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Naru3 (NR) is a traditional Mongolian medicine with high clinical efficacy and low incidence of side effects. Metabolomics is an
approach that can facilitate the development of traditional drugs. However, metabolomic data have a high throughput, sparse,
high-dimensional, and small sample nature, and their classification is challenging. Although deep learning methods have a wide
range of applications, deep learning-based metabolomic studies have not been widely performed. We aimed to develop an
improved stacked autoencoder (SAE) for metabolomic data classification. We established an NR-treated rheumatoid arthritis
(RA) mouse model and classified the obtained metabolomic data using the Hessian-free SAE (HF-SAE) algorithm. During
training, the unlabeled data were used for pretraining, and the labeled data were used for fine-tuning based on the HF algorithm
for gradient descent optimization. The hybrid algorithm successfully classified the data. The results were compared with those of
the support vector machine (SVM), k-nearest neighbor (KNN), and gradient descent SAE (GD-SAE) algorithms. A five-fold cross-
validation was used to complete the classification experiment. In each fine-tuning process, the mean square error (MSE) and
misclassification rates of the training and test data were recorded. We successfully established an NR animal model and an

improved SAE for metabolomic data classification.

1. Introduction

Rheumatoid arthritis (RA) is a common systemic autoim-
mune disease characterized by symmetric polyarthritis and
joint destruction [1]. It is traditionally treated with meth-
otrexate combined with the botanical preparation of Trip-
terygium wilfordii. Good results are achieved with this
treatment, which improves symptoms and delays disease
progression. However, due to severe side effects, treatment
compliance is poor. Naru3 (NR) is a traditional Mongolian
medicine with a pure botanical preparation. Feng and Xiao
[2] and Zhi [3] showed that the therapeutic effect of NR was
similar to that of traditional RA treatment methods, and that
it was a safe and effective drug of high medicinal value.
However, the traditional Mongolian medicine (TMM) re-
search methods are simplistic, and the technologies used are
outdated. Therefore, it is necessary to combine these

methods with modern technologies and approaches to
further promote the application of TMM in disease diag-
nosis and treatment.

In recent years, machine learning and its subfield deep
learning have been successfully applied in various fields,
such as image processing, speech recognition, and natural
language processing. Furthermore, they have attracted
widespread attention in the fields of medicine, chemistry,
and biology, exerting a great impact on people’s life.

With the development of high-throughput experimental
technologies, high-dimensional, noisy, and redundant bio-
logical or medical data can be obtained. However, owing to
the cost of the experiments, the sample data are scarce,
rendering the standard method of multiple regression in-
efficient. Assuming that p is the dimensionality and # is the
amount of data, then p >> n. If we use limited data to build a
distribution model with p parameters, it can easily lead to
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overfitting in machine learning models. This is a well-known
problem in the field of statistics, known as the “curse of
dimension” [4]. In the abovementioned research fields, there
have been many successful applications of machine learning
methods in solving the p>>#n problem. Ueki and Tamiya
have developed a new genetic prediction method using
single nucleotide polymorphism (SNP) data in genome-wide
association studies (GWASs), which has good predictive
ability but is computationally expensive [5]. Ching et al.
developed a new artificial neural network (ANN) frame-
work, called Cox-nnet, to predict patient prognosis from
high-throughput transcriptomic data, achieving the same or
better predictive accuracy compared with that of other
methods, including Cox-proportional hazards regression,
random survival forests, and CoxBoost, while revealing
richer biological information [6]. Xu et al. proposed a feature
selection method for one-bit compressed sensing for the
classification of high-throughput protein data based on mass
spectrometry (MS), which has been employed on MS data to
select important features with low dimensions, showing
better classification performance for real MS data than
traditional methods [7]. Yu et al. developed a support vector
machine (SVM) algorithm that identifies optimal sorting
gates based on machine learning using positive and negative
control populations, taking advantage of more than two
dimensions to enhance the ability to distinguish between
populations [8]. Furthermore, Xie et al. proposed a Rank-
Comp algorithm, which was mainly developed to identify
individual-level differentially expressed genes (DEGs) that
can be applied to identify population-level DEGs for one-
phenotype data [9]. Fouaz and Hacene proposed a genetic
algorithm to improve similarity searching pertaining to li-
gand-based virtual screening, which can identify the most
important and relevant characteristics of chemical com-
pounds [10].

In recent years, metabolomic data processing has
attracted increasing attention [11]. Metabolomics mainly
studies how an organism’s metabolites respond to changes in
internal and external environmental conditions [12]. In
metabolomics, a machine learning method is used to process
data, screen biomarkers, and study the changes in metabolic
pathways and the molecular mechanisms of diseases [13].
The analysis of metabolomic data is accompanied by mul-
tiple difficulties and challenges due to its high throughput,
sparse, and high-dimensional nature and the p >> n problem
[14, 15]. At present, although traditional machine learning
methods such as principal component analysis (PCA) [16],
random forest (RF) [17], and SVM [18] have been suc-
cessfully applied in the field of metabolomics, it is still
necessary to find better methods to process metabolomic
data. Deep learning methods have been successfully applied
in many fields but less in metabolomics [19]. A stacked
autoencoder (SAE) is a typical deep learning model with
good feature selection and nonlinear expression. An im-
proved SAE algorithm needs to be developed to solve the
problem of metabolomic data classification.

Although deep learning is a machine learning subfield
with a wide range of applications, a limited number of deep
learning-based metabolomic studies have been so far
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performed. Asakura et al. proposed an ensemble deep neural
network (EDNN) algorithm, which they applied to
metabolomic data of various fish species, that is helpful for
regression analyses and concerns pertaining to classification
in metabolomic studies. The dimensions of their experi-
mental data were 106 and were derived from nuclear
magnetic resonance (NMR) measurements [19]. Date and
Kikuchi proposed an improved DNN-mean decrease ac-
curacy (MDA) method that can be used for supervised
classification and regression modeling and the determina-
tion of important variables for the evaluation of biological
and environmental samples [20]. Alakwaa et al. proposed
that metabolomics holds promise as a new technology for
the diagnosis of highly heterogeneous diseases. However, it
remains unknown whether DNN, a class of increasingly
popular machine learning methods, is suitable for classifying
metabolomic data. [21]. Bardley and Robert proposed that
metabolomic data are complex because of their high di-
mensionality and high degree of multicollinearity between
variables [22]. Risum and Bro successfully implemented a
deep learning algorithm to perform automated spectral
deconvolution [23]. Thus, it is reasonable to speculate that
we are now within reach of a single deep learning algorithm
for accurately classifying raw spectra directly from the in-
strument [24]. However, the limiting factor for success is to
obtain sufficiently large datasets, which are required to train
such computationally “greedy” algorithms [25].
Metabolomic data have a high throughput, sparse, high-
dimensional, and small sample nature. Deep learning has
good predictability, which shows that it can better distin-
guish different types of metabolomics data. If a good clas-
sification can be obtained, it will help us to further complete
the selection of biomarkers based on deep learning. In this
study, we aimed to introduce an improved framework,
named Hessian-free [26] stacked autoencoder (HF-SAE),
combining the Hessian-free algorithm and SAE model with
Softmax regression for the classification of metabolomic data
of NR-treated RA. We used this hybrid algorithm to perform
the classification of metabolomic data of NR-treated RA and
compared the results with those obtained using the SVM, k-
nearest neighbor (KNN), and gradient descent SAE (GD-
SAE) algorithms. A five-fold cross-validation was used to
complete the classification experiment. In each fine-tuning
process, the mean square error (MSE) and misclassification
rates of the training data and test data were recorded. The
hybrid algorithm successfully classified the data. A five-fold
cross-validation was used to complete the classification
experiment. In each fine-tuning process, the MSE and
misclassification rates of the training and test data were
recorded. We successfully established an NR animal model
and an improved SAE for metabolomic data classification.

2. Methods

2.1. Metabolomic Stacked Autoencoder. The autoencoder was
composed of an input layer, a hidden layer, and an output
layer. The encoder encoded the input data, which were
composed of an input layer and a hidden layer. The decoder
completed the reconstruction of the input data, which
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consisted of a hidden layer and an output layer. Its purpose
was to make the output as close as possible to the input. The
training steps of the autoencoder were as follows.

2.1.1. Calculation of the Activation Value of Each Layer.
The sample data were the input of the encoder, and the
activation value of the hidden layer neurons was calculated
by forward conduction. The activation value of the hidden
layer neurons was the input of the decoder, and its output
(reconstruction value) was calculated in the same manner. If
f(2) is used to represent the activation function, aﬁ =f (zf) is
the activation value of the i-th neuron in layer I z*!
represents the weighted sum of all inputs of the j-th neuron
in the [+1 layer, and its formula is as follows:

n

I+1 _ / +1

z; —Z;wijx+bj , (1)
iz

where # is the number of neurons in the ! layer, x is the input.
w! ; is the weight between the j-th neuron of the /+1 layer
and the i-th neuron of the [ layer, and bl]frl is the bias of the

jth neuron in the [+1 layer.

2.1.2. Updating Weights and Biases. The back-propagation
(BP) was used to calculate the residual between each layer of
neurons and the output layer, and BP was based on gradient
descent to reduce the training error of the network. The cost
function was used to calculate the least mean square error
between the expected output and the actual output. J (w, b) is
the cost function, and the formula is as follows:

J(w,b) = % i (%“aw)b (x)f = y"”2>, 2)
k=1

where m is the number of samples, x is the input, a,,;, (%) is
the actual output, and y is the expected output. The error was
used to adjust the weight and bias of the network based on
BP so that the error was gradually reduced. Gradient descent
was used to continuously update w and b so that the output
of the autoencoder was close to the input. The adjusted value
of w and b is proportional to d/0w] (w, b) and 9/0b] (w, b).
The formulas for updating w and b are as follows:

w:w—ai](w,b),
ow
(3)
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2.1.3. Activation Function. SAE is a deep neural network
composed of multiple AE units. The model is trained layer by
layer using an unsupervised method, and the output of the
previous layer is the input of the next layer. The output of the
SAE is the input of the classifier that completes the classi-
fication. The multihidden layer in SAE can effectively reduce
the noise, improve the generalization ability, increase ro-
bustness, and improve the classification accuracy.

In the training, the restricted Boltzmann machine
(RBM) was used to obtain the initial weight, and the ReLU
was used as the activation function. A sigmoid is a common
activation function that maps the output between [0, 1].
However, when the input values are close to infinity or
infinitesimal, their gradient is close to zero. Therefore, it is
very important to initialize the parameters. If the initial
parameters are very small, most neurons are in the saturated
state; that is, the gradient is close to 0, which makes the
learning of the neural network extremely difficult. As
mentioned above, ReLU was selected as the activation
function of the SAE, and its formula was as follows:

ai = f(zf) = max(O, zf), (4)

where the gradient is always 1 when z! > 1, which indicates
that the gradient is unsaturated. When the error is back-
propagated, the update of the SAE weight can be completed
quickly. Moreover, the calculation of ReLU is simple, and
thus the running speed of the SAE is significantly improved.

2.2.Sparse Autoencoder. To better complete feature selection
and reconstruction, the sparse method was used to limit the
activity of neurons in the model. If x is the input of AE and
a](.z) (x) is the activation value of the hidden node j, the
average activation value of the hidden node j is as follows:

-~ l Z i
P = 2147 ()] Q

where m is the number of samples. In the sparse method, the
penalty factor is added to the cost function of AE, and its
formula is as follows:

Yo 1og§+ (1- p)log 11__5,

=1 j j

(6)

where p is a sparse parameter and its value is close to zero, p;
is determined by the connection weights and biases between
the nodes of each layer, and s, is the number of nodes in the
hidden layer. We would like the average activation of each
hidden neuron j to be close to zero. To achieve this, we add
an extra penalty term to our optimization objective that
penalizes p;deviating significantly from p. The optimized
cost function of the sparse method is as follows:

J(wb) = J(wb)+pY p logﬁ£+ (1 - p)log 11_5) )

=1 j j

where f3 is the weight of the sparse penalty factor.

2.3. Fine-Tuning. The proposed HF-SAE consists of SAE and
Softmax regression. SAE completes feature selection, and
Softmax regression completes the classification of metab-
olomic data. The structure of our neural network is 4573-
1000-500-100-5, which includes three AE units and one
Softmax unit. In the pretraining of the SAE, two adjacent
layers formed an AE, and the connection weights between
layers were obtained by AE training. The input of each AE



hidden layer was the input of the next AE. In the process of
fine-tuning, the entire SAE was considered as an encoder,
and the mapping of the SAE was considered as a decoder.
SAE and its mapping were combined into more hierarchical
networks, and HF was used to fine-tune the weights. The
fine-tuning structure is illustrated in Figure 1.

3. Results
3.1. Dataset

3.1.1. Chemicals and Reagents. NR was provided by the
Mongolian Medicine Manufacturing Room of the Affiliated
Hospital of Mongolia University for the Nationalities
(Tongliao, China). NR powder was dissolved in a 0.5%
carboxymethyl cellulose (CMC) sodium aqueous solution
up to a concentration of 1.00 g/mL and stored at 4°C for
animal experimentation.

Radix Aconiti kusnezoffii (AK) and Piper longum (PL)
were purchased from Liqun Drugstore (Tongliao, China).
The AK and PL powders were refluxed eight times with
ethanol for three times (2h each time). The extraction so-
lution was slightly boiled. After filtration, the concentrations
of AK and PL supernatants were diluted to 0.28 and 0.17 g/
mL, respectively.

Complete Freund’s adjuvant (CFA) was purchased from
Sigma Chemical Co. (St. Louis, MO, USA). Methanol and
formic acid (Fisher Scientific, UK) were of HPLC grade. The
assays were purchased from Nanjing Jiancheng Bioengi-
neering Institute (Nanjing, China).

3.1.2. Adjuvant-Induced Arthritis Model Establishment and
Treatment. The study was approved by the ethics com-
mittee of the Medicine College of Inner Mongolia Uni-
versity for the Nationalities IMUNMCEC20210412 [1]).
Male Wistar rats (200+10g) were provided by YiSi
Laboratory Animal Technology Co., Ltd. (Changchun,
China). All animals were reared under standard condi-
tions (21 + 2°C, daily sunshine for 14 h) with free access to
rodent chow and water in the Affiliated Hospital of Inner
Mongolia University for Nationalities and allowed to
acclimatize in metabolism cages for 1 week prior to the
experiment. The rats were divided into five treatment
groups: control (CG), model (MG), NR, AK, and PL, with
eight rats in each group. On day 1, the rats in the MG NR,
AK, and PL groups were intradermally injected with
0.1 mL CFA in the right posterior toe, while the rats in the
CG group were injected with 0.1 mL saline. After 7 days,
the rats in the MG, NR, AK, and PL groups were injected
with 0.1 mL CFA. On day 14, the rats in the NR, AK, and
PL groups were administered NR, AK, and PL, with the
doses of 1.00, 0.28, and 0.17 g/kg/day, respectively, for 21
consecutive days, and on day 35 all the rats were eu-
thanized. Blood was collected from the hepatic portal vein
and centrifuged at 3500rpm for 10min at 4°C. The
supernatants were immediately frozen, stored at —20°C,
and thawed before analysis. Arthrodial cartilage was fixed
in 10% formaldehyde for paraffin embedding.

Computational Intelligence and Neuroscience

3.1.3. Serum Sample Preparation. The serum samples were
thawed before analysis, and 100-uL aliquots were added to
400 uL acetonitrile, followed by vortexing for 30s and
centrifugation at 12000 rpm for 10 min at 4°C. The super-
natant was subsequently filtered through a 0.22-um filter
membrane.

3.1.4. Ultrahigh-Performance Liquid Chromatography
(UHPLC) Conditions. A Thermo Dionex Ultimate 3000
UHPLC system coupled with a Q Exactive Focus Orbitrap
mass spectrometer (Thermo, USA) was used for metab-
olomic analysis.

The Waters Acquity UHPLC BEH C18 Column (1.7-ym,
2.1 mm x 50 mm, Waters, UK) was maintained at 40°C with
a flow rate of 0.3 mL/min~" for the separation. The mobile
phases were 0.1% formic acid in deionized water (A) and
methanol (B). The gradient elution with B was performed
according to the following schedule: 8% B for 0-0.5 min,
8-60% B for 0.5-1.5 min, 60-100% B for 1.5-6 min, 100% B
for 6-8 min, 100-8% B for 8-9 min, and 8% B for 9-10 min.
The sample injection volume was 10 yL.

The optimal conditions used for UHPLC-high-definition
MS (HDMS) analysis were as follows: nitrogen was used as
the sheath and aux gas (at flow rates of 30 and 5 bar, re-
spectively), the spray voltage was 3.0kV, and capillary and
aux gas heater temperatures were 320°C and 300°C,
respectively.

The MS data were collected in switching mode
(switching between positive and negative spectra) in the
mass range of 100-1000 Da. The resolution of the full MS
was 70000. In the dd-MS2 discovery mode, the resolution
was 17500, and the isolation window was set to 3.0 m/z. The
MS2 collision energy was set to 30eV.

3.1.5. Data Analysis. A pooled quality control (QC) sample
was prepared by mixing aliquots (20 L) of each sample to
monitor the instrument stability. Every day, six QC samples
were analyzed to test the stability of the instrument. The
Compound Discoverer software (version 2.0) was used for
peak detection, alignment, and normalization of the peak
area.

3.2. Five-Fold Cross-Validation Classification Experiment.
The metabolomic dataset contained a small number of
samples. To verify the reliability and stability of the HF-SAE
model for classification, a five-fold cross-validation method
was adopted. The data were divided into five groups on
average. Each time, four groups were selected as the training
set, and one group was selected as the validation set. The
process was repeated until each group of data became a
validation set.

We obtained 40 samples of metabolomic data from the
NR-treated animal model. To better complete the training of
the model, we used the synthetic minority oversampling
technique (SMOTE) [27] algorithm to expand the experi-
mental data to 320. There were 255 samples in the training
set, 65 samples in the test set, and 4573 variables. The
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FIGURE 1: Fine-tuning structure (SAE, stacked autoencoder).

experimental data were preprocessed and normalized and
divided into five groups (CG, MG, NR, AK, and PL). The
structure of our neural network was 4573-1000-500-100-5.
The learning rate was set to 0.01. First, the unsupervised
method was used to complete the SAE training (the pre-
training of the model was completed, and the initial weight
was obtained). Second, a supervised method was used to
complete the training of the Softmax classifier. Finally, fine-
tuning of the model was completed, in which the GD and HF
algorithms were used to minimize the cost function. Owing
to the small number of training and test data, a min-batch
was not used in the training process. The number of iter-
ations in each RBM during training was 500, and the number
of iterations during fine-tuning was 4000. The classification
accuracies are presented in Table 1.

Table 1 shows the results of the five-fold cross-validation
classification experiment for the different datasets. The KNN
classification accuracy was between 81.54% and 86.15%, with
the lowest accuracy being observed in the third group. The
SVM classification accuracy fluctuated dramatically between
73.85% and 81.54%, with the lowest accuracy being observed
in the first group. When we used the method combining SAE
with Softmax regression, in which fine-tuning was based on
GD or HF, the GD-SAE classification accuracy was between
70.77% and 76.92%, and that of HF-SAE was over 90% for
each group and did not fluctuate dramatically. The SVM

TaBLE 1: Classification accuracy in the five-fold cross-validation
experiment (%).

Group KNN SVM GD-SAE HE-SAE
1 84.62 73.85 70.77 93.85
2 86.15 76.92 76.92 92.31
3 81.54 81.54 73.85 90.77
4 84.62 75.38 75.38 93.85
5 87.69 78.46 73.85 93.85
Mean 84.92 77.23 74.15 92.93

classification accuracy varied greatly and lacked robustness.
Although the classification results of KNN and GD-SAE
were stable, the classification accuracies were not satisfac-
tory. Therefore, the proposed method is more stable, reliable,
and suitable for the classification of metabolomic data. To
further compare the effects of different fine-tuning algo-
rithms on the SAE, we recorded the MSE of the training set
and the misclassification rate of the training and test sets. A
comparison of MSE, training, and test classification error
rates is shown in Figure 2.

For terms of the running time, KNN, SVM, GD-SAE,
and HF-SAE were about 80 seconds, 80 seconds, 650 sec-
onds, and 900 seconds, respectively. Although HF-SAE had a
good classification effect, the computational complexity was
very high. In addition, we also evaluated the classification
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accuracy by calculating the kappa value [28], and the range
of this value is [0, 1]. If the value was closer to 1, it indicated
that the classification accuracy of the model was better. The
kappa value of KNN, SVM, GD-SAE, and HE-SAE was 0.81,
0.72, 0.68, and 0.91, respectively. The proposed HF-SAE
method had the best kappa value, which further showed that
the method had better classification ability.

3.3. Classification Experiments of Different Training and Test
Datasets. Metabolomic data have a high throughput, sparse,
high-dimensional, and small sample nature, which increases
the classification difficulty. To further verify the effect of
different methods on metabolomic data classification, six
datasets with different sizes were established, and the data
content difference between each group was 10%. The ex-
periment algorithm was the same as that used in the five-fold
cross-validation classification experiment. The number of
training sets and test sets for each group, as well as the
classification results, is listed in Table 2.

Table 2 shows that when the training data decrease with
the decrease in total samples, the classification accuracy of
KNN, GD-SAE, and HF-SAE also significantly declines. The
reason is that the above three machine learning methods are
affected by the reduction of the features that can be obtained,
while the accuracy of SVM is relatively stable and less af-
fected by this. Compared with the other three methods, HF-
SAE can provide better results. In metabolomic data clas-
sification experiments of different scales, it is shown that
although the training data are reduced, HF-SAE can still
obtain better metabolomic data characteristics.

4. Discussion

In the five-fold cross-validation classification experiment,
the GD-SAE average classification accuracy rate was the
lowest, while that of HF-SAE was the highest. The experi-
mental results show that if the fine-tuning methods of the
SAE classification model are different, the effect on the
results is very obvious. As the number of iterations in-
creased, the fine-tuning process differed significantly. To
further compare the effects of different fine-tuning algo-
rithms on the SAE, we recorded the MSE of the training set
and the misclassification rate of the training and test sets. In
the five-fold cross-validation experiment based on the GD
fine-tuning method, the MSE decreased slowly with the
increase in iteration, and the misclassification rate of the
training and test sets also gradually decreased during the
oscillation process. However, this downward trend was not
obvious. When the iteration reached a certain number of
times, only a certain range of oscillation occurred, but there
was no trend of continuous decline. In the five-fold cross-
validation experiment based on the HF fine-tuning method,
each indicator had a fast decline speed and small amplitude,
and fewer iterations were needed to reach a stable interval
compared with GD.

In the process of fine-tuning, the classification accuracy
of GD and HF tended to be stable after 2000 iterations, but
their classification effect was obviously different. This shows

TaBLE 2: Classification accuracies of the different training and test
sets (%).

Training set  Test set KNN SVM  GD-SAE HEF-SAE
255 65 86.15 7692 76.92 92.31
230 58 82.76  84.48 77.59 91.38
204 52 80.77  80.77 76.92 88.46
179 45 77.78  75.56 77.78 84.44
153 39 76.92  79.49 74.36 84.62
128 32 71.88  78.13 68.75 81.25

that GD only reaches the local optimal state during fine-
tuning and cannot jump out of the local minimum. The
change in MSE also explains the difference in the classifi-
cation accuracy. The MSE of the HF showed a clear
downward trend and stabilized after approximately 2000
iterations. Although the GD showed a downward trend, the
change was small. The HF-SAE proposed in this paper is
superior to the GD-SAE in both the classification results and
the fine-tuning process. Moreover, the HF-SAE is stable,
reliable, and suitable for metabolomic data classification. A
comparison of MSE, training, and test classification error
rates is shown in Figure 2. For terms of the running time,
KNN was the shortest, HF-SAE time was the longest, and the
computational complexity was the highest. HF-SAE
achieved better classification results at the cost of consuming
more computing resources.

In the classification experiments of different training and
test datasets, the number of fine-tuning iterations was 4000.
The training data for the experiment were reduced from 255
to 128, and the test data were reduced from 65 to 32. In each
group of experiments, the classification result of HF-SAE
was better than that of GD-SAE. In the fine-tuning process,
the HE-SAE error rate amplitude was relatively large in the
initial stage. The classification error rate decreased faster and
entered a stable and small-amplitude oscillation range in a
short time. The GD-SAE classification accuracy only showed
a significant decline in the initial stage of fine-tuning.
However, there was no significant change in the classifica-
tion accuracy, which was significantly different from the
classification results of HF-SAE.

In the method comparison, accuracies of HF-SAE were
superior for the classification of metabolomic data of NR-
treated RA compared with KNN, SVM, and GD-SAE. Ac-
companying development of metabolomics, robust and
accurate classification methods to predict sample labels are
in critical need. These results indicated that the HF-SAE
developed here was a helpful tool for analyzing biomarkers
from the metabolomic data. We concluded that the HF-SAE
was capable of identifying important variables that con-
tributed to the constructed HF-SAE model.

Although HF-SAE has excellent classification perfor-
mance, there are still some considerations in metabonomics
research. Compared with some other machine learning
methods, HF-SAE is time-consuming computation. In ad-
dition, metabonomics datasets are typically small compared
with other data, such as text and images. For the classifi-
cation of metabolomic data of NR-treated RA, we obtained
40 samples. To better complete the training of the model, we



used the SMOTE algorithm to expand the experimental data
to 320 because very small data sets may not be suitable for
HEF-SAE. We also experimented with the effects of reducing
training set size and test set size and found that HF-SAE is
indeed sensitive to the sample size of the study.

5. Conclusions

NR is a traditional Mongolian medicine and a pure botanical
preparation, and it has achieved good results in improving
symptoms and delaying RA progression. However, the
TMM research methods are simplistic, and the technologies
used are outdated. Therefore, HF-SAE was used to classify
the metabolomic data of NR-treated RA. Metabolomic data
are highly dimensional and sparse. With the proposed
method, we not only diagnosed RA but also completed an
evaluation of NR. In the five-fold cross-validation classifi-
cation experiment, the proposed method is more stable,
reliable, and suitable for the classification of metabolomic
data compared with KNN, SVM, and GD-SAE. To further
verify the effect of different methods on metabolomic data
classification, we performed classification experiments using
different training and test datasets. The results show that
although the training data are reduced, HF-SAE can still
obtain better metabolomic data characteristics. Although the
HE-SAE algorithm is a useful tool for the classification, the
performance of the method depends on sample size, and
how to select biomarkers and explain the model scientifically
through the model proposed is also an urgent problem to be
solved in this field at this stage.

Data Availability

Our data still need to be studied in the next stage, so it is not
convenient to provide it directly. The data can be made
available upon request via email.
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