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+e increasing volume and types of malwares bring a great threat to network security. +e malware binary detection with deep
convolutional neural networks (CNNs) has been proved to be an effective method. However, the existing malware classification
methods based on CNNs are unsatisfactory to this day because of their poor extraction ability, insufficient accuracy of malware
classification, and high cost of detection time. To solve these problems, a novel approach, namely, multiscale feature fusion
convolutional neural networks (MFFCs), was proposed to achieve an effective classification of malware based on malware
visualization utilizing deep learning, which can defend against malware variants and confusing malwares. +e approach firstly
converts malware code binaries into grayscale images, and then, these images will be normalized in size by utilizing the MFFC
model to identify malware families. Comparative experiments were carried out to verify the performance of the proposed method.
+e results indicate that theMFFC stands out among the recent advancedmethods with an accuracy of 98.72% and an average cost
of 5.34 milliseconds on the Malimg dataset. Our method can effectively identify malware and detect variants of malware families,
which has excellent feature extraction capability and higher accuracy with lower detection time.

1. Introduction

Malware is a kind of malicious software that does harmful
actions on computer systems, including viruses, worms,
Trojan horses, and spyware [1]. According to the weekly
report trends by the National Computer Network Emer-
gency Response Technical Team/Coordination Center of
China (known as CNCERT/CC), the number of hosts in-
fected by network viruses in China was about 96,200 and the
number of malicious programs transmitted in China was up
to 69.724 million times only during one week [2]. With the
increasing quantity and types of malwares, it becomes more
and more difficult to detect these malwares, generating great
challenges for network security. +erefore, quick and ac-
curate methods to detect and classify malwares and their
variants are highly desired in the professional field.

Feature vectors of malware represent the basic feature in
malware detection. According to the different categories of
malware feature vectors, malware analysis can be divided
into dynamic analysis and static analysis. Static analysis,

based on disassembling the malicious code, does not execute
malicious code. +e traditional methods of static analysis
extract the attribute code, opcodes, and binary profiles of
malware as a feature to identify sample malpractice. But code
obfuscation frequently occurs in this approach. Differently,
dynamic analysis is the practice of actually running an
executable file and analyzing its behavior in a sandbox,
simulator, and virtual machine. Some tools like Proc-
esMonitor or OllyDbg are used to monitor the application
behavior through system calls [3]. Alazab et al. [4, 5] in-
dicated that static analysis does better than dynamic analysis
in the aspect of speed and effectiveness, because it can
capture the information related to structural properties.

Traditional methods of malware detection are mainly
based on malware feature analysis. However, the above
methods do not identify malware variants. Nataraj et al.
[6, 7] realized malware visualization by converting malware
code binaries into malware grayscale images with the help of
Conti et al. [8]. After malware visualization, malware images
belonging to the same family are similar in vision, while
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malware images belonging to different families have a dif-
ference in vision. According to the characteristic of malware
images, malware classification can be dealt with by computer
vision.

Malware classification by visualization is proved to be
faster and more accurate than traditional malware analysis
methods. Also, these methods can resolve code obfuscation
issues. In recent years, machine learning and deep learning
are widely used to detect malware and malware classification
based on malware visualization. Compared with other
techniques of malware analysis, image texture analysis is
proved to be a better way to the classification of the malware
family variants. Currently, all the methods of malware
classification based on malware images can be divided into
two parts: extracting features from the malware images and
realizing malware classification by classifiers, such as KNN
(K-nearest neighbor) and softmax.

Machine learning based on malware visualization using
malware dataset is adopted to train different machine
learning classifiers. For example, Nataraj et al. [6, 7] pro-
posed a method of malware classification that firstly
extracted GIST features of malware grayscale images and
then used the K-nearest neighbor to classify malware,
obtaining a classification accuracy of 97.18% on the Malimg
dataset. Kancherla and Mukkamala [9] reported a method
that used 512 Gabor-based features, 22 wavelet-based fea-
tures, and 6 intensity-based features as total features and
SVM as a classifier to realize malware detection. In 2016,
Nataraj and Manjunath provided a novel method named
SPAM (signal processing for analyzing malware) that used
images or signals to represent malware samples [10]. +ey
first characterized malware by extracting the image- and
signal-based features. +en, they used the GIST feature as a
descriptor and nearest neighbor as a classifier to identify
malware, achieving an accuracy of 97.40% on the Malimg
dataset. In 2019, to reduce the computational time, Naeem
et al. [11] proposed a LGMP feature description, which
contains both local and global feature of malware images
with a KNN classifier to detect malware. +ey firstly utilized
a D-SIFT descriptor extract local malware feature and then
used a GIST descriptor to extract global malware feature.
Finally, a LGMP description was generated by combining
local and global feature vectors. +ese results indicated that
their method had a lower response time and a better per-
formance on malware classification.

In recent years, great breakthroughs have been achieved
in deep learning in image processing and target detection
and some excellent performances have been realized in these
fields [12–14]. +us, a large number of studies, related to
malware classification based on malware visualization with
the method of deep learning, have been carried out. For
example, Kabanga and Kim [15] used a simple CNN
structure, which consists of three convolution layers and two
fully connected layers to identify malware, achieving good
performance. Yue [16] came up with a method of a weighted
softmax loss to optimize CNNs on malware classification.
+is method was realized by setting a new parameter β,
which can control the scaling of the weighted loss. It was
proved an effective method by comparing the accuracy of the

VGGNet [13] model and the VGGNet model with weighted
softmax loss. Agarap [17] dealt with malware classification
by combining deep learning and machine learning. +ey
made use of deep learning, such as CNNs, GRU, andMLP, to
extract features of malware images and then used SVM, a
machine learning classifier, as the model classifier. However,
the dimension of feature vectors extracted by deep learning
is huge, limiting the effect of SVM, which resulted in low
accuracy of 84.92%.+e above models failed to deal with the
imbalance dataset.

Cui et al. [18, 19] were devoted to deal with the data
imbalance among different malware families by swarm in-
telligence algorithm, which in 2018 is the bat algorithm
(DRBA) and in 2019 is NSGA-II. +e accuracy of the
training model was taken as an objective function. In the
model training process, a sample of each malware family was
resampled according to the weight, which is optimized by a
swarm intelligence algorithm for each epoch. After making
sure the best sample set, they trained a CNN model on this
dataset to identify malware. Compared with the machine
learning method of GIST +KNN, GIST + SVM,
GLCM+SVM, and GLCM+KNN, their method generated
a higher accuracy. In addition, there are other methods
[20–22] dealing with the problem of malware family im-
balance by a cost-sensitive approach.

Overall, most of the methods [23, 24] in malware
classification by malware visualization are faced with the
drawback of costing high in extracting features of malware
images, such as GIST, GLCM, and LBP, leading to low
efficiency. To reduce the cost of feature extraction and
enhance the capability of feature extraction, a malware
family classification approach with higher accuracy and
lower detection time is highly required, which has more
efficient feature extraction.

In this study, we propose a novel method, called MFFC
(multiscale feature fusion on convolutional neural net-
works), to identify malware and detect variants of malware
families, which have excellent feature extraction capability
and higher accuracy and faster detection time.

+e remainder of this study is structured in the following
manner: Section 2 explains the approach, MFFC, which we
have proposed in detail. Section 3 introduces the datasets
and statistical measures of the experiments. Section 4 verifies
the performance of our method. Section 5 is devoted to
analyzing the result of the comparative experiments. Section
6 provides the concluding remarks and future direction.

2. Methods

MFFC mainly consists of two parts: malware preprocessing
including malware visualization and malware image size
normalization, and the MFFCmodel construction.+e basic
structure of the MFFC algorithm is depicted in Figure 1.

2.1. Malware Preprocessing

2.1.1. Malware Visualization. In 2010, Conti et al. proposed
a method of mapping binary files into grayscale images by
using multidimensional information theory to classify
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regions [8]. In 2011, Nataraj et al. [6] took the lead in ap-
plying the ideas of Conti et al. to the study of malware code.
+e method of malware visualization is as follows: the
malware binary file is transformed into a vector of 8 bit
unsigned integers (with a range of 0–255). +e transformed
vector is reconstructed into a 2D array according to different
file sizes, and the 2D array is drawn as a grayscale image.+e
visualization processing of malware is shown in Figure 2.
Based on [6, 7], different image widths should be set as in
Table 1 according to different file sizes.

+e grayscale images of different malicious families are
shown in Figure 3. It can be observed that although the
malware grayscale image size and its ratio of length and
width in the same family are different, and there are still
similarities in vision, while the grayscale image samples of
malware in different families are different in vision. +at
makes it possible to realize malware classification based on
features of malware images.

According to the visual similarity of malware images,
malware classification problem can be turned into computer
vision problems.

2.1.2. Malware Image Size Normalization. In the classical
convolutional neural network, the size of the weight matrix
that belongs to the full connection layer is fixed, so the
number of neurons that is input to the full connection layer
must be fixed. It means that the feature size after the
convolution and pooling operation must be consistent be-
fore the full connection layer. If the size of the input image is

different, the output feature size will also be different after
the convolution and pooling operation, which will lead to
the failure of the full connection layer. +us, the images that
feed into the neural network must be of the same size.
However, the method of malware visualization determines
that the size and ratio of malware images are different from
each other. +us, it is necessary to normalize the image size
of sample images in the dataset.

In our study, malware images were reshaped to the fixed
square sizes (e.g., 32∗ 32 and 64∗ 64). Only malware images
that had already been normalized in image size could be fed
into the CNNs for training. Malware image size normali-
zation has the advantage that the dimensionality of the
image can be effectively reduced, which does contribute to
model training. Meanwhile, that will inevitably cause the loss
of feature information during the process of dimensionality
reduction.

In Figure 4, we can see one of the grayscale images in the
malware family named Allaple.A, which original size is
370∗ 256. It is resized to the different scales of 32∗ 32, 64∗ 64,
128∗ 128, and 256∗ 256. Obviously, the pivotal features of
malware image can be preserved after image scaling.

2.2. MFFC Model. +e MFFC model is shown in the pink
part of Figure 1. +e malware images after malware pre-
processing will be fed into the MFFC model for training. In
the MFFC model, there are three CBR layers, four MFFC
blocks, and a dense layer with activation of softmax acting as
a classifier, containing 25 classes.

MFFC Model

CBR

CBR

CBR

MFFC BLOCK

MFFC BLOCK

MFFC BLOCK

MFFC BLOCK

DENSE

Malware Preprocessing

 Malware Binary:
0100100010001
0111001011101
00100..............

Binary to 8 bit 
vector:

[01001000,1000
1011,10010111,

0100100......]

8 bit vector to 
grayscale image:
[[72,39,11,73...],
[86,78,175,38...],

.....]

Family 25

Family 1

Conv BN ReluCBR

. . . . . .

Figure 1: +e basic structure of the MFFC algorithm.
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Allaple.A

Instantaccess

C2LOP.gen!g

Figure 3: Samples of different malware family grayscale images.

32*32
64*64

128*128

256*256

Allaple.A

Figure 4: Visualizing malware as a grayscale image.

Malware Binary:
0100100010001
0111001011101
00100..............

Binary to 8 bit 
vector:

[01001000,1000
1011,10010111,
0100100..........]

8 bit vector to 
grayscale image:
[[72,39,11,73...],
[86,78,175,38...],

.....]

Figure 2: Visualizing malware as a grayscale image.

Table 1: Image width setting of different file sizes.

File size Image width File size Image width
<10KB 32 100KB∼200KB 384
10KB∼30KB 64 200KB∼500KB 512
30KB∼60KB 128 500KB∼1000KB 768
60KB∼100KB 256 >1000KB 1024
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In order to enhance the ability of feature extraction of the
MFFCmodel, the MFFC block is designed.+eMFFC block
is a block that is devoted to extract multiscale features of
malware images. +e structure of the MFFC block is shown
in Figure 5.

In the MFFC block, there are four branches. Branches
from right to left, respectively, are branch I, II, III, and IV.
Branch I to IV will, respectively, generate feature vectors of
C1, C2, C3, and C4. Finally, feature vectors C1 to C4 will be
concatenated to get the final output. In the MFFC block,
1× 1 CBR layers are used to reduce dimension, which can
make the parameters decrease. In branch IV, two 3× 3 CBR
layers are to get a bigger receptive field.

3. Datasets and Statistical Measures

3.1. Datasets and Experimental Setup. All the experiments
are evaluated on the Malimg malware dataset [6]. Malimg
malware dataset consists of 25 malware families that have
9,435 malwares in total. Figure 6 shows the distribution of
samples in each malware family. We used 90% of the dataset
for training and 10% of the dataset for testing.

3.2. Statistical Measures. For evaluating the performance of
the approaches, four evaluation metrics, such as accuracy,
precision, recall, and F1 score, are considered. +e above-
mentioned evaluation metrics have been generally applied to
related research studies for better assessments of various
approaches [25–27]:

True positive (TP): it means that the positive samples
are correctly detected as positive.
True negative (TN): it means that negative samples are
correctly detected as negative.
False positive (FP): it means that negative samples are
wrongly detected as positive.
False negative (FN): it means that a positive sample is
wrongly detected as a negative.
Accuracy is defined as the ratio of correctly predicted
outcomes to the sum of all predictions and is defined as
follows:

accuracy �
TP + TN

TP + TN + FP + FN
. (1)

Precision is the proportion of all the predicted samples
that are correct (including positive and negative ones)
in the total number of samples and is defined as follows:

precision �
TP

TP + FP
. (2)

Recall is the proportion of the correct forecast positive
to the total true positive and is defined as follows:

recall �
TP

TP + FN
. (3)

F1 score is the weighted harmonic average of Precision
and Recall and is defined as follows:

F1 � 2 ×
precision × recall
Precision + recall

. (4)

4. Results

To validate the effectiveness and efficiency of the proposed
model (MFFC), we designed experiments as follows: (1)
comparison of the performance with different malware
image size, (2) performance of the MFFC algorithm, and (3)
comparison of IMCFN performance over previously studied
malware family classification techniques.

All experiments are conducted on 64 bit Windows
Intel(R) Core(TM) i7-7700HQ CPU (2.80GHz) with 16GB
RAM and NVIDIA GeForce GTX 1050 GPU (4GB), based
on python.
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Figure 6: +e distribution of the Malimg malware dataset.
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Figure 5: +e structure of the MFFC block.
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4.1. Comparison of the Performance with Different Malware
Image Sizes. +e input shape of the image to the CNN
model is fixed limited by the full connection layer, but
different input shapes of the malware image will get the
different performance of the model. In order to obtain a
more suitable size of the malware image, we normalize the
malware images to different sizes as 32× 32, 64 × 64,
128×128, and 256 × 256 to train the MFFC. +e results are
shown in Table 2.

When the input shape of the malware image is 256× 256,
the model achieves the highest accuracy of 98.72%, and its
parameters are 1,104,041. When we predict a new malware
sample, the model only costs 5.34ms on average.

4.2. Performance of theMFFCAlgorithm. Figure 7 shows the
performance changes with an epoch of the train set and test
set in the process of model training, where Figure 7(a) is the
curve of accuracy rate changing with epoch and Figure 7(b)
is the curve of loss changing with epoch. +e black line
represents the train set, while the red line is the test set. We
can see that model has converged when the epoch is 7. After
training and testing, we achieve an accuracy of 98.72% and a
loss of 0.0517 for MFFC.

In order to clearly observe the classification details of the
model, the confusion matrix for MFFC is plotted, as shown
in Figure 8. +e value of the leading diagonal in the con-
fusion matrix represents the true-positive rate of malware
family classification, and the other values mean the false-
negative rate of malware family classification.

For this experiment, we obtain the precision of MFFC is
98.86%, while the recall is 98.72% and the F1 score is 98.73%.
In Figure 9, the performance of MFFC in 25 malware
families is shown.

4.3. Comparison with Existing Malware Classification. We
compare the performance of MFFC with other approaches
that are based on malware visualization, using machine
learning or deep learning. All these approaches firstly
convert the malware binaries into malware images,
extracting features from the malware images, and then used
machine learning classifiers (e.g., KNN and SVM) or deep
learning classifiers (e.g., softmax) to classify the malware
families.

Table 3 presents a comparative summary of the MFFC
algorithm with previous malware classification algo-
rithms that use the Malimg dataset to evaluate the
experiment.

5. Discussion

In Table 2, we can see that with the increase in malware
image size, the accuracy, parameters, and prediction time
also increase. +e malware image size will have an effect on
the feature extraction ability of the MFFC. +e larger the
image size, the better the effect of feature extraction. But with
the increase in image size to a threshold, there is little
improvement in accuracy. +e parameters are also in-
creasing with the increment in malware image size. Al-
though the parameters of image size from 128×128 to
256× 256 increased to nearly 0.6M, the accuracy improved
from 97.43% to 98.72% for a total increase of 1.23%, and the
increase in prediction is just only 0.63ms. In malware
classification, accuracy and prediction are more important
to the parameters. We believe that it is worth to improve the
accuracy at the cost of the parameters increasing in this part.
+us, the malware image size of 256× 256 is a better choice
for MFFC.

+rough the observation of the result after training, we
get a model that converges fast and has good generalization
ability. +e overall malware classification by our method for
25 malware families obtains a satisfactory performance.
However, as shown in the confusion matrix, there is a major
source of misclassifications, which the MFFC has difficulty
in classifying samples that are variants of the same family,
such as C2LOP.P and C2LOP.gen!g, Swizzor.gen!E, and
Swizzor.gen!I. In other words, our model is capable of
detecting variants of malware families. +ere is no denying
that the MFFC algorithm keeps an excellent performance.

Table 3 shows that MFFC is better than the existing
malware classification methods in recent years except
IMCFN. +e performance of the MFFC algorithm and
IMCFN is similar. Our method has the same performance in
precision with IMCFN but in accuracy is 0.1 lower than
IMCFN. +is is probably because IMCFN converts the
malware binaries into malware color images while that in
our method are grayscale images. +e color images have
more details, which are helpful in extracting features of
malware images.+at is a good topic for our future research.
In addition, the total number of parameters in IMCFN is
nearly 138 million while that in MFFC is only 1,104,041. It
demonstrates that MFFC has an advantage in parameters.

Overall, our method obtains an excellent performance,
which has high accuracy and high speed of prediction time,
while has the ability to detect variants of malware families.
Both machine learning and deep learning have excellent
effects on malware detection by image classification. With
the dramatically increasing number of malwares, more ef-
fective methods are in urgent need.

Table 2: Performance of different input shapes of malware images.

Input shape Accuracy (%) Params Prediction time (ms)
32× 32 83.74 297,641 4.28
64× 64 94.22 336,041 4.29
128×128 97.43 489,641 4.71
256× 256 98.72 1,104,041 5.34
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�e confusion matrix for MFFC

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0 0 0

0 0 0 0 0 0 0.08 0.88 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.76 0.24 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0.96 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

A
di

al
er

.C
A

ge
nt

.F
YI

A
lla

pl
e.A

A
lla

pl
e.L

A
lu

er
on

.g
en

!J
A

ut
or

un
.K

C2
LO

P.
P

C2
LO

P.
ge

n!
g

D
ia

lp
la

tfo
rm

.B
D

on
to

vo
.A

Fa
ke

re
an

In
sta

nt
ac

ce
ss

Lo
ly

da
.A

A
1

Lo
ly

da
.A

A
2

Lo
ly

da
.A

A
3

Lo
ly

da
.A

T
M

al
ex

.g
en

!J
O

bf
us

ca
to

r.A
D

Rb
ot

ig
en

Sk
in

tr
im

.N
Sw

iz
zo

r.g
en

!E
Sw

iz
zo

r.g
en

!I
V

B.
A

T
W

in
tr

im
.B

X
Yu

ne
r.A

Adialer.C
Agent.FYI
Allaple.A
Allaple.L

Alueron.gen!J
Autorun.K

C2LOP.P
C2LOP.gen!g

Dialplatform.B
Dontovo.A

Fakerean
Instantaccess

Lolyda.AA1
Lolyda.AA2
Lolyda.AA3

Lolyda.AT
Malex.gen!J

Obfuscator.AD
Rbotigen

Skintrim.N
Swizzor.gen!E
Swizzor.gen!I

VB.AT
Wintrim.BX

Yuner.A

Tr
ue

 L
ab

el

Predict Label

0

0.2

0.4

0.6

0.8

1

Figure 8: +e confusion matrix for MFFC.

Computational Intelligence and Neuroscience 7



A
di

al
er

.C
A

ge
nt

.F
YI

A
lla

pl
e.A

A
lla

pl
e.L

A
lu

er
on

.g
en

!J
A

ut
or

un
.K

C2
LO

P.
P

C2
LO

P.
ge

n!
g

D
ia

lp
la

tfo
rm

.B
D

on
to

vo
.A

Fa
ke

re
an

In
sta

nt
ac

ce
ss

Lo
ly

da
.A

A
1

Lo
ly

da
.A

A
2

Lo
ly

da
.A

A
3

Lo
ly

da
.A

T
M

al
ex

.g
en

!J
O

bf
us

ca
to

r.A
D

Rb
ot

ig
en

Sk
in

tr
im

.N
Sw

iz
zo

r.g
en

!E
Sw

iz
zo

r.g
en

!I
V

B.
A

T
W

in
tr

im
.B

X
Yu

ne
r.A

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
 (%

)

MFFC

(a)

A
di

al
er

.C
A

ge
nt

.F
YI

A
lla

pl
e.A

A
lla

pl
e.L

A
lu

er
on

.g
en

!J
A

ut
or

un
.K

C2
LO

P.
P

C2
LO

P.
ge

n!
g

D
ia

lp
la

tfo
rm

.B
D

on
to

vo
.A

Fa
ke

re
an

In
sta

nt
ac

ce
ss

Lo
ly

da
.A

A
1

Lo
ly

da
.A

A
2

Lo
ly

da
.A

A
3

Lo
ly

da
.A

T
M

al
ex

.g
en

!J
O

bf
us

ca
to

r.A
D

Rb
ot

ig
en

Sk
in

tr
im

.N
Sw

iz
zo

r.g
en

!E
Sw

iz
zo

r.g
en

!I
V

B.
A

T
W

in
tr

im
.B

X
Yu

ne
r.A

0.0

0.2

0.4

0.6

0.8

1.0

MFCC

Re
ca

ll 
(%

)

(b)

A
di

al
er

.C
A

ge
nt

.F
YI

A
lla

pl
e.A

A
lla

pl
e.L

A
lu

er
on

.g
en

!J
A

ut
or

un
.K

C2
LO

P.
P

C2
LO

P.
ge

n!
g

D
ia

lp
la

tfo
rm

.B
D

on
to

vo
.A

Fa
ke

re
an

In
sta

nt
ac

ce
ss

Lo
ly

da
.A

A
1

Lo
ly

da
.A

A
2

Lo
ly

da
.A

A
3

Lo
ly

da
.A

T
M

al
ex

.g
en

!J
O

bf
us

ca
to

r.A
D

Rb
ot

ig
en

Sk
in

tr
im

.N
Sw

iz
zo

r.g
en

!E
Sw

iz
zo

r.g
en

!I
V

B.
A

T
W

in
tr

im
.B

X
Yu

ne
r.A

0.0

0.2

0.4

0.6

0.8

1.0

MFCC

F1
-s

co
re

 (%
)

(c)

Figure 9:+e performance of MFFC in 25 malware families. (a)+e precision of MFFC in 25malware families. (b)+e recall of MFFC in 25
malware families. (c) +e F1 score of MFFC in 25 malware families.

Table 3: Comparative summary of MFFC algorithm with previous malware classification algorithms.

Method Year Technique Accuracy (%) Precision (%) Recall (%) F1 score (%)
Nataraj et al. [6] 2011 ML 97.18 — — —
SPAM-GIST [10] 2016 ML 97.40 — — —
DL+ SVM [17] 2017 DL+ML 84.92 — — —

Vgg-verydeep-19 [16] 2017 DL 97.32 — — —
GIST+ SVM [18] 2018 ML 92.20 92.50 91.40 —
GIST+KNN [18] 2018 ML 91.90 92.10 91.70 —
GLCM+SVM [18] 2018 ML 93.20 93.40 93.00 —
GLCM+KNN [18] 2018 ML 92.50 92.70 92.30 —
DRBA+CNNs [18] 2018 DL 94.50 96.60 88.40 —
LGMP+KNN [11] 2019 ML 98.40 — 98.20 —

NSGA-II +CNNs [19] 2019 DL 97.60 97.60 88.40 —
Venkatraman [22] 2019 DL 96.30 91.80 91.50 91.60
Gibert et al. [28] 2019 DL 98.50 98.00 98.00 98.00
IMCFN [29] 2020 DL 98.82 98.85 98.81 98.75

DEAM-DenseNet [30] 2021 DL 98.50 96.90 96.60 96.70
MFFC 2021 DL 98.72 98.86 98.72 98.73

ML: machine learning; DL: deep learning.
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6. Conclusions

+is study proposed a novel method, which is namedMFFC,
based on multiscale feature fusion of malware grayscale
images by malware visualization, for improving the per-
formance of malware classification and the ability of
detecting malware variants. +e experimental results on 25
malware families, which include 9,342 grayscale images,
showed that our method keeps an excellent performance
with achieving 98.72% accuracy and a good detection speed
of 0.00534 seconds.

In the experiment, we found that in some malware
images after size normalization will appear the change in
image texture features that limited the performance of our
model. +is is because the original length-width ratio of the
malware image is different. When we resize the malware
images, the images are partially stretched resulting in image
distortion. In future studies, we would like to look for a new
method to realize malware image size normalization that can
keep the malware image features unchanged. +e trans-
formation of malware into color images is proved to have a
more excellent performance. We will improve our method
by visualizing malicious codes to color images. In addition,
the optimization of model hyperparameters often depends
on human experience without a theoretical basis. Some of
the most representative computational intelligence algo-
rithms would be effective to solve the problem, like monarch
butterfly optimization (MBO), earthworm optimization
algorithm (EWA), elephant herding optimization (EHO),
moth search (MS) algorithm, slime mould algorithm (SMA),
and Harris hawks optimization (HHO).

Data Availability

Previously reported data were used to support this study and
are available at 10.1145/2016904.2016908. +ese prior
studies (and datasets) are cited at relevant places within the
text as references [6].
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