabled assessment of the suitability of original English mental health information for automatic online translation.
We elaborate on the interpretation of the assessment results in clinical settings using statistical tools such as positive likelihood
ratios and negative likelihood ratios.

1. Introduction

Despite the increasing public awareness of the prevalence of
mental health issues among populations from low and
middle-income countries, accurate, scientific, non-dis-
criminative communication of mental disorders remains a
real challenge [1–3]. Within different societal, cultural
systems, conventionalised linguistic constructs have been
developed over years and decades to describe and convey the
underlying social attitudes and understanding of different
mental disorders like varieties of anxiety or depressive
disorders. In English-speaking multicultural countries, the

communication and interpretation of mental disorders and
their treatment for non-English-speaking migrant pop-
ulations pose important challenges to frontline health
workers and clinicians [4–6]. ,e rapid development of
machine translation technologies has offered necessary
technical means to interact and engage with multicultural
vulnerable communities and people who have limited access
to mental healthcare services, despite the prevalence of
mental health issues among such populations who are at
higher risks of developing clinical mental disorders or other
comorbidities such as chronic non-communicable diseases
or physical health conditions that are likely to exacerbate
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their mental health issues. Currently, there is very limited
research which examines the reliability, safety, or levels of
risks in using state-of-the-art online translation tools such as
Google Translate in clinical settings for communicating and
talking with patients about mental disorders.

Much of current research shows that the use of auto-
matic translation tools in primary healthcare settings is
driven by a persistent lack of qualified bilingual health
professionals [7–10]. ,e risk of an unchecked use of
translation technologies in specialised health and medical
settings which have been developed largely for general cross-
lingual communication purposes is real and well docu-
mented [11–14]. However, the practical needs for cost-ef-
fective translation tools in disease diagnosis and medical
treatments are increasing. Although the provision of proper
training to a certain number of bilingual health professionals
can help reduce healthcare inequality issues, real-life sce-
narios can be much more complex, uncertain, and dynamic
for any health systems at various levels. For example, a
recurring issue in clinical settings is the lack of adequately
qualified health translators working with under-resourced
languages. Even for resourced language pairs such as En-
glish-Spanish and English-Chinese, it can be challenging to
find bilingual health translators with extensive in-depth
knowledge of different medical specialities. ,at is, the
quality of human translation can also be compromised by
the complexity and speciality of medical communications.
In fact, with simple, direct sentences, online translations
tools can fulfil their function to support a meaningful ex-
change of information between doctors and patients. We
argue that health communication technologies like neural
translation tools are evolving rapidly and that they have
important potential for scaled uptake in health systems,
especially those serving vulnerable or disadvantaged com-
munities in under-resourced local health districts. Health
technologies can be leveraged to help close the gaps in
current medical and healthcare structures and improve the
quality and accessibility of healthcare resources to pop-
ulations and people at risk. Research is needed to develop
instruments and aids to improve the safety and reliability of
available translation technologies to be adopted in health
and clinical settings.

2. Materials and Methods

2.1. Data Collection. We collected authoritative health in-
formation on anxiety disorders from the websites of federal
and state health agencies and not-for-profit health pro-
motion organisations in the U. S., Australia, Canada, and
the United Kingdom. ,e total database contains 557 full-
length articles including 270 (48.47%) original English
materials associated with automatic translations to Spanish
which contained misleading errors. We labelled these
materials as positive or “risk” samples. Around 51.53% of
the total samples we collected were original English texts
whose automatic translation into Spanish using Google
Translate did not contain any misleading information. ,e
evaluation of the Spanish translations by Google was
through the comparison of the original English texts with

their backtranslations from Spanish.,is method known as
forward and backward translation was endorsed by in-
ternational health organisations such as the World Health
Organisation [15]. We subsequently labelled such English
texts as negative or “safe” cases for automatic translation.
We divided the entire database into 67.65% training data
(389) and 32.35% testing data. Within the training dataset,
there were 187 positive “risk” English texts which were
prone to automatic translation errors and 202 negative
“safe” English texts which had been proven to be suitable
and reliable for automatic translation to Spanish. Similarly,
within the testing dataset, there were 83 positive samples
and 85 negative samples for testing the performance of
classification of the classifiers to be developed. We applied
5-fold cross-validation on the training dataset to develop
the classifiers to help remove biases in the development of
algorithms.

2.2. Annotation of Feature Sets. Traditionally, health trans-
lation mistakes are believed to be associated with or trig-
gered by the linguistic difficulty or lack of readability of the
original English materials including complex, sophisticated,
structural, syntactic, and lexical features. However, with the
rapid developments of machine translation technologies,
more research shows that semantic polysemy, that is, the
multiple meanings of a certain word across domains and
other issues, could be more challenging for latest neural
machine translation tools. As a result, we included four large
sets of features to investigate possible reasons which have
triggered significant mistakes in machine-translated health
materials from English to Spanish.

We annotated both training and testing datasets with 4
large sets of linguistic features: structural features (24 in
total using Readability Studio software), lexical dispersion
rates based on the British National Corpus (20 features in
total), English lexical semantic features (115 features in
total), which we annotated using the USAS system de-
veloped by the University of Lancaster [16–18], UK, and
lexical sentiment features (92 features in total) that we
annotated using Linguistic Inquiry and Word Count
software. Appendix A shows the details of these 4 linguistic
features.

2.3. Bayesian Machine Learning Classifiers (MLCs).
Bayesian MLC is a sparse classifier which can effectively
counter model overfitting with relatively small datasets like
ours. Bayesian classifiers are different from other supervised
machine learning techniques in that they produce the
posterior odds of a class dependent on the prior odds of an
event and asymmetrical classification errors of the model,
whereas frequentist ML classifiers only return a hard binary
decision. In solving practical questions like ours, posterior
odds are much more informative than a certain predicted
binary outcome, as the Bayesian-style prediction using
posterior odds helps practitioners and decision makers to
appreciate the levels of risks of negative and positive cases
over a continuous probability scale and assists in developing
more effective intervention strategies to achieve optimal
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outcomes. ,is advantage of Bayesian MLs suits the purpose of
our study, as we aimed to identify original Englishmental health
materials which are more likely to cause significant errors if
translated using automatic tools without further human eval-
uation.,is can help health agencies developing bilingual health
materials to better invest their resource and minimise risks of
using machine translation in healthcare settings.

3. Methods

To identify the best subset of features within each annotation
category, as well as the best subset of features across an-
notation categories, we applied separate and combined
feature optimisation techniques. ,e automatic feature se-
lection technique we used was recursive feature elimination
(RFE) with cross-validation in Python scikit-learn to in-
crease the generalisability and accuracy of the Bayesian
machine learning classifiers we developed. To identify and
rank highly predictive features, recursive feature elimination
used linear kernel support vector machine (SVM) as the base
estimator. An optimal set of features was identified when the
cross-validated classification error reached the minimal
value. Figure 1 shows the results of the automatic optimi-
sation of different feature sets: in Figure 1(a), the optimised
features of lexical dispersion rates were 4, as the cross-
validated classification error dropped from 0.425 with the
full feature set (20 in total) to 0.393 when the features were
reduced to 4. In Figure 1(b), the optimised feature set of
English semantic features was 10, as the cross-validated
classification error decreased from 0.40 with the full feature
set (115) to 0.375 when the features were reduced to 10.
Further elimination of features however led to a spike in the
classification error. In Figure 1(c), the optimised feature set
of English sentiment features (annotated using the LIWC
software) was 10, as we observed that the minimal classi-
fication error of 0.416 was reached when the total number of
sentiment features was scaled back from 92 to 10. In
Figure 1(d), 5 optimal structural features (92 in total) were
identified when the minimal classification error of 0.409 was
reached. Lastly, in Figure 1(e), we conducted the combined
feature selection by integrating the 4 feature sets (251 in
total): lexical dispersion rates and semantic, sentiment, and
structural features. ,e optimal number of features emerged
from the combined optimisation was 33 which was asso-
ciated with the minimal classification error of 0.383.

4. Results and Discussion

4.1. Results. Following automatic feature optimisation to
enhance the classification accuracy of classifiers, we evalu-
ated the performance of Bayesian models (relevance vector
machine (RVM)) with different feature sets on both the
training and testing datasets. As discussed earlier, we applied
5-fold cross-validation on the training dataset to minimise
biases in the classifiers being developed. First, we compared
the original feature sets with their respective optimised
feature sets in Table 1–5. Next, we compared the perfor-
mance of RVM classifiers with different pairs of optimised
feature sets. Table 6 shows the comparison of RVM

classifiers with double, triple, and quadruple optimised
feature sets, respectively. Like feature optimisation, feature
normalisation is another useful automatic technique to
enhance the performance of machine learning classifiers.We
applied three popular feature normalisation techniques:
min-max, L2-norm (L2), and Z-score normalisation with
each RVM classifier to see whether this could help balance
asymmetrical classification errors within each model.

Table 1 shows the performance of RVM classifiers with
lexical dispersion rates as features. It shows that after au-
tomatic feature selection, RVM with the reduced and
optimised feature set (D4) reached a largely comparable
performance to that of the classifier run on the full feature
set: on the training dataset, the mean of area under the curve
(AUC) of RVM (D4) was 0.617 (SD� 0.06), compared to
0.625 (SD� 0.06) of RVM (full 20 features), suggesting that
feature reduction could also help encounter the issue of
overfitting in training machine learning classifiers. On the
testing dataset, the AUC of the RVM (D4) (0.648) was
similar to that of RVM (All 20) (0.649). Sensitivity dropped
slightly from 0.578 (RVM-All 20) to 0.566 (RVM-D4), and
specificity remained unchanged at 0.753. Normalisation did
not improve RVMs with the entire or optimised feature sets
of lexical dispersion rates.

Table 2 compares the performance of RVM classifiers
run on English semantic features. It shows that after au-
tomatic feature selection, the performance of the RVMs
improved on both the training and the testing datasets: on
the training data, the mean of AUC of RVM with the full
semantic feature set (USAS115) observed a marginal im-
provement from 0.652 to 0.659 with a slightly reduced
standard deviation (SD) from 0.052 to 0.045. On the testing
dataset, the AUC of RVM (USAS115) saw an improvement
from 0.692 to 0.714. Specificity improved from 0.729 of
RVM (USAS115) to 0.777 of RVM (U10); sensitivity de-
creased from 0.590 of RVM (USAS115) to 0.578 of RVM
(U10). Normalisation did not improve model performance.

Table 3 compares the performance of RVMs with English
sentiment features annotated with the Linguistic Inquiry and
Word Count (LIWC) software. It shows that after automatic
feature optimisation, the performance of the RVM classifier
(LWIC all 92) improved on the testing datasets. ,e AUC of
RVM (L10) increased from 0.580 to 0.605. Model sensitivity
increased from 0.518 to 0.651, but specificity decreased from
0.577 to 0.494. ,e impact of feature normalisation on
RVMs with all and optimised feature sets was similar, while
the classifier specificity improved, sensitivity decreased, and
the overall model accuracy on the testing dataset however
did not improve significantly.

Table 4 compares the performance of RVMs with various
structural features which we annotated with the Readability
Studio software. After automatic feature optimisation, the
AUC of the classifier RVM (structural all 24) decreased from
0.636 to 0.621, which was due to decreased model sensitivity
from 0.518 to 0.446, but the model specificity increased from
0.729 to 0.788. Feature normalisation helped to balance the
asymmetric classification errors on the classifier RVM with
both the entire feature set and the optimised feature set: the
model specificity decreased and sensitivity increased.
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Dispersion feature optimization by RFE-SVM
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USAS feature optimization by RFE-SVM
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(b)
LIWC feature optimization by RFE-SVM
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(c)

Structural feature optimization by RFE-SVM
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(d)
All feature jointly optimized by RFE-SVM
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Figure 1: Automatic feature selection recursive feature elimination with SVM as base estimator.

4 Computational Intelligence and Neuroscience



However, the overall model accuracy or the AUC did not
improve with different feature normalisation techniques.

Table 5 shows the performance of the RVM with the
combined feature sets of lexical dispersion rates and se-
mantic, sentiment, and structural features, which repre-
sented 251 features in total. Automatic feature optimisation
reduced the original feature set of 251 features to a

parsimonious model containing 33 features only. With less
predictive and noisy features involved in the model, the
performance of the classifier also improved significantly on
both the training and the testing datasets: on the training
data, the model AUC was 0.642 (SD� 0.038). ,is increased
to 0.658 (SD � 0.034) with the optimised RVM classifier.
On the testing data, the AUC improved from 0.647 to 0.718.

Table 1: Performance of RVM classifiers with lexical dispersion features.

RVM
Training data Testing data

AUC mean SD AUC Accuracy Sensitivity Specificity
Dispersion rates (full 20 features) 0.625 0.06 0.649 0.667 0.578 0.753
Disp all 20 with min-max normalisation 0.547 0.04 0.654 0.643 0.566 0.718
Disp all 20 with L2 normalisation 0.573 0.07 0.594 0.560 0.518 0.600
Disp all 20 with Z-score normalisation 0.561 0.06 0.645 0.637 0.530 0.741
D4 (automatically optimised) 0.617 0.06 0.648 0.661 0.566 0.753
D4 with min-max 0.611 0.06 0.686 0.649 0.542 0.753
D4 with L2 0.571 0.07 0.595 0.560 0.518 0.600
D4 with Z-score 0.610 0.06 0.689 0.649 0.566 0.729

Table 2: Performance of RVM classifiers with lexical semantic features.

RVM
Training data Testing data

AUC mean SD AUC Accuracy Sensitivity Specificity
USAS all 115 0.652 0.052 0.692 0.661 0.590 0.729
USAS all 115 with min-max 0.593 0.082 0.677 0.643 0.578 0.706
USAS all 115 with L2 0.584 0.087 0.681 0.625 0.590 0.659
USAS all 115 with Z-score 0.589 0.111 0.694 0.655 0.639 0.671
U10 (automatically optimised) 0.659 0.045 0.714 0.679 0.578 0.777
U10 with min-max 0.663 0.044 0.723 0.679 0.578 0.777
U10 with L2 0.614 0.089 0.707 0.625 0.518 0.729
U10 with Z-score 0.646 0.042 0.713 0.649 0.506 0.788

Table 3: Performance of RVM classifiers with lexical sentiment features.

RVM
Training data Testing data

AUC mean SD AUC Accuracy Sensitivity Specificity
LIWC all 92 0.614 0.057 0.580 0.548 0.518 0.577
LIWC all 92 with min-max 0.577 0.054 0.646 0.619 0.566 0.671
LIWC all 92 with L2 0.610 0.064 0.573 0.548 0.518 0.577
LIWC all 92 with Z-score 0.619 0.046 0.670 0.619 0.506 0.729
L10 (automatically optimised) 0.602 0.040 0.605 0.571 0.651 0.494
L10 with min-max 0.629 0.055 0.607 0.566 0.566 0.565
L10 with L2 0.604 0.034 0.609 0.571 0.518 0.624
L10 with Z-score 0.614 0.068 0.616 0.583 0.578 0.588

Table 4: Performance of RVM classifiers with structural features.

RVM
Training data Testing data

AUC mean SD AUC Accuracy Sensitivity Specificity
Structural all 24 0.643 0.048 0.636 0.625 0.518 0.729
Structural all 24 with min-max 0.603 0.047 0.595 0.554 0.434 0.671
Structural all 24 with L2 0.647 0.046 0.616 0.595 0.590 0.600
Structural all 24 with Z-score 0.613 0.048 0.621 0.583 0.482 0.682
S4 (automatically optimised) 0.633 0.050 0.621 0.619 0.446 0.788
S4 with min-max 0.616 0.047 0.615 0.595 0.554 0.635
S4 with Z-score 0.624 0.044 0.603 0.601 0.542 0.659
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With automatic feature optimisation, both sensitivity and
specificity improved: sensitivity increased from 0.518 to
0.554 and specificity increased from 0.706 to 0.741. Im-
portantly, feature normalisation played a critical role in
balancing asymmetrical classification errors on RVMs with
combined feature sets. Specifically, min-max normalisation
increased sensitivity of the optimised classifier to 0.651, the
highest so far, and retained the high specificity of the
classifier at 0.741. ,is sensitivity and specificity pair was
the best combination among the classifiers developed so
far.

Table 6 compares the performance of classifiers with
double and multiple optimised feature sets. We compared in
total 10 different pairs of optimised feature sets and con-
ducted feature normalisation with each combination of
optimised features, and as a result, each RVM in Table 6 has
four different versions: the unnormalised version, followed
by normalised versions with min-max, L2, and Z-score
normalisation. ,e 10 combinations of optimised features
were as follows: optimised lexical dispersion rates (D4) and
optimised semantic feature (U10) (F1–F4), optimised lexical
dispersion rates (D4) and optimised sentiment features
(L10) (F5–F8), optimised lexical dispersion rates (D4) and
optimised structural features (S5) (F9–F12), optimised se-
mantic features (U10) and optimised sentiment feature
(L10) (F13–F16), optimised semantic features (U10) and
optimised structural features (S5) (F17–F20), optimised
sentiment features (L10) and optimised structural features
(S5) (F21–F24), and so on. We identified 5 high-performing
models based on considerations of the overall model AUC,
accuracy, sensitivity, and specificity: F13 was the unnor-
malised combination of optimised semantic (U10) and
optimised sentiment features (L10). It had an overall AUC
on the testing data of 0.705, with a relatively high sensitivity
of 0.639 and specificity of 0.706. F27 was the normalised
version (through L2 normalisation) of optimised lexical
dispersion rates (D4), semantic features (U10), and senti-
ment features (L10). It had an overall AUC of 0.694 on the
testing dataset, with sensitivity of 0.615 and specificity of
0.718. F31 was the normalised version (through L2 nor-
malisation) of optimised lexical dispersion rates (D4), se-
mantic features (U10), and optimised structural features
(S5). It had an overall AUC of 0.674 on the testing dataset,
with sensitivity of 0.639 and specificity of 0.671. F35 was the
normalised version (through L2 normalisation) of

optimised semantic features (U10), sentiment features
(L10), and optimised structural features (S5). It had an
overall AUC of 0.690 on the testing dataset, with sensitivity
of 0.663 and specificity of 0.612. Finally, F39 was the
normalised version (L2 normalisation) of optimised lexical
dispersion rates (D4), semantic features (U10), sentiment
features (L10), and optimised structural features (S5). It
had an overall AUC of 0.683 on the testing dataset, with
sensitivity of 0.627 and specificity of 0.694. Figure 2 shows
the visualised comparison of the AUCs of these 5 high-
performing classifiers, the RVM with the entire combined
feature sets (251 features) with L2 normalisation, and the
best-performing classifier we developed (RVM (All33))
with min-max normalisation.

Tables 7 and 8 show the paired sample t-tests assessing
the significance levels of differences in sensitivity and
specificity between the various competing high-performance
classifiers and the best-performing RVM classifier we de-
veloped through the combined automatic optimisation of
four different feature sets followed by automatic feature
normalisation. To reduce false discovery rates in multiple
comparison, we applied the Benjamini–Hochberg correction
procedure [19–21]. ,e results show that sensitivity of our
best-performing RVM classifier was significantly higher
than that of most other high-performing models, except for
F35 (p � 0.0017); specificity of our best-performing RVM
classifier was statistically higher than that of all other
competing models with p values equal to or smaller than
0.004.

Table 9 shows the paired sample t-tests assessing the
significance levels of differences in AUCs between various
competing high-performance classifiers and the best-per-
forming RVM classifier on testing data using different
training dataset sizes (i. e., 100, 150, 200, 250, 300, and all 389
training samples). We applied Benjamini–Hochberg cor-
rection to reduce false discovery rates in multiple com-
parison. ,e results show that AUC under different training
dataset sizes of our best-performing RVM classifier was
significantly higher than that of most other high-performing
models, except for F13 (p � 0.0752) and F27 (p � 0.1698).
Figure 3 shows the visualised comparison of the mean AUCs
of these 6 competitive classifiers and the developed best-
performing classifier. As shown in Figure 3, our best-per-
forming RVM classifier gained the highest mean AUC than
all other competing models.

Table 5: Performance of RVM classifiers with all (dispersion +USAS+ LIWC+ structural) features.

RVM
Training data Testing data

AUC mean SD AUC Accuracy Sensitivity Specificity
ALL 251 0.642 0.038 0.647 0.613 0.518 0.706
ALL 251 with min-max 0.626 0.041 0.697 0.643 0.590 0.694
ALL 251 with L2 0.670 0.045 0.653 0.619 0.639 0.600
ALL 251 with Z-score 0.633 0.085 0.680 0.625 0.590 0.659
ALL33 (automatically optimised) 0.658 0.014 0.670 0.649 0.554 0.741
ALL33 with min-max 0.678 0.034 0.718 0.696 0.651 0.741
ALL33 with L2 0.710 0.015 0.670 0.637 0.651 0.624
ALL33 with Z-score 0.672 0.036 0.682 0.643 0.627 0.659
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5. Discussion

A few important findings emerged in our extensive com-
putational analyses, especially the search for the best subset
of features for developing Bayesian machine learning clas-
sifiers to address our core research question, which was to
predict and assess the risk levels of original English mental
healthcare materials in terms of their suitability for auto-
matic neural machine translation targeting Spanish-speak-
ing patients. Our study shows that separate feature
optimisation on the four distinct feature sets did not achieve
acceptable pairs of model sensitivity and specificity. Let us
take a close look at features retained in each optimised
feature set.

Table 10 summarises the list of separately and jointly
optimised features. First, the optimised feature set of lexical
dispersion (D4) contained DiSp8: 0.7–0.8, DiSp9: 0.8–0.9,

DiSp10:0.9–1.0, and DiWr10:0.9–1.0. Lexical dispersion
rate is a measurement of familiarity of language to the
public. We used existing lexical dispersion rates of the
British National Corpus which had 10 intervals between 0
and 1 for spoken and written materials, respectively. In
both spoken and written materials, higher lexical disper-
sion rates like those in the optimised feature set (D4) in-
dicate that automatic machine translation mistakes were
strongly associated with lexical items of higher familiarity
in spoken and written materials. We used non-parametric
independent sample test and Mann–Whitney U test to
compare samples labelled as “risky” and “safe” original
English mental health materials for automatic machine
translation. ,e result shows that all 4 optimised lexical
dispersion rates had statistically higher means in “risky”
than in “safe” English mental health materials: DiSp8:
0.7–0.8 (safe text class: mean (M) � 20.689, standard

Table 6: Performance of RVM classifiers with paired feature sets.

Feature RVM
Training data Testing data

AUC mean SD AUC Accuracy Sensitivity Specificity
F1 D4 +U10 0.664 0.041 0.715 0.661 0.590 0.729
F2 D4 +U10 with min-max 0.639 0.041 0.736 0.661 0.566 0.753
F3 D4+U10 with L2 0.673 0.034 0.681 0.643 0.578 0.706
F4 D4+U10 with Z-score 0.627 0.065 0.722 0.649 0.554 0.741
F5 D4+ L10 0.650 0.041 0.681 0.595 0.615 0.577
F6 D4+ L10 with min-max 0.650 0.032 0.644 0.583 0.566 0.600
F7 D4+ L10 with L2 0.668 0.031 0.669 0.589 0.590 0.588
F8 D4+ L10 with Z-score 0.640 0.019 0.652 0.601 0.554 0.647
F9 D4+ S5 0.638 0.050 0.636 0.643 0.518 0.765
F10 D4+ S5 with min-max 0.648 0.041 0.650 0.625 0.566 0.682
F11 D4+ S5 with L2 0.655 0.054 0.608 0.607 0.602 0.612
F12 D4+ S5 with Z-score 0.580 0.035 0.584 0.566 0.482 0.647
F13 U10 + L10 0.670 0.058 0.705 0.673 0.639 0.706
F14 U10+ L10 with min-max 0.691 0.019 0.717 0.667 0.590 0.741
F15 U10+ L10 with L2 0.685 0.035 0.701 0.655 0.615 0.694
F16 U10 + L10 with Z-score 0.641 0.018 0.712 0.643 0.590 0.694
F17 U10 + S5 0.633 0.045 0.699 0.643 0.518 0.765
F18 U10+ S5 with min-max 0.627 0.031 0.713 0.661 0.542 0.777
F19 U10+ S5 with L2 0.588 0.078 0.617 0.566 0.458 0.671
F20 U10 + S5 with Z-score 0.633 0.030 0.704 0.643 0.566 0.718
F21 L10 + S5 0.671 0.055 0.668 0.631 0.554 0.706
F22 L10 + S5 with min-max 0.688 0.037 0.647 0.637 0.639 0.635
F23 L10 + S5 with L2 0.682 0.037 0.653 0.583 0.615 0.553
F24 L10 + S5 with Z-score 0.648 0.009 0.652 0.625 0.651 0.600
F25 D4 +U10+ L10 0.652 0.049 0.688 0.637 0.578 0.694
F26 D4+U10 + L10 with min-max 0.674 0.041 0.658 0.601 0.518 0.682
F27 D4 +U10+ L10 with L2 0.689 0.047 0.694 0.667 0.615 0.718
F28 D4 +U10+ L10 with Z-score 0.669 0.033 0.653 0.613 0.554 0.671
F29 D4 +U10+ S5 0.649 0.041 0.697 0.649 0.566 0.729
F30 D4+U10 + S5 with min-max 0.626 0.055 0.677 0.619 0.458 0.777
F31 D4 +U10+ S5 with L2 0.665 0.057 0.674 0.655 0.639 0.671
F32 D4 +U10+ S5 with Z-score 0.629 0.021 0.680 0.673 0.530 0.812
F33 U10+ L10 + S5 0.643 0.045 0.689 0.649 0.566 0.729
F34 U10 + L10 + S5 with min-max 0.685 0.027 0.697 0.637 0.590 0.682
F35 U10+ L10 + S5 with L2 0.663 0.054 0.690 0.637 0.663 0.612
F36 U10+ L10 + S5 with Z-score 0.667 0.018 0.696 0.637 0.627 0.647
F37 D4+U10 + L10 + S5 0.622 0.033 0.657 0.643 0.578 0.706
F38 D4+U10+ L10 + S5 with min-max 0.668 0.031 0.698 0.673 0.602 0.741
F39 D4+U10 + L10 + S5 with L2 0.687 0.042 0.683 0.661 0.627 0.694
F40 D4+U10 + L10 + S5 with Z-score 0.666 0.015 0.667 0.637 0.530 0.741
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deviation (SD)� 11.963, standard error (SE) � 0.943; risky
text class: M � 27.854, SD � 14.628, SE � 1.283, p< 0.0001),
DiSp9:0.8–0.9 (safe texts: M � 44.553, SD � 15.679,
SE � 1.236; risky texts: M � 54.400, SD � 17.275, SE � 1.515,
p< 0.0001), DiSp10 : 0.9–1.0 (safe texts: M � 78.217,
SD � 21.115, SE � 1.664; risky texts: M � 88.423,

SD � 23.223, SE � 2.037, p< 0.0001), and DiWr10 : 0.9–1.0
(safe texts:M � 147.453, SD � 47.024, SE � 3.706; risky texts:
M � 176.346, SD� 53.828, SE � 4.721, p< 0.0001).

With the optimised semantic feature set (U10), there were
10 semantic features identified as most relevant predictive
features for the classifier. Similar to the optimised feature set

Table 7: Paired sample t-test of the difference in sensitivity between the best-performing model and other models.

No. Pairs of RVMs Mean difference SD
95% CI

p value Rank (i/m) Q Sig.
Lower Upper

1 All33 (min-max) vs. F27 0.0361 0.0021 0.0319 0.0403 0.0012 1 0.0083 ∗∗

2 All33 (min-max) vs. F39 0.0241 0.0015 0.0212 0.0270 0.0013 2 0.0167 ∗∗

3 All33 (min-max) vs. All251 (L2) 0.0120 0.0008 0.0105 0.0136 0.0014 3 0.0250 ∗∗

4 All33 (min-max) vs. F13 0.0120 0.0008 0.0105 0.0136 0.0014 4 0.0333 ∗∗

5 All33 (min-max) vs. F31 0.0120 0.0008 0.0105 0.0136 0.0014 5 0.0417 ∗∗

6 All33 (min-max) vs. F35 -0.0121 0.0009 −0.0137 −0.0104 0.0017 6 0.0500 ∗∗

∗∗Statistical significance at 0.05 level using Benjamini–Hochberg correction procedure.

Table 8: Paired sample t-test of the difference in specificity between the best-performing model and other models.

No. Pairs of RVMs Mean difference SD
95% CI

p value Rank (i/m) Q Sig.
Lower Upper

1 All33 (min-max) vs. All 251 (L2) 0.1412 0.0110 0.1195 0.1628 0.0020 1 0.0083 ∗∗

2 All33 (min-max) vs. F35 0.1294 0.0105 0.1088 0.1500 0.0022 2 0.0167 ∗∗

3 All33 (min-max) vs. F31 0.0706 0.0068 0.0573 0.0839 0.0031 3 0.0250 ∗∗

4 All33 (min-max) vs. F39 0.0471 0.0048 0.0376 0.0566 0.0035 4 0.0333 ∗∗

5 All33 (min-max) vs. F13 0.0353 0.0038 0.0279 0.0427 0.0038 5 0.0417 ∗∗

6 All33 (min-max) vs. F27 0.0235 0.0026 0.0185 0.0286 0.0040 6 0.0500 ∗∗

∗∗Statistical significance at 0.05 level using Benjamini–Hochberg correction procedure.
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Figure 2: AUCs of RVMs on testing data using different feature sets.
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of lexical dispersion rates (D4), the 10 optimised semantic
features also had statistically higher means in potentially
“risky” than in “safe” English mental health materials with
regard to their suitability for automatic machine translation:
A2 (changes, modifications) (safe texts: M� 15.429,
SD� 15.093, SE� 1.190; risky texts: M� 24.185, SD� 20.646,
SE� 1.811, p< 0.0001); A3 (existing status of objects, things,
people) (safe texts: M� 37.267, SD� 28.570, SE� 2.252; risky
texts: M� 57.062, SD� 41.987, SE� 3.682, p< 0.0001); A4
(classification) (safe texts: M� 4.311, SD� 5.299, SE� 0.418;
risky texts:M� 8.062, SD� 10.504, SE� 0.921,p< 0.0001); A6
(comparison) (safe texts:M� 12.689, SD� 11.913, SE� 0.939;
risky texts: M� 20.846, SD� 22.697, SE� 1.991, p< 0.0001);
A7 (probability) (safe texts: M� 24.373, SD� 19.357,
SE� 1.526; risky texts: M� 37.262, SD� 25.795, SE� 2.262,
p< 0.0001); A13 (degree adverbs) (safe texts: M� 9.857,
SD� 9.073, SE� 0.715; risky texts: M� 15.654, SD� 12.487,
SE� 1.095, p< 0.0001); E5 (trepidation, courage, surprise)

(safe texts: M� 3.901, SD� 6.927, SE� 0.546; risky texts:
M� 11.515, SD� 18.045, SE� 1.583, p< 0.0001); O4 (physical
attributes) (safe texts:M� 5.509, SD� 5.671, SE� 0.447; risky
texts: M� 8.115, SD� 6.668, SE� 0.585, p< 0.0001); Z5
(functional words) (safe texts: M� 217.242, SD� 151.680,
SE� 11.954; risky texts: M� 326.238, SD� 222.992,
SE� 19.558, p< 0.0001); and Z6 (negative particles) (safe
texts: M� 7.944, SD� 7.246, SE� 0.571; risky texts:
M� 12.062, SD� 9.090, SE� 0.797, p< 0.0001).

Next, we examined the optimised feature set of English
sentiment features (L10). ,is includes clout expressions
(negative particles) (safe texts: M� 86.714, SD� 13.275,
SE� 1.046; risky texts: M� 81.142, SD� 16.857, SE� 1.478,
p � 0.004); emotional tones (safe texts: M� 29.106,
SD� 32.179, SE� 2.536; risky texts:M� 18.367, SD� 27.907,
SE� 2.448, p< 0.0001); words per sentences (safe texts:
M� 18.714, SD� 5.075, SE� 0.400; risky texts: M� 19.728,
SD� 4.813, SE� 0.422, p � 0.009); they (third person pro-
nouns) (safe texts: M� 0.746, SD� 0.660, SE� 0.052; risky
texts: M� 1.017, SD� 0.953, SE� 0.084, p � 0.028); affect
words (safe texts: M� 8.581, SD� 2.517, SE� 0.198; risky
texts: M� 9.382, SD� 2.604, SE� 0.228, p � 0.002); negative
emotions (safe texts:M� 4.830, SD� 2.609, SE� 0.206; risky
texts: M� 6.127, SD� 3.165, SE� 0.278, p< 0.0001); anxiety
words (safe texts: M� 3.049, SD� 2.128, SE� 0.168; risky
texts: M� 4.088, SD� 2.659, SE� 0.233, p< 0.0001); tenta-
tiveness words (safe texts: M� 5.043, SD� 1.643 SE� 0.129;
risky texts: M� 5.599, SD� 1.590, SE� 0.139, p � 0.005);
differentiation (safe texts: M� 4.176, SD� 1.515, SE� 0.119;
risky texts:M� 4.717, SD� 1.333, SE� 0.117, p � 0.002); and
core drives and needs (reward focus) (safe texts: M� 1.731,
SD� 1.083, SE� 0.085; risky texts: M� 1.339, SD� 0.858,
SE� 0.075, p � 0.001).

Within the optimised feature set of structural linguistic
features (S5), there were 5 optimised features. Like the other
three sets of optimised features, features retained in S5 had
statistically higher means in “risky” texts than in “safe”
English health texts: number of difficult sentences (more
than 22 words) (safe texts: M� 10.491, SD� 8.821,
SE� 0.695; risky texts: M� 16.200, SD� 14.048, SE� 1.23,
p< 0.0001); number of monosyllabic words (safe texts:
M� 560.186, SD� 358.796, SE� 28.277; risky texts:
M� 811.446, SD� 515.400, SE� 45.204, p< 0.0001); number
of long (6+ characters) words (safe texts: M� 280.255,
SD� 215.525, SE� 16.986; risky texts: M� 439.215,
SD� 347.782, SE� 30.502, p< 0.0001); number of sentences
which use same words multiple times (safe texts:M� 10.814,
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Figure 3: Mean AUCs of RVMs with different feature sets on
testing data using different training dataset sizes.

Table 9: Paired sample t-test of the difference in AUCs between the best-performing model and other models.

No. Pairs of RVMs Mean difference SD
95% CI

p value Rank (i/m) Q Sig.
Lower Upper

1 All33 (min-max) vs F31 0.0482 0.0091 0.0304 0.0660 0.0000 1 0.0083 ∗∗

2 All33 (min-max) vs. All 251 (L2) 0.0616 0.0279 0.0070 0.1163 0.0029 2 0.0167 ∗∗

3 All33 (min-max) vs F39 0.0295 0.0165 −0.0028 0.0618 0.0071 3 0.0250 ∗∗

4 All33 (min-max) vs F35 0.0304 0.0217 −0.0121 0.0728 0.0185 4 0.0333 ∗∗

5 All33 (min-max) vs F13 0.0196 0.0214 −0.0224 0.0616 0.0752 5 0.0417
6 All33 (min-max) vs F27 0.0138 0.0211 −0.0276 0.0552 0.1698 6 0.0500
∗∗Statistical significance at 0.05 level using Benjamini–Hochberg correction procedure.
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SD� 12.263, SE� 0.966; risky texts:M� 19.177, SD� 22.999,
SE� 2.017, p< 0.0001); and passive voice (safe texts:
M� 2.944, SD� 5.639, SE� 0.444; risky texts: M� 4.931,
SD� 6.191, SE� 0.543, p< 0.0001).

We found that the accuracy, sensitivity, and specificity of
Bayesian classifiers based on these separately optimised
features were suboptimal, in spite of the individual features
retained in each optimised feature set being statistically
significant features. Recent studies suggest that statistical
significance and predictivity of features are often taken as
exchangeable concepts, mistakenly [22–26]. Adding statis-
tically significant features identified between case and
control samples however do not necessarily improve the
predictive performance of machine learning classifiers. ,is
was verified in our study through joint optimisation of
different feature sets combining lexical, semantic, sentiment,
and structural features (251 features in total). ,e joint
optimisation led to an optimised mixed feature set of 33
features, including 5 which did not have statistically different
distribution in “safe” versus “risky” English mental health
texts: K5 (leisure, activities) (safe texts: M� 2.596,
SD� 5.473, SE� 0.431; risky texts: M� 2.292, SD� 2.900,
SE� 0.254, p � 0.346); M3 (means of transport on land) (safe
texts: M� 0.839, SD� 1.680, SE� 0.132; risky texts:
M� 2.038, SD� 7.276, SE� 0.638, p � 0.076); Z3 (organi-
sations names) (means of transport on land) (safe texts:
M� 2.466, SD� 6.791, SE� 0.535; risky texts: M� 1.854,
SD� 2.910, SE� 0.255, p � 0.893); average number of sen-
tences per paragraph (safe texts: M� 2.160, SD� 3.394,
SE� 0.267; risky texts: M� 2.434, SD� 6.268, SE� 0.550,
p � 0.384); and number of questions (safe texts: M� 3.068,
SD� 3.607, SE� 0.284; risky texts: M� 3.815, SD� 5.059,
SE� 0.444, p � 0.312).

All other features in the jointly optimised feature set had
statistically higher means in “risky” than in “safe” English
mental health materials. Specifically, this included A3 (be-
ing/existing) (p< 0.001), A13 (degree adverbs) (p< 0.001),
A15 (abstract terms of safety, danger) (p< 0.001), B2
(physical conditions) (p< 0.001), B3 (medical treatment)
(p< 0.001), E5 (trepidation, courage, surprise) (p< 0.001),
E6 (apprehension, confidence) (p � 0.001), M5 (transport by
air) (p � 0.002), M6 (points of reference) (p< 0.001), N3
(measurement) (p � 0.004), O4 (physical attributes)
(p< 0.001), S1 (social action, state, process) (p< 0.001), S5
(affiliation) (p � 0.001), T1 (time) (p< 0.001), X2 (reasoning,
belief, scepticism) (p< 0.001), Z5 (functional words)
(p< 0.001), Z8 (pronouns) (p< 0.001), clout expressions
(p � 0.004), affect words (p � 0.002), negative emotions
(p< 0.001), anxiety (p< 0.001), number of sentences using
the same words multiple times (overused words) (p< 0.001),
number of proper nouns (p � 0.008), number of unique
multiple (3+) syllable words (p< 0.001), number of unique
long (more than 6 letters) words (p< 0.001), and out-of-
dictionary words (p � 0.004). For Bayesian machine learning
classifiers to reach higher prediction accuracy, both these
statistically significant features and statistically non-signif-
icant yet highly predictive features were identified “risk
factors” contributing to the increased probability of con-
ceptual mistakes in machine translated mental health in-
formation in Spanish.

,e major advantage of the relevance vector machine
classifier (RVM) based on the optimised andmixed feature set
was the balanced sensitivity (0.651) and specificity (0.741),
which made the instrument more applicable and useful in
practical settings such as development and evaluation of
mental health education and promotion resources for

Table 10: Results of automatic feature optimisation.

Optimised features
(number) Label Optimised feature

Lexical dispersion rates
(4) D4 DiSp8:0.7–0.8, DiSp9:0.8–0.9, DiSp10 : 0.9–1.0, DiWr10 : 0.9–1.0

Semantic features (10) U10
A2 (words depicting change), A3 (words depicting being/existing), A4 (classification), A6 (comparing),
A7 (probability), A13 (degree adverbs), E5 (trepidation, courage, surprise), O4 (physical attributes), Z5

(functional words), Z6 (negative particles).

Sentiment features (10) L10
Clout expressions, emotional tones, words per sentences, they (third person pronouns), affect words
(incl. positive and negative emotions, anxiety, anger, sad), negative emotions, anxiety, tentativeness,

differentiation, core drives and needs (reward focus)

Structural features (5) S5
Number of difficult sentences (more than 22 words), number of monosyllabic words, number of long (6+
characters) words, number of sentences which use the same word multiple times (overused words),

passive voice

All features (33) All33

Dispersion rates (1): DiSp8:0.7–0.8
Semantic features (21): A3 (being/existing), A13 (degree adverbs), A15 (abstract terms of safety, danger),
B2 (physical conditions), B3 (medical treatment), E5 (trepidation, courage, surprise), E6 (apprehension,
confidence), K5 (leisure, activities), M1 (movement), M3 (transport on land), M5 (transport by air), M6
(points of reference), N3 (measurement), O4 (physical attributes), S1 (social action, state, process), S5
(affiliation), T1 (time), X2 (reasoning, belief, scepticism), Z3 (organisations names), Z5 (functional

words), Z8 (pronouns)
Sentiment features (L4): clout expressions, affect words, negative emotions, anxiety

Structural features (S7): number of sentences using the same words multiple times (overused words),
average number of sentences per paragraph, number of questions, number of proper nouns, number of
unique multiple (3+) syllable words, number of unique long (more than 6 letters) words, out-of-

dictionary words.
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Spanish-speaking patients. ,e list of optimised linguistic
features included in the best-performing classifier also pro-
vides important opportunities for health professionals to
make well-targeted, cost-effective interventions to English
health materials to improve their suitability for automatic
translation purposes. For example, health professionals could
adjust the distribution patterns of relevant linguistic features,
especially those associated with higher risks of causing au-
tomatic translation mistakes, and rerun the automatic as-
sessment of the English input materials using our machine
learning classifier, iteratively, until the predicted risk level
reaches an acceptable level. Importantly, this process does not
require any linguistic knowledge on the part of English-
speaking medical professionals of patients’ language (in this
case, Spanish).

6. Conclusions

Our paper developed probabilistic machine learning algo-
rithms to assess and predict the levels of risks of using the
Google Translate application in translating and delivering
mental health information to Spanish-speaking populations.
Our model can inform clinical decision making around the
usability of the online translation tool when translating
different original English texts on anxiety disorders into
Spanish. ,is was achieved through the probabilistic pre-
diction of Bayesian machine learning classifiers: if an input
English text was assigned a high probability (over 50%) of
causing erroneous and misleading automatic translation
output, health professionals should become alert of the risk
of using Google Translate; by contrast, if an input English
text was assigned a low risk probability (below 50%), health
professionals can feel reassured that the whole piece of
English information can be translated safely to its intended
user, using the online automatic translation tool.,e smaller
the risk probability of an English text is, the safer it is for the
text to be translated automatically online. For original
English materials which were labelled as non-suitable for
automatic translation, our machine learning offers the op-
portunity to adjust, modify, and fine-tune the text to im-
prove its suitability for automatic translation. ,is was
achieved through the feature optimisation technique de-
veloped in our study. An important and useful feature of our
model is that it does not require any linguistic knowledge on
the part of English-speaking medical professionals of the
patients’ language. ,e classifier can be applied as a practical
decision aid to help increase the efficiency and cost-effec-
tiveness of multicultural health communication, translation,
and education.

Appendix

A. Annotation of Feature Sets

A.1. Structural Features (24). ,is includes average number
of sentences per paragraph, number of difficult sentences
(more than 22 words), average sentence length, number of
interrogative sentence (question), number of exclamatory
sentences, average number of characters, average number of

syllables, number of numerals, number of proper nouns,
number of monosyllabic words, number of unique mono-
syllabic words, number of complex (3+ syllable) words,
number of unique 3+ syllable words, number of long (6+
characters) words, number of unique long words, out-of-
dictionary words, repeated words, wording errors, redun-
dant phrases, number of sentences which use the same word
multiple times, wordy items, cliché, passive voice, and
sentences that begin with conjunctions.

A.2. Lexical Dispersion Rates (20). ,is includes DiSp1:
0.0–0.1, DiSp2:0.1–0.2, DiSp3:0.2–0.3, DiSp4:0.3–0.4, DiSp5:
0.4–0.5, DiSp6:0.5–0.6, DiSp7:0.6–0.7, DiSp8:0.7–0.8, DiSp9:
0.8–0.9, DiSp10 : 0.9–1.0, DiWr1:0.0–0.1, DiWr2:0.1–0.2,
DiWr3:0.2–0.3, DiWr4:0.3–0.4, DiWr5:0.4–0.5, DiWr6:
0.5–0.6, DiWr7:0.6–0.7, DiWr8:0.7–0.9, DiWr9:0.8–0.9, and
DiWr10 : 0.9–1.0.

A.3. English Lexical Semantic Features (115) (USAS). ,is
includes general and abstract terms (A1-A15, 15 features);
the body and the individual (B1–B5, 5 features); arts and
crafts (C1); emotion (E1-E6, 6 features); food and farming
(F1–F4, 4 features); government and public (G1-G3, 3
features); architecture, housing and the home (H1–H5, 5
features); money and commerce in industry (I1–I4, 4 fea-
tures); entertainment, sports and games (K1–K6, 6 features);
life and living things (L1-L3, 3 features); movement, loca-
tion, travel and transport (M1-M8, 8 features); numbers and
measurements (N1–N6, 6 features); substances, materials,
objects and equipment (O1–O4, 4 features); education (P1),
language and communication (Q1-Q4, 4 features); social
actions, states, processes (S1–S9, 9 features); time (T1-T4, 4
features); world and environment (W1–W5, 5 features);
psychological actions, states and processes (X1-X9, 9 fea-
tures); science and technology (Y1–Y2, 2 features); and
grammar (Z0-Z9, Z99, 11 features).

A.4. Lexical Sentiment Features (92) (LWIC). ,is includes
analytical thinking (describing the degree to which people
use words that suggest formal, logical, and hierarchical
thinking patterns), clout (describing the relative social
status, confidence, or leadership that people display through
their writing or talking), authenticity (describing how people
reveal themselves in an authentic or honest way), emotional
tone (the higher the number, the more positive the tone;
numbers below 50 suggest a more negative emotional tone),
words per sentence), words longer than 6 letters, dictionary
words, function words, pronouns, personal pronouns,
personal pronouns (first per singular: I), personal pronouns
(first person plural: we), personal pronouns (2nd person:
you), personal pronouns (third person singular: she or he),
personal pronouns (third person plural: they), impersonal
pronouns, articles, prepositions, auxiliary verbs, common
adverbs, conjunctions, negations, verbs, adjectives, com-
paratives, interrogatives, numbers, quantifiers, affect words,
positive emotions, negative emotions, anxiety, anger, sad,
social words, family, friends, female referents, male
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referents, cognitive processes, insight, cause, discrepancies,
tentativeness, certainty, differentiation, perpetual processes,
seeing, hearing, feeling, biological processes, body, health/
illness, sexuality, ingesting, core drives and needs, core
drives and needs (affiliation), core drives and needs
(achievement), core drives and needs (power), core drives
and needs (reward focus), core drives and needs (risk/
prevention focus), past focus, present focus, future focus,
relativity, relativity (motion), relativity (space), relativity
(time), personal concerns (work), personal concerns (lei-
sure), personal concerns (home), personal concerns
(money), personal concerns (religion), personal concerns
(death), informal speech, informal speech (swear words),
informal speech (netspeak), informal speech (assent), in-
formal speech (non-fluencies), informal speech (fillers), all
punctuations, punctuations (periods), punctuations
(commas), punctuations (colons), punctuations (semi co-
lons), punctuations (question marks), punctuations (ex-
clamations), punctuation (dash), punctuation (quotes),
punctuation (apostrophes), parentheses (pairs), and other
punctuations.
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